Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 /** \file G4INCLCoulombNonRelativistic.cc 39 * \brief Class for non-relativistic Coulomb distortion. 40 * 41 * \date 14 February 2011 42 * \author Davide Mancusi 43 */ 44 45 #include "G4INCLCoulombNonRelativistic.hh" 46 #include "G4INCLGlobals.hh" 47 48 namespace G4INCL { 49 50 ParticleEntryAvatar *CoulombNonRelativistic::bringToSurface(Particle * const p, Nucleus * const n) const { 51 // No distortion for neutral particles 52 if(p->getZ()!=0) { 53 const G4bool success = coulombDeviation(p, n); 54 if(!success) // transparent 55 return NULL; 56 } 57 58 // Rely on the CoulombNone slave to compute the straight-line intersection 59 // and actually bring the particle to the surface of the nucleus 60 return theCoulombNoneSlave.bringToSurface(p,n); 61 } 62 63 IAvatarList CoulombNonRelativistic::bringToSurface(Cluster * const c, Nucleus * const n) const { 64 // Neutral clusters?! 65 // assert(c->getZ()>0); 66 67 // Perform the actual Coulomb deviation 68 const G4bool success = coulombDeviation(c, n); 69 if(!success) { 70 return IAvatarList(); 71 } 72 73 // Rely on the CoulombNone slave to compute the straight-line intersection 74 // and actually bring the particle to the surface of the nucleus 75 return theCoulombNoneSlave.bringToSurface(c,n); 76 } 77 78 void CoulombNonRelativistic::distortOut(ParticleList const &pL, 79 Nucleus const * const nucleus) const { 80 81 for(ParticleIter particle=pL.begin(), e=pL.end(); particle!=e; ++particle) { 82 83 const G4int Z = (*particle)->getZ(); 84 if(Z == 0) continue; 85 86 const G4double tcos=1.-0.000001; 87 88 const G4double et1 = PhysicalConstants::eSquared * nucleus->getZ(); 89 const G4double transmissionRadius = 90 nucleus->getDensity()->getTransmissionRadius(*particle); 91 92 const ThreeVector position = (*particle)->getPosition(); 93 ThreeVector momentum = (*particle)->getMomentum(); 94 const G4double r = position.mag(); 95 const G4double p = momentum.mag(); 96 const G4double cosTheta = position.dot(momentum)/(r*p); 97 if(cosTheta < 0.999999) { 98 const G4double sinTheta = std::sqrt(1.-cosTheta*cosTheta); 99 const G4double eta = et1 * Z / (*particle)->getKineticEnergy(); 100 if(eta > transmissionRadius-0.0001) { 101 // If below the Coulomb barrier, radial emission: 102 momentum = position * (p/r); 103 (*particle)->setMomentum(momentum); 104 } else { 105 const G4double b0 = 0.5 * (eta + std::sqrt(eta*eta + 106 4. * std::pow(transmissionRadius*sinTheta,2) 107 * (1.-eta/transmissionRadius))); 108 const G4double bInf = std::sqrt(b0*(b0-eta)); 109 const G4double thr = std::atan(eta/(2.*bInf)); 110 G4double uTemp = (1.-b0/transmissionRadius) * std::sin(thr) + 111 b0/transmissionRadius; 112 if(uTemp>tcos) uTemp=tcos; 113 const G4double thd = Math::arcCos(cosTheta)-Math::piOverTwo + thr + 114 Math::arcCos(uTemp); 115 const G4double c1 = std::sin(thd)*cosTheta/sinTheta + std::cos(thd); 116 const G4double c2 = -p*std::sin(thd)/(r*sinTheta); 117 const ThreeVector newMomentum = momentum*c1 + position*c2; 118 (*particle)->setMomentum(newMomentum); 119 } 120 } 121 } 122 } 123 124 G4double CoulombNonRelativistic::maxImpactParameter(ParticleSpecies const &p, const G4double kinE, 125 Nucleus const * const n) const { 126 const G4double theMinimumDistance = minimumDistance(p, kinE, n); 127 G4double rMax = n->getUniverseRadius(); 128 if(p.theType == Composite) 129 rMax += 2.*ParticleTable::getLargestNuclearRadius(p.theA, p.theZ); 130 const G4double theMaxImpactParameterSquared = rMax*(rMax-theMinimumDistance); 131 if(theMaxImpactParameterSquared<=0.) 132 return 0.; 133 const G4double theMaxImpactParameter = std::sqrt(theMaxImpactParameterSquared); 134 return theMaxImpactParameter; 135 } 136 137 G4bool CoulombNonRelativistic::coulombDeviation(Particle * const p, Nucleus const * const n) const { 138 // Determine the rotation angle and the new impact parameter 139 ThreeVector positionTransverse = p->getTransversePosition(); 140 const G4double impactParameterSquared = positionTransverse.mag2(); 141 const G4double impactParameter = std::sqrt(impactParameterSquared); 142 143 // Some useful variables 144 const G4double theMinimumDistance = minimumDistance(p, n); 145 // deltaTheta2 = (pi - Rutherford scattering angle)/2 146 G4double deltaTheta2 = std::atan(2.*impactParameter/theMinimumDistance); 147 if(deltaTheta2<0.) 148 deltaTheta2 += Math::pi; 149 const G4double eccentricity = 1./std::cos(deltaTheta2); 150 151 G4double newImpactParameter, alpha; // Parameters that must be determined by the deviation 152 153 const G4double radius = getCoulombRadius(p->getSpecies(), n); 154 const G4double impactParameterTangentSquared = radius*(radius-theMinimumDistance); 155 if(impactParameterSquared >= impactParameterTangentSquared) { 156 // The particle trajectory misses the Coulomb sphere 157 // In this case the new impact parameter is the minimum distance of 158 // approach of the hyperbola 159 // assert(std::abs(1. + 2.*impactParameter*impactParameter/(radius*theMinimumDistance))>=eccentricity); 160 newImpactParameter = 0.5 * theMinimumDistance * (1.+eccentricity); // the minimum distance of approach 161 alpha = Math::piOverTwo - deltaTheta2; // half the Rutherford scattering angle 162 } else { 163 // The particle trajectory intersects the Coulomb sphere 164 165 // Compute the entrance angle 166 const G4double argument = -(1. + 2.*impactParameter*impactParameter/(radius*theMinimumDistance)) 167 / eccentricity; 168 const G4double thetaIn = Math::twoPi - Math::arcCos(argument) - deltaTheta2; 169 170 // Velocity angle at the entrance point 171 alpha = std::atan((1+std::cos(thetaIn)) 172 / (std::sqrt(eccentricity*eccentricity-1.) - std::sin(thetaIn))) 173 * Math::sign(theMinimumDistance); 174 // New impact parameter 175 newImpactParameter = radius * std::sin(thetaIn - alpha); 176 } 177 178 // Modify the impact parameter of the particle 179 positionTransverse *= newImpactParameter/positionTransverse.mag(); 180 const ThreeVector theNewPosition = p->getLongitudinalPosition() + positionTransverse; 181 p->setPosition(theNewPosition); 182 183 // Determine the rotation axis for the incoming particle 184 const ThreeVector &momentum = p->getMomentum(); 185 ThreeVector rotationAxis = momentum.vector(positionTransverse); 186 const G4double axisLength = rotationAxis.mag(); 187 // Apply the rotation 188 if(axisLength>1E-20) { 189 rotationAxis /= axisLength; 190 p->rotatePositionAndMomentum(alpha, rotationAxis); 191 } 192 193 return true; 194 } 195 196 G4double CoulombNonRelativistic::getCoulombRadius(ParticleSpecies const &p, Nucleus const * const n) const { 197 if(p.theType == Composite) { 198 const G4int Zp = p.theZ; 199 const G4int Ap = p.theA; 200 const G4int Zt = n->getZ(); 201 const G4int At = n->getA(); 202 G4double barr, radius = 0.; 203 if(Zp==1 && Ap==2) { // d 204 barr = 0.2565*Math::pow23((G4double)At)-0.78; 205 radius = PhysicalConstants::eSquared*Zp*Zt/barr - 2.5; 206 } else if(Zp==1 && Ap==3) { // t 207 barr = 0.5*(0.5009*Math::pow23((G4double)At)-1.16); 208 radius = PhysicalConstants::eSquared*Zt/barr - 0.5; 209 } else if(Zp==2) { // alpha, He3 210 barr = 0.5939*Math::pow23((G4double)At)-1.64; 211 radius = PhysicalConstants::eSquared*Zp*Zt/barr - 0.5; 212 } else if(Zp>2) { 213 // Coulomb radius from the Shen model 214 const G4double Ap13 = Math::pow13((G4double)Ap); 215 const G4double At13 = Math::pow13((G4double)At); 216 const G4double rp = 1.12*Ap13 - 0.94/Ap13; 217 const G4double rt = 1.12*At13 - 0.94/At13; 218 const G4double someRadius = rp+rt+3.2; 219 const G4double theShenBarrier = PhysicalConstants::eSquared*Zp*Zt/someRadius - rt*rp/(rt+rp); 220 radius = PhysicalConstants::eSquared*Zp*Zt/theShenBarrier; 221 } 222 if(radius<=0.) { 223 radius = ParticleTable::getLargestNuclearRadius(Ap,Zp) + ParticleTable::getLargestNuclearRadius(At, Zt); 224 INCL_ERROR("Negative Coulomb radius! Using the sum of nuclear radii = " << radius << '\n'); 225 } 226 INCL_DEBUG("Coulomb radius for particle " 227 << ParticleTable::getShortName(p) << " in nucleus A=" << At << 228 ", Z=" << Zt << ": " << radius << '\n'); 229 return radius; 230 } else 231 return n->getUniverseRadius(); 232 } 233 234 } 235