Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/include/G4INCLCoulombNonRelativistic.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France
 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1
 35 
 36 #include "globals.hh"
 37 
 38 /** \file G4INCLCoulombNonRelativistic.hh
 39  * \brief Class for non-relativistic Coulomb distortion.
 40  *
 41  * \date 14 February 2011
 42  * \author Davide Mancusi
 43  */
 44 
 45 #ifndef G4INCLCOULOMBNONRELATIVISTIC_HH_
 46 #define G4INCLCOULOMBNONRELATIVISTIC_HH_
 47 
 48 #include "G4INCLParticle.hh"
 49 #include "G4INCLNucleus.hh"
 50 #include "G4INCLICoulomb.hh"
 51 #include "G4INCLCoulombNone.hh"
 52 #include "G4INCLGlobals.hh"
 53 
 54 namespace G4INCL {
 55 
 56   class CoulombNonRelativistic : public ICoulomb {
 57     public:
 58       CoulombNonRelativistic() {}
 59       virtual ~CoulombNonRelativistic() {}
 60 
 61       /** \brief Modify the momentum of the particle and position it on the
 62        *         surface of the nucleus.
 63        *
 64        * This method performs non-relativistic distortion.
 65        *
 66        * \param p incoming particle
 67        * \param n distorting nucleus
 68        **/
 69       ParticleEntryAvatar *bringToSurface(Particle * const p, Nucleus * const n) const;
 70 
 71       /** \brief Modify the momentum of the incoming cluster and position it on
 72        *         the surface of the nucleus.
 73        *
 74        * This method performs non-relativistic distortion. The momenta of the
 75        * particles that compose the cluster are also distorted.
 76        *
 77        * \param c incoming cluster
 78        * \param n distorting nucleus
 79        **/
 80       IAvatarList bringToSurface(Cluster * const c, Nucleus * const n) const;
 81 
 82       /** \brief Modify the momenta of the outgoing particles.
 83        *
 84        * This method performs non-relativistic distortion.
 85        *
 86        * \param pL list of outgoing particles
 87        * \param n distorting nucleus
 88        */
 89       void distortOut(ParticleList const &pL, Nucleus const * const n) const;
 90 
 91       /** \brief Return the maximum impact parameter for Coulomb-distorted
 92        *         trajectories. **/
 93       G4double maxImpactParameter(ParticleSpecies const &p, const G4double kinE, Nucleus const *
 94           const n) const;
 95 
 96     private:
 97       /// \brief Return the minimum distance of approach in a head-on collision (b=0).
 98       G4double minimumDistance(ParticleSpecies const &p, const G4double kineticEnergy, Nucleus const * const n) const {
 99         const G4double particleMass = ParticleTable::getTableSpeciesMass(p);
100         const G4double nucleusMass = n->getTableMass();
101         const G4double reducedMass = particleMass*nucleusMass/(particleMass+nucleusMass);
102         const G4double kineticEnergyInCM = kineticEnergy * reducedMass / particleMass;
103         const G4double theMinimumDistance = ( kineticEnergyInCM <= 0.0 ? 0.0 :    
104                 PhysicalConstants::eSquared * p.theZ * n->getZ() * particleMass
105                 / (kineticEnergyInCM * reducedMass) );
106         INCL_DEBUG("Minimum distance of approach due to Coulomb = " << theMinimumDistance << '\n');
107         return theMinimumDistance;
108       }
109 
110       /// \brief Return the minimum distance of approach in a head-on collision (b=0).
111       G4double minimumDistance(Particle const * const p, Nucleus const * const n) const {
112         return minimumDistance(p->getSpecies(), p->getKineticEnergy(), n);
113       }
114 
115       /** \brief Perform Coulomb deviation
116        *
117        * Modifies the entrance angle of the particle and its impact parameter.
118        * Can be applied to Particles and Clusters.
119        *
120        * The trajectory for an asymptotic impact parameter \f$b\f$ is
121        * parametrised as follows:
122        * \f[
123        * r(\theta) = \frac{(1-e^2)r_0/2}{1-e \sin(\theta-\theta_R/2)},
124        * \f]
125        * here \f$e\f$ is the hyperbola eccentricity:
126        * \f[
127        * e = \sqrt{1+4b^2/r_0^2};
128        * \f]
129        * \f$\theta_R\f$ is the Rutherford scattering angle:
130        * \f[
131        * \theta_R = \pi - 2\arctan\left(\frac{2b}{r_0}\right)
132        * \f]
133        * \f$\theta\f$ ranges from \f$\pi\f$ (initial state) to \f$\theta_R\f$
134        * (scattered particle) and \f$r_0\f$ is the minimum distance of approach
135        * in a head-on collision (see the minimumDistance() method).
136        *
137        * \param p pointer to the Particle
138        * \param n pointer to the Nucleus
139        * \return false if below the barrier
140        */
141       G4bool coulombDeviation(Particle * const p, Nucleus const * const n) const;
142 
143       /** \brief Get the Coulomb radius for a given particle
144        *
145        * That's the radius of the sphere that the Coulomb trajectory of the
146        * incoming particle should intersect. The intersection point is used to
147        * determine the effective impact parameter of the trajectory and the new
148        * entrance angle.
149        *
150        * If the particle is not a Cluster, the Coulomb radius reduces to the
151        * surface radius. We use a parametrisation for d, t, He3 and alphas. For
152        * heavier clusters we fall back to the surface radius.
153        *
154        * \param p the particle species
155        * \param n the deflecting nucleus
156        * \return Coulomb radius
157        */
158       G4double getCoulombRadius(ParticleSpecies const &p, Nucleus const * const n) const;
159 
160       /// \brief Internal CoulombNone slave to generate the avatars
161       CoulombNone theCoulombNoneSlave;
162   };
163 }
164 
165 #endif /* G4INCLCOULOMBNONRELATIVISTIC_HH_ */
166