Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 /* 27 * File: G4FPYNormalFragmentDist.cc 28 * Author: B. Wendt (wendbryc@isu.edu) 29 * 30 * Created on July 26, 2011, 12:26 PM 31 */ 32 33 #include "G4FPYNormalFragmentDist.hh" 34 35 #include "G4FFGDebuggingMacros.hh" 36 #include "G4FFGEnumerations.hh" 37 #include "G4FissionProductYieldDist.hh" 38 #include "G4Ions.hh" 39 #include "Randomize.hh" 40 #include "globals.hh" 41 42 G4FPYNormalFragmentDist::G4FPYNormalFragmentDist(G4int WhichIsotope, 43 G4FFGEnumerations::MetaState WhichMetaState, 44 G4FFGEnumerations::FissionCause WhichCause, 45 G4FFGEnumerations::YieldType WhichYieldType, 46 std::istringstream& dataFile) 47 : G4FissionProductYieldDist(WhichIsotope, WhichMetaState, WhichCause, WhichYieldType, dataFile) 48 { 49 // Initialize the class 50 Initialize(); 51 } 52 53 G4FPYNormalFragmentDist::G4FPYNormalFragmentDist(G4int WhichIsotope, 54 G4FFGEnumerations::MetaState WhichMetaState, 55 G4FFGEnumerations::FissionCause WhichCause, 56 G4FFGEnumerations::YieldType WhichYieldType, 57 G4int Verbosity, std::istringstream& dataFile) 58 : G4FissionProductYieldDist(WhichIsotope, WhichMetaState, WhichCause, WhichYieldType, Verbosity, 59 dataFile) 60 { 61 // Initialize the class 62 Initialize(); 63 } 64 65 void G4FPYNormalFragmentDist::Initialize(){G4FFG_FUNCTIONENTER__ 66 67 // Nothing here yet 68 69 G4FFG_FUNCTIONLEAVE__} 70 71 G4Ions* G4FPYNormalFragmentDist::GetFissionProduct() 72 { 73 G4FFG_FUNCTIONENTER__ 74 75 G4Ions* Particle = nullptr; 76 77 // Generate a (0, 1] random number and return the respective particle. 78 // The ENDF data tables lists 72172 as the largest fission fragment produced 79 // for any fission event. The maximum alpha production is 10 and the 80 // smallest fissile isotope is 90227. This means that if isotope 72172 were 81 // selected as the first daughter product, then at 10 alpha particles only 82 // 15 nucleons and -2 protons would remain for the second daughter product. 83 // Although the actual probability of this occurring is very small, or 0 in 84 // this case, a check should still be made to ensure that the second 85 // daughter product can be physically realized. This would prevent a 86 // situation such as this extreme example which results in a nucleus of 13 87 // neutrons and 2 anti-protons. 88 // This quick sanity check may become even more valid if the ENDF data 89 // tables are expanded in the future and include larger fission products. 90 91 G4int icounter = 0; 92 G4int icounter_max = 1024; 93 do { 94 icounter++; 95 if (icounter > icounter_max) { 96 G4cout << "Loop-counter exceeded the threshold value at " << __LINE__ << "th line of " 97 << __FILE__ << "." << G4endl; 98 break; 99 } 100 Particle = FindParticle(RandomEngine_->G4SampleUniform()); 101 } while (Particle->GetAtomicMass() > RemainingA_ + 1 102 || Particle->GetAtomicNumber() > RemainingZ_ + 1); 103 // Loop checking, 11.05.2015, T. Koi 104 105 G4FFG_FUNCTIONLEAVE__ 106 return Particle; 107 } 108 109 G4FPYNormalFragmentDist::~G4FPYNormalFragmentDist() 110 { 111 G4FFG_FUNCTIONENTER__ 112 113 // Empty - all the data elements to be deconstructed are removed by 114 // ~G4FissionProductYieldDist() 115 116 G4FFG_FUNCTIONLEAVE__ 117 } 118