Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 #ifndef G4INCLClusteringModelIntercomparison_hh 39 #define G4INCLClusteringModelIntercomparison_hh 1 40 41 #ifdef INCLXX_IN_GEANT4_MODE 42 #define INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_Set 1 43 #endif // INCLXX_IN_GEANT4_MODE 44 45 #include "G4INCLIClusteringModel.hh" 46 #include "G4INCLParticle.hh" 47 #include "G4INCLParticleTable.hh" 48 #include "G4INCLCluster.hh" 49 #include "G4INCLNucleus.hh" 50 #include "G4INCLKinematicsUtils.hh" 51 #include "G4INCLHashing.hh" 52 53 #include <set> 54 #include <algorithm> 55 56 namespace G4INCL { 57 58 /** \brief Container for the relevant information 59 * 60 * This struct contains all the information that is relevant for the 61 * clustering algorithm. It is probably more compact than the Particles it 62 * feeds on, hopefully improving cache performance. 63 */ 64 struct ConsideredPartner { 65 Particle *particle; 66 G4bool isTargetSpectator; 67 G4int Z; 68 G4int S; 69 ThreeVector position; 70 ThreeVector momentum; 71 G4double energy; 72 G4double potentialEnergy; 73 74 ConsideredPartner() : 75 particle(NULL), 76 isTargetSpectator(false), 77 Z(0), 78 S(0), 79 energy(0.), 80 potentialEnergy(0.) 81 {} 82 83 ConsideredPartner(Particle * const p) : 84 particle(p), 85 isTargetSpectator(particle->isTargetSpectator()), 86 Z(particle->getZ()), 87 S(particle->getS()), 88 position(particle->getPosition()), 89 momentum(particle->getMomentum()), 90 energy(particle->getEnergy()), 91 potentialEnergy(particle->getPotentialEnergy()) 92 {} 93 }; 94 95 /// \brief Cluster coalescence algorithm used in the IAEA intercomparison 96 class ClusteringModelIntercomparison : public IClusteringModel { 97 public: 98 ClusteringModelIntercomparison(Config const * const theConfig) : 99 theNucleus(NULL), 100 selectedA(0), 101 selectedZ(0), 102 selectedS(0), 103 sqtot(0.), 104 cascadingEnergyPool(0.), 105 protonMass(ParticleTable::getRealMass(Proton)), 106 neutronMass(ParticleTable::getRealMass(Neutron)), 107 lambdaMass(ParticleTable::getRealMass(Lambda)), 108 runningMaxClusterAlgorithmMass(theConfig->getClusterMaxMass()), 109 nConsideredMax(0), 110 nConsidered(0), 111 consideredPartners(NULL), 112 isInRunningConfiguration(NULL), 113 maxMassConfigurationSkipping(ParticleTable::maxClusterMass) 114 { 115 // Set up the maximum charge and neutron number for clusters 116 clusterZMaxAll = 0; 117 clusterNMaxAll = 0; 118 for(G4int A=0; A<=runningMaxClusterAlgorithmMass; ++A) { 119 if(clusterZMax[A]>clusterZMaxAll) 120 clusterZMaxAll = clusterZMax[A]; 121 if(A-clusterZMin[A]>clusterNMaxAll) 122 clusterNMaxAll = A-clusterZMin[A]; 123 } 124 std::fill(candidateConfiguration, 125 candidateConfiguration + ParticleTable::maxClusterMass, 126 static_cast<Particle*>(NULL)); 127 128 std::fill(runningEnergies, 129 runningEnergies + ParticleTable::maxClusterMass, 130 0.0); 131 132 std::fill(runningPotentials, 133 runningPotentials + ParticleTable::maxClusterMass, 134 0.0); 135 136 std::fill(runningConfiguration, 137 runningConfiguration + ParticleTable::maxClusterMass, 138 -1); 139 140 } 141 142 virtual ~ClusteringModelIntercomparison() { 143 delete [] consideredPartners; 144 delete [] isInRunningConfiguration; 145 } 146 147 virtual Cluster* getCluster(Nucleus*, Particle*); 148 virtual G4bool clusterCanEscape(Nucleus const * const, Cluster const * const); 149 150 private: 151 void findClusterStartingFrom(const G4int oldA, const G4int oldZ, const G4int oldS); 152 G4double getPhaseSpace(const G4int oldA, ConsideredPartner const &p); 153 154 Nucleus *theNucleus; 155 156 G4double runningEnergies[ParticleTable::maxClusterMass+1]; 157 ThreeVector runningMomenta[ParticleTable::maxClusterMass+1]; 158 ThreeVector runningPositions[ParticleTable::maxClusterMass+1]; 159 G4double runningPotentials[ParticleTable::maxClusterMass+1]; 160 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_HashMask) 161 Hashing::NucleonItem runningConfiguration[ParticleTable::maxClusterMass]; 162 #elif defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_Set) || defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_None) 163 G4int runningConfiguration[ParticleTable::maxClusterMass]; 164 #else 165 #error Unrecognized INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON. Allowed values are: Set, HashMask, None. 166 #endif 167 168 G4int selectedA, selectedZ, selectedS; 169 G4double sqtot; 170 171 G4int clusterZMaxAll, clusterNMaxAll; 172 173 G4double cascadingEnergyPool; 174 175 /// \brief Lower limit of Z for cluster of mass A 176 static const G4int clusterZMin[ParticleTable::maxClusterMass+1]; 177 /// \brief Upper limit of Z for cluster of mass A 178 static const G4int clusterZMax[ParticleTable::maxClusterMass+1]; 179 180 /// \brief Precomputed factor 1.0/A 181 static const G4double clusterPosFact[ParticleTable::maxClusterMass+1]; 182 183 /// \brief Precomputed factor (1.0/A)^2 184 static const G4double clusterPosFact2[ParticleTable::maxClusterMass+1]; 185 186 /// \brief Phase-space parameters for cluster formation 187 static const G4double clusterPhaseSpaceCut[ParticleTable::maxClusterMass+1]; 188 189 static const G4double limitCosEscapeAngle; 190 191 const G4double protonMass; 192 const G4double neutronMass; 193 const G4double lambdaMass; 194 195 G4int runningMaxClusterAlgorithmMass; 196 197 G4int nConsideredMax; 198 G4int nConsidered; 199 200 /** \brief Array of considered cluster partners 201 * 202 * A dynamical array of ConsideredPartner objects is allocated on this 203 * variable and filled with pointers to nucleons which are eligible for 204 * clustering. We used to use a ParticleList for this purpose, but this 205 * made it very cumbersome to check whether nucleons had already been 206 * included in the running configuration. Using an array of Particle* 207 * coupled with a boolean mask (\see{isInRunningConfiguration}) reduces the 208 * overhead by a large amount. Running times for 1-GeV p+Pb208 went down 209 * by almost 30% (!). 210 * 211 * Lesson learnt: when you need speed, nothing beats a good ol' array. 212 */ 213 ConsideredPartner *consideredPartners; 214 215 /** \brief Array of flags for nucleons in the running configuration 216 * 217 * Clustering partners that are already used in the running cluster 218 * configuration are flagged as "true" in this array. 219 */ 220 G4bool *isInRunningConfiguration; 221 222 /** \brief Best cluster configuration 223 * 224 * This array contains pointers to the nucleons which make up the best 225 * cluster configuration that has been found so far. 226 */ 227 Particle *candidateConfiguration[ParticleTable::maxClusterMass]; 228 229 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_HashMask) 230 typedef std::set<Hashing::HashType> HashContainer; 231 typedef HashContainer::iterator HashIterator; 232 233 /// \brief Array of containers for configurations that have already been checked 234 HashContainer checkedConfigurations[ParticleTable::maxClusterMass-2]; 235 #elif defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_Set) 236 /** \brief Class for storing and comparing sorted nucleon configurations 237 * 238 * This class is actually just a wrapper around an array of Particle* 239 * pointers. It provides a lexicographical comparison operator 240 * (SortedNucleonConfiguration::operator<) for inclusion in std::set 241 * containers. 242 */ 243 class SortedNucleonConfiguration { 244 public: 245 // Use Particle* as nucleon identifiers 246 typedef G4int NucleonItem; 247 248 /// \brief Constructor 249 SortedNucleonConfiguration() : theSize(0), nucleons(NULL) {} 250 251 /// \brief Copy constructor 252 SortedNucleonConfiguration(const SortedNucleonConfiguration &rhs) : 253 theSize(rhs.theSize), 254 nucleons(new NucleonItem[theSize]) 255 { 256 std::copy(rhs.nucleons, rhs.nucleons+theSize, nucleons); 257 } 258 259 /// \brief Destructor 260 ~SortedNucleonConfiguration() { 261 delete [] nucleons; 262 } 263 264 /// \brief Helper method for the assignment operator 265 void swap(SortedNucleonConfiguration &rhs) { 266 std::swap(theSize, rhs.theSize); 267 std::swap(nucleons, rhs.nucleons); 268 } 269 270 /// \brief Assignment operator 271 SortedNucleonConfiguration &operator=(const SortedNucleonConfiguration &rhs) { 272 SortedNucleonConfiguration tempConfig(rhs); 273 swap(tempConfig); 274 return *this; 275 } 276 277 /** \brief Order operator for SortedNucleonConfiguration 278 * 279 * The comparison is done lexicographically (i.e. from the first 280 * element to the last). 281 */ 282 G4bool operator<(const SortedNucleonConfiguration &rhs) const { 283 // assert(theSize==rhs.theSize); 284 return std::lexicographical_compare(nucleons, nucleons+theSize, rhs.nucleons, rhs.nucleons+theSize); 285 } 286 287 /// \brief Fill configuration with array of NucleonItem 288 void fill(NucleonItem *config, size_t n) { 289 theSize = n; 290 nucleons = new NucleonItem[theSize]; 291 std::copy(config, config+theSize, nucleons); 292 std::sort(nucleons, nucleons+theSize); 293 } 294 295 private: 296 /// \brief Size of the array 297 size_t theSize; 298 299 /// \brief The real array 300 NucleonItem *nucleons; 301 }; 302 303 typedef std::set<SortedNucleonConfiguration> SortedNucleonConfigurationContainer; 304 typedef SortedNucleonConfigurationContainer::iterator SortedNucleonConfigurationIterator; 305 306 /// \brief Array of containers for configurations that have already been checked 307 SortedNucleonConfigurationContainer checkedConfigurations[ParticleTable::maxClusterMass-2]; 308 #elif !defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_None) 309 #error Unrecognized INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON. Allowed values are: Set, HashMask, None. 310 #endif 311 312 /** \brief Maximum mass for configuration storage 313 * 314 * Skipping configurations becomes inefficient above this mass. 315 */ 316 G4int maxMassConfigurationSkipping; 317 }; 318 319 } 320 321 #endif 322