Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 /** \file G4INCLCoulombNonRelativistic.hh 39 * \brief Class for non-relativistic Coulomb distortion. 40 * 41 * \date 14 February 2011 42 * \author Davide Mancusi 43 */ 44 45 #ifndef G4INCLCOULOMBNONRELATIVISTIC_HH_ 46 #define G4INCLCOULOMBNONRELATIVISTIC_HH_ 47 48 #include "G4INCLParticle.hh" 49 #include "G4INCLNucleus.hh" 50 #include "G4INCLICoulomb.hh" 51 #include "G4INCLCoulombNone.hh" 52 #include "G4INCLGlobals.hh" 53 54 namespace G4INCL { 55 56 class CoulombNonRelativistic : public ICoulomb { 57 public: 58 CoulombNonRelativistic() {} 59 virtual ~CoulombNonRelativistic() {} 60 61 /** \brief Modify the momentum of the particle and position it on the 62 * surface of the nucleus. 63 * 64 * This method performs non-relativistic distortion. 65 * 66 * \param p incoming particle 67 * \param n distorting nucleus 68 **/ 69 ParticleEntryAvatar *bringToSurface(Particle * const p, Nucleus * const n) const; 70 71 /** \brief Modify the momentum of the incoming cluster and position it on 72 * the surface of the nucleus. 73 * 74 * This method performs non-relativistic distortion. The momenta of the 75 * particles that compose the cluster are also distorted. 76 * 77 * \param c incoming cluster 78 * \param n distorting nucleus 79 **/ 80 IAvatarList bringToSurface(Cluster * const c, Nucleus * const n) const; 81 82 /** \brief Modify the momenta of the outgoing particles. 83 * 84 * This method performs non-relativistic distortion. 85 * 86 * \param pL list of outgoing particles 87 * \param n distorting nucleus 88 */ 89 void distortOut(ParticleList const &pL, Nucleus const * const n) const; 90 91 /** \brief Return the maximum impact parameter for Coulomb-distorted 92 * trajectories. **/ 93 G4double maxImpactParameter(ParticleSpecies const &p, const G4double kinE, Nucleus const * 94 const n) const; 95 96 private: 97 /// \brief Return the minimum distance of approach in a head-on collision (b=0). 98 G4double minimumDistance(ParticleSpecies const &p, const G4double kineticEnergy, Nucleus const * const n) const { 99 const G4double particleMass = ParticleTable::getTableSpeciesMass(p); 100 const G4double nucleusMass = n->getTableMass(); 101 const G4double reducedMass = particleMass*nucleusMass/(particleMass+nucleusMass); 102 const G4double kineticEnergyInCM = kineticEnergy * reducedMass / particleMass; 103 const G4double theMinimumDistance = ( kineticEnergyInCM <= 0.0 ? 0.0 : 104 PhysicalConstants::eSquared * p.theZ * n->getZ() * particleMass 105 / (kineticEnergyInCM * reducedMass) ); 106 INCL_DEBUG("Minimum distance of approach due to Coulomb = " << theMinimumDistance << '\n'); 107 return theMinimumDistance; 108 } 109 110 /// \brief Return the minimum distance of approach in a head-on collision (b=0). 111 G4double minimumDistance(Particle const * const p, Nucleus const * const n) const { 112 return minimumDistance(p->getSpecies(), p->getKineticEnergy(), n); 113 } 114 115 /** \brief Perform Coulomb deviation 116 * 117 * Modifies the entrance angle of the particle and its impact parameter. 118 * Can be applied to Particles and Clusters. 119 * 120 * The trajectory for an asymptotic impact parameter \f$b\f$ is 121 * parametrised as follows: 122 * \f[ 123 * r(\theta) = \frac{(1-e^2)r_0/2}{1-e \sin(\theta-\theta_R/2)}, 124 * \f] 125 * here \f$e\f$ is the hyperbola eccentricity: 126 * \f[ 127 * e = \sqrt{1+4b^2/r_0^2}; 128 * \f] 129 * \f$\theta_R\f$ is the Rutherford scattering angle: 130 * \f[ 131 * \theta_R = \pi - 2\arctan\left(\frac{2b}{r_0}\right) 132 * \f] 133 * \f$\theta\f$ ranges from \f$\pi\f$ (initial state) to \f$\theta_R\f$ 134 * (scattered particle) and \f$r_0\f$ is the minimum distance of approach 135 * in a head-on collision (see the minimumDistance() method). 136 * 137 * \param p pointer to the Particle 138 * \param n pointer to the Nucleus 139 * \return false if below the barrier 140 */ 141 G4bool coulombDeviation(Particle * const p, Nucleus const * const n) const; 142 143 /** \brief Get the Coulomb radius for a given particle 144 * 145 * That's the radius of the sphere that the Coulomb trajectory of the 146 * incoming particle should intersect. The intersection point is used to 147 * determine the effective impact parameter of the trajectory and the new 148 * entrance angle. 149 * 150 * If the particle is not a Cluster, the Coulomb radius reduces to the 151 * surface radius. We use a parametrisation for d, t, He3 and alphas. For 152 * heavier clusters we fall back to the surface radius. 153 * 154 * \param p the particle species 155 * \param n the deflecting nucleus 156 * \return Coulomb radius 157 */ 158 G4double getCoulombRadius(ParticleSpecies const &p, Nucleus const * const n) const; 159 160 /// \brief Internal CoulombNone slave to generate the avatars 161 CoulombNone theCoulombNoneSlave; 162 }; 163 } 164 165 #endif /* G4INCLCOULOMBNONRELATIVISTIC_HH_ */ 166