Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLClusteringModelIntercomparison.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France
 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1
 35 
 36 #include "globals.hh"
 37 
 38 #include "G4INCLClusteringModelIntercomparison.hh"
 39 #include "G4INCLCluster.hh"
 40 #include "G4INCLRandom.hh"
 41 #include "G4INCLHashing.hh"
 42 #include <algorithm>
 43 
 44 namespace G4INCL {
 45 
 46   const G4int ClusteringModelIntercomparison::clusterZMin[ParticleTable::maxClusterMass+1] = {0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3};
 47   const G4int ClusteringModelIntercomparison::clusterZMax[ParticleTable::maxClusterMass+1] = {0, 0, 1, 2, 3, 3, 5, 5, 6, 6, 7, 7, 8};
 48 
 49   const G4double ClusteringModelIntercomparison::clusterPosFact[ParticleTable::maxClusterMass+1] = {0.0, 1.0, 0.5,
 50     0.33333, 0.25,
 51     0.2, 0.16667,
 52     0.14286, 0.125,
 53     0.11111, 0.1,
 54     0.09091, 0.083333};
 55 
 56   const G4double ClusteringModelIntercomparison::clusterPosFact2[ParticleTable::maxClusterMass+1] = {0.0, 1.0, 0.25,
 57     0.11111, 0.0625,
 58     0.04, 0.0277778,
 59     0.020408, 0.015625,
 60     0.012346, 0.01,
 61     0.0082645, 0.0069444};
 62 
 63   const G4double ClusteringModelIntercomparison::clusterPhaseSpaceCut[ParticleTable::maxClusterMass+1] = {0.0, 70000.0, 180000.0,
 64     90000.0, 90000.0,
 65     128941.0 ,145607.0,
 66     161365.0, 176389.0,
 67     190798.0, 204681.0,
 68     218109.0, 231135.0};
 69 
 70   const G4double ClusteringModelIntercomparison::limitCosEscapeAngle = 0.7;
 71 
 72 #ifdef INCL_DO_NOT_COMPILE
 73   namespace {
 74     G4bool cascadingFirstPredicate(ConsideredPartner const &aPartner) {
 75       return !aPartner.isTargetSpectator;
 76     }
 77   }
 78 #endif
 79 
 80   Cluster* ClusteringModelIntercomparison::getCluster(Nucleus *nucleus, Particle *particle) {
 81     // Set the maximum clustering mass dynamically, based on the current nucleus
 82     const G4int maxClusterAlgorithmMass = nucleus->getStore()->getConfig()->getClusterMaxMass();
 83     runningMaxClusterAlgorithmMass = std::min(maxClusterAlgorithmMass, nucleus->getA()/2);
 84 
 85     // Nucleus too small?
 86     if(runningMaxClusterAlgorithmMass<=1)
 87       return NULL;
 88 
 89     theNucleus = nucleus;
 90     Particle *theLeadingParticle = particle;
 91 
 92     // Initialise sqtot to a large number
 93     sqtot = 50000.0;
 94     selectedA = 0;
 95     selectedZ = 0;
 96 
 97     // The distance parameter, known as h in publications.
 98     // Default value is 1 fm.
 99     const G4double transp = 1.0;
100 
101     const G4double rmaxws = theNucleus->getUniverseRadius();
102 
103     // Radius of the sphere where the leading particle is positioned.
104     const G4double Rprime = theNucleus->getDensity()->getProtonNuclearRadius() + transp;
105 
106     // Bring the leading particle back to the coalescence sphere
107     const G4double pk = theLeadingParticle->getMomentum().mag();
108     const G4double cospr = theLeadingParticle->getPosition().dot(theLeadingParticle->getMomentum())/(theNucleus->getUniverseRadius() * pk);
109     const G4double arg = rmaxws*rmaxws - Rprime*Rprime;
110     G4double translat;
111 
112     if(arg > 0.0) {
113       // coalescence sphere smaller than Rmax
114       const G4double cosmin = std::sqrt(arg)/rmaxws;
115       if(cospr <= cosmin) {
116         // there is an intersection with the coalescence sphere
117         translat = rmaxws * cospr;
118       } else {
119         // no intersection with the coalescence sphere
120         translat = rmaxws * (cospr - std::sqrt(cospr*cospr - cosmin*cosmin));
121       }
122     } else {
123       // coalescence sphere larger than Rmax
124       translat = rmaxws * cospr - std::sqrt(Rprime*Rprime - rmaxws*rmaxws*(1.0 - cospr*cospr));
125     }
126 
127     const ThreeVector oldLeadingParticlePosition = theLeadingParticle->getPosition();
128     const ThreeVector leadingParticlePosition = oldLeadingParticlePosition - theLeadingParticle->getMomentum() * (translat/pk);
129     const ThreeVector &leadingParticleMomentum = theLeadingParticle->getMomentum();
130     theLeadingParticle->setPosition(leadingParticlePosition);
131 
132     // Initialise the array of considered nucleons
133     const G4int theNucleusA = theNucleus->getA();
134     if(nConsideredMax < theNucleusA) {
135       delete [] consideredPartners;
136       delete [] isInRunningConfiguration;
137       nConsideredMax = 2*theNucleusA;
138       consideredPartners = new ConsideredPartner[nConsideredMax];
139       isInRunningConfiguration = new G4bool [nConsideredMax];
140       std::fill(isInRunningConfiguration,
141                 isInRunningConfiguration + nConsideredMax,
142                 false);
143     }
144 
145     // Select the subset of nucleons that will be considered in the
146     // cluster production:
147     cascadingEnergyPool = 0.;
148     nConsidered = 0;
149     ParticleList const &particles = theNucleus->getStore()->getParticles();
150     for(ParticleIter i=particles.begin(), e=particles.end(); i!=e; ++i) {
151       if (!(*i)->isNucleonorLambda()) continue; // Only nucleons and lambdas are allowed in clusters
152       if ((*i)->getID() == theLeadingParticle->getID()) continue; // Don't count the leading particle
153 
154       G4double space = ((*i)->getPosition() - leadingParticlePosition).mag2();
155       G4double momentum = ((*i)->getMomentum() - leadingParticleMomentum).mag2();
156       G4double size = space*momentum*clusterPosFact2[runningMaxClusterAlgorithmMass];
157       // Nucleons are accepted only if they are "close enough" in phase space
158       // to the leading nucleon. The selected phase-space parameter corresponds
159       // to the running maximum cluster mass.
160       if(size < clusterPhaseSpaceCut[runningMaxClusterAlgorithmMass]) {
161         consideredPartners[nConsidered] = *i;
162         // Keep trace of how much energy is carried by cascading nucleons. This
163         // is used to stop the clustering algorithm as soon as possible.
164         if(!(*i)->isTargetSpectator())
165           cascadingEnergyPool += consideredPartners[nConsidered].energy - consideredPartners[nConsidered].potentialEnergy - 931.3;
166         nConsidered++;
167         // Make sure we don't exceed the array size
168 // assert(nConsidered<=nConsideredMax);
169       }
170     }
171     // Sort the list of considered partners so that we give priority
172     // to participants. As soon as we encounter the first spectator in
173     // the list we know that all the remaining nucleons will be
174     // spectators too.
175 //    std::partition(consideredPartners, consideredPartners+nConsidered, cascadingFirstPredicate);
176 
177 #ifndef INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_None
178     // Clear the sets of checked configurations
179     // We stop caching two masses short of the max mass -- there seems to be a
180     // performance hit above
181     maxMassConfigurationSkipping = runningMaxClusterAlgorithmMass-2;
182     for(G4int i=0; i<runningMaxClusterAlgorithmMass-2; ++i) // no caching for A=1,2
183       checkedConfigurations[i].clear();
184 #endif
185 
186     // Initialise position, momentum and energy of the running cluster
187     // configuration
188     runningPositions[1] = leadingParticlePosition;
189     runningMomenta[1] = leadingParticleMomentum;
190     runningEnergies[1] = theLeadingParticle->getEnergy();
191     runningPotentials[1] = theLeadingParticle->getPotentialEnergy();
192 
193     // Make sure that all the elements of isInRunningConfiguration are false.
194 // assert(std::count(isInRunningConfiguration, isInRunningConfiguration+nConsidered, true)==0);
195 
196     // Start the cluster search!
197     findClusterStartingFrom(1, theLeadingParticle->getZ(), 0);
198 
199     // Again, make sure that all the elements of isInRunningConfiguration have
200     // been reset to false. This is a sanity check.
201 // assert(std::count(isInRunningConfiguration, isInRunningConfiguration+nConsidered, true)==0);
202 
203     Cluster *chosenCluster = 0;
204     if(selectedA!=0) { // A cluster was found!
205       candidateConfiguration[selectedA-1] = theLeadingParticle;
206       chosenCluster =  new Cluster(candidateConfiguration,
207           candidateConfiguration + selectedA);
208     }
209 
210     // Restore the original position of the leading particle
211     theLeadingParticle->setPosition(oldLeadingParticlePosition);
212 
213     return chosenCluster;
214   }
215 
216   G4double ClusteringModelIntercomparison::getPhaseSpace(const G4int oldA, ConsideredPartner const &p) {
217     const G4double psSpace = (p.position - runningPositions[oldA]).mag2();
218     const G4double psMomentum = (p.momentum*oldA - runningMomenta[oldA]).mag2();
219     return psSpace * psMomentum * clusterPosFact2[oldA + 1];
220   }
221 
222   void ClusteringModelIntercomparison::findClusterStartingFrom(const G4int oldA, const G4int oldZ, const G4int oldS) {
223     const G4int newA = oldA + 1;
224     const G4int oldAMinusOne = oldA - 1;
225     G4int newZ;
226     G4int newN;
227     G4int newS;
228 
229     // Look up the phase-space cut
230     const G4double phaseSpaceCut = clusterPhaseSpaceCut[newA];
231 
232     // Configuration caching enabled only for a certain mass interval
233     const G4bool cachingEnabled = (newA<=maxMassConfigurationSkipping && newA>=3);
234 
235     // Set the pointer to the container of cached configurations
236 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_HashMask)
237     HashContainer *theHashContainer;
238     if(cachingEnabled)
239       theHashContainer = &(checkedConfigurations[oldA-2]);
240     else
241       theHashContainer = NULL;
242 #elif defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_Set)
243     SortedNucleonConfigurationContainer *theConfigContainer;
244     if(cachingEnabled)
245       theConfigContainer = &(checkedConfigurations[oldA-2]);
246     else
247       theConfigContainer = NULL;
248 #elif !defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_None)
249 #error Unrecognized INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON. Allowed values are: Set, HashMask, None.
250 #endif
251 
252     // Minimum and maximum Z values for this mass
253     const G4int ZMinForNewA = clusterZMin[newA];
254     const G4int ZMaxForNewA = clusterZMax[newA];
255 
256     for(G4int i=0; i<nConsidered; ++i) {
257       // Only accept particles that are not already part of the cluster
258       if(isInRunningConfiguration[i]) continue;
259 
260       ConsideredPartner const &candidateNucleon = consideredPartners[i];
261 
262       // Z and A of the new cluster
263       newZ = oldZ + candidateNucleon.Z;
264       newS = oldS + candidateNucleon.S;
265       newN = newA - newZ;
266 
267       // Skip this nucleon if we already have too many protons or neutrons
268       if(newZ > clusterZMaxAll || newN > clusterNMaxAll || newS>0)
269         continue;
270 
271       // Compute the phase space factor for a new cluster which
272       // consists of the previous running cluster and the new
273       // candidate nucleon:
274       const G4double phaseSpace = getPhaseSpace(oldA, candidateNucleon);
275       if(phaseSpace > phaseSpaceCut) continue;
276 
277       // Store the candidate nucleon in the running configuration
278       runningConfiguration[oldAMinusOne] = i;
279 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_HashMask)
280       Hashing::HashType configHash;
281       HashIterator aHashIter;
282 #elif defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_Set)
283       SortedNucleonConfiguration thisConfig;
284       SortedNucleonConfigurationIterator thisConfigIter;
285 #endif
286       if(cachingEnabled) {
287 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_HashMask)
288         configHash = Hashing::hashConfig(runningConfiguration, oldA);
289         aHashIter = theHashContainer->lower_bound(configHash);
290         // If we have already checked this configuration, skip it
291         if(aHashIter!=theHashContainer->end()
292            && !(configHash < *aHashIter))
293           continue;
294 #elif defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_Set)
295         thisConfig.fill(runningConfiguration,oldA);
296         thisConfigIter = theConfigContainer->lower_bound(thisConfig);
297         // If we have already checked this configuration, skip it
298         if(thisConfigIter!=theConfigContainer->end()
299            && !(thisConfig < *thisConfigIter))
300           continue;
301 #endif
302       }
303 
304       // Sum of the total energies of the cluster components
305       runningEnergies[newA] = runningEnergies[oldA] + candidateNucleon.energy;
306       // Sum of the potential energies of the cluster components
307       runningPotentials[newA] = runningPotentials[oldA] + candidateNucleon.potentialEnergy;
308 
309       // Update the available cascading kinetic energy
310       G4double oldCascadingEnergyPool = cascadingEnergyPool;
311       if(!candidateNucleon.isTargetSpectator)
312         cascadingEnergyPool -= candidateNucleon.energy - candidateNucleon.potentialEnergy - 931.3;
313 
314       // Check an approximate Coulomb barrier. If the cluster is below
315       // 0.5*barrier and the remaining available energy from cascading nucleons
316       // will not bring it above, reject the cluster.
317       const G4double halfB = 0.72 * newZ *
318         theNucleus->getZ()/(theNucleus->getDensity()->getProtonNuclearRadius()+1.7);
319       const G4double tout = runningEnergies[newA] - runningPotentials[newA] -
320         931.3*newA;
321       if(tout<=halfB && tout+cascadingEnergyPool<=halfB) {
322         cascadingEnergyPool = oldCascadingEnergyPool;
323         continue;
324       }
325 
326       // Here the nucleon has passed all the tests. Accept it in the cluster.
327       runningPositions[newA] = (runningPositions[oldA] * oldA + candidateNucleon.position)*clusterPosFact[newA];
328       runningMomenta[newA] = runningMomenta[oldA] + candidateNucleon.momentum;
329 
330       // Add the config to the container
331       if(cachingEnabled) {
332 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_HashMask)
333         theHashContainer->insert(aHashIter, configHash);
334 #elif defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_Set)
335         theConfigContainer->insert(thisConfigIter, thisConfig);
336 #endif
337       }
338 
339       // Set the flag that reminds us that this nucleon has already been taken
340       // in the running configuration
341       isInRunningConfiguration[i] = true;
342 
343       // Keep track of the best physical cluster
344       if(newZ >= ZMinForNewA && newZ <= ZMaxForNewA) {
345         // Note: sqc is real kinetic energy, not the square of the kinetic energy!
346         const G4double sqc = KinematicsUtils::invariantMass(runningEnergies[newA],
347             runningMomenta[newA]);
348         const G4double sqct = (sqc - 2.*newZ*protonMass - 2.*(newA+newS-newZ)*neutronMass + 2.*newS*lambdaMass
349              + ParticleTable::getRealMass(newA, newZ, newS))
350           *clusterPosFact[newA];
351 
352         if(sqct < sqtot) {
353           // This is the best cluster we have found so far. Store its
354           // kinematics.
355           sqtot = sqct;
356           selectedA = newA;
357           selectedZ = newZ;
358           selectedS = newS;
359 
360           // Store the running configuration in a ParticleList
361           for(G4int j=0; j<oldA; ++j)
362             candidateConfiguration[j] = consideredPartners[runningConfiguration[j]].particle;
363 
364           // Sanity check on number of nucleons in running configuration
365 // assert(std::count(isInRunningConfiguration, isInRunningConfiguration+nConsidered, true)==selectedA-1);
366         }
367       }
368 
369       // The method recursively calls itself for the next mass
370       if(newA < runningMaxClusterAlgorithmMass && newA+1 < theNucleus->getA() && newS<=0) {
371   findClusterStartingFrom(newA, newZ, newS);
372       }
373 
374       // Reset the running configuration flag and the cascading energy pool
375       isInRunningConfiguration[i] = false;
376       cascadingEnergyPool = oldCascadingEnergyPool;
377     }
378   }
379 
380   G4bool ClusteringModelIntercomparison::clusterCanEscape(Nucleus const * const n, Cluster const * const c) {
381     // Forbid emission of the whole nucleus
382     if(c->getA()>=n->getA() || c->getS()>0)
383       return false;
384 
385     // Check the escape angle of the cluster
386     const ThreeVector &pos = c->getPosition();
387     const ThreeVector &mom = c->getMomentum();
388     const G4double cosEscapeAngle = pos.dot(mom) / std::sqrt(pos.mag2()*mom.mag2());
389     if(cosEscapeAngle < limitCosEscapeAngle)
390       return false;
391 
392     return true;
393   }
394 
395 }
396