Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/management/src/G4DeexPrecoParameters.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // 15.03.2016 V.Ivanchenko 
 27 //
 28 // List of parameters of the pre-compound model
 29 // and the deexcitation module
 30 //
 31 
 32 #include "G4DeexPrecoParameters.hh"
 33 #include "G4ApplicationState.hh"
 34 #include "G4StateManager.hh"
 35 #include "G4SystemOfUnits.hh"
 36 #include "G4UnitsTable.hh"
 37 #include "G4PhysicsModelCatalog.hh"
 38 #include "G4DeexParametersMessenger.hh"
 39 #include "G4HadronicParameters.hh"
 40 #include "G4Threading.hh"
 41 
 42 G4DeexPrecoParameters::G4DeexPrecoParameters() 
 43 {
 44   fStateManager = G4StateManager::GetStateManager();
 45   theMessenger = new G4DeexParametersMessenger(this);
 46   Initialise();
 47 }
 48 
 49 G4DeexPrecoParameters::~G4DeexPrecoParameters() 
 50 {
 51   delete theMessenger;
 52 }
 53 
 54 void G4DeexPrecoParameters::SetDefaults()
 55 {
 56   if(!IsLocked()) { Initialise(); }
 57 }
 58 
 59 void G4DeexPrecoParameters::Initialise()
 60 {
 61   // common parameters
 62   fVerbose = 1;
 63   fLevelDensity = 0.075/CLHEP::MeV;
 64   fR0 = 1.5*CLHEP::fermi;
 65   fTransitionsR0 = 0.6*CLHEP::fermi;
 66 
 67   // preco parameters
 68   fPrecoLowEnergy = 0.1*CLHEP::MeV;
 69   fPrecoHighEnergy = 30*CLHEP::MeV;
 70   fPhenoFactor = 1.0;
 71 
 72   fPrecoType = 1;
 73   fMinZForPreco = 3;
 74   fMinAForPreco = 5;
 75 
 76   fNeverGoBack = false;
 77   fUseSoftCutoff = false;
 78   fUseCEM = true;
 79   fUseGNASH = false;
 80   fUseHETC = false;
 81   fUseAngularGen = true;
 82   fPrecoDummy = false;
 83 
 84   // de-exitation parameters 
 85   fMinExcitation = 10*CLHEP::eV;
 86   fNuclearLevelWidth = 0.2*CLHEP::MeV;
 87   fFBUEnergyLimit = 20.0*CLHEP::MeV; 
 88   fFermiEnergy = 35.0*CLHEP::MeV; 
 89   fMaxLifeTime = 1*CLHEP::nanosecond;
 90   fMinExPerNucleounForMF = 200*CLHEP::GeV;
 91 
 92   fDeexChannelType = fCombined;
 93   fDeexType = 3;
 94   fTwoJMAX = 10;
 95 
 96   fCorrelatedGamma = false;
 97   fStoreAllLevels = true;
 98   fInternalConversion = true;
 99   fLD = true;  // use simple level density model 
100   fFD = false; // use transition to discrete level 
101   fIsomerFlag = true; // enable isomere production
102 }
103 
104 void G4DeexPrecoParameters::SetLevelDensity(G4double val)
105 {
106   if(IsLocked() || val <= 0.0) { return; }
107   fLevelDensity = val/CLHEP::MeV;
108 }
109 
110 void G4DeexPrecoParameters::SetR0(G4double val)
111 {
112   if(IsLocked() || val <= 0.0) { return; }
113   fR0 = val;
114 }
115 
116 void G4DeexPrecoParameters::SetTransitionsR0(G4double val)
117 {
118   if(IsLocked() || val <= 0.0) { return; }
119   fTransitionsR0 = val;
120 }
121 
122 void G4DeexPrecoParameters::SetFBUEnergyLimit(G4double val)
123 {
124   if(IsLocked() || val <= 0.0) { return; }
125   fFBUEnergyLimit = val;
126 }
127 
128 void G4DeexPrecoParameters::SetFermiEnergy(G4double val)
129 {
130   if(IsLocked() || val <= 0.0) { return; }
131   fFermiEnergy = val;
132 }
133 
134 void G4DeexPrecoParameters::SetPrecoLowEnergy(G4double val)
135 {
136   if(IsLocked() || val < 0.0) { return; }
137   fPrecoLowEnergy = val;
138 }
139 
140 void G4DeexPrecoParameters::SetPrecoHighEnergy(G4double val)
141 {
142   if(IsLocked() || val < 0.0) { return; }
143   fPrecoHighEnergy = val;
144 }
145 
146 void G4DeexPrecoParameters::SetPhenoFactor(G4double val)
147 {
148   if(IsLocked() || val <= 0.0) { return; }
149   fPhenoFactor = val;
150 }
151 
152 void G4DeexPrecoParameters::SetMinExcitation(G4double val)
153 {
154   if(IsLocked() || val < 0.0) { return; }
155   fMinExcitation = val;
156 }
157 
158 void G4DeexPrecoParameters::SetNuclearLevelWidth(G4double val)
159 {
160   if(IsLocked() || val < 0.0) { return; }
161   fNuclearLevelWidth = val;
162 }
163 
164 void G4DeexPrecoParameters::SetMaxLifeTime(G4double val)
165 {
166   if(IsLocked() || val < 0.0) { return; }
167   fMaxLifeTime = val;
168 }
169 
170 void G4DeexPrecoParameters::SetMinExPerNucleounForMF(G4double val)
171 {
172   if(IsLocked() || val < 0.0) { return; }
173   fMinExPerNucleounForMF = val;
174 }
175 
176 void G4DeexPrecoParameters::SetMinZForPreco(G4int n)
177 {
178   if(IsLocked() || n < 2) { return; }
179   fMinZForPreco = n;
180 }
181 
182 void G4DeexPrecoParameters::SetMinAForPreco(G4int n)
183 {
184   if(IsLocked() || n < 0) { return; }
185   fMinAForPreco = n;
186 }
187 
188 void G4DeexPrecoParameters::SetPrecoModelType(G4int n)
189 {
190   if(IsLocked() || n < 0 || n > 3) { return; }
191   fPrecoType = n;
192 }
193 
194 void G4DeexPrecoParameters::SetDeexModelType(G4int n)
195 {
196   if(IsLocked() || n < 0 || n > 3) { return; }
197   fDeexType = n;
198 }
199 
200 void G4DeexPrecoParameters::SetTwoJMAX(G4int n)
201 {
202   if(IsLocked() || n < 0) { return; }
203   fTwoJMAX = n;
204 }
205 
206 void G4DeexPrecoParameters::SetVerbose(G4int n)
207 {
208   if(IsLocked()) { return; }
209   fVerbose = n;
210 }
211 
212 void G4DeexPrecoParameters::SetNeverGoBack(G4bool val)
213 {
214   if(IsLocked()) { return; }
215   fNeverGoBack = val;
216 }
217 
218 void G4DeexPrecoParameters::SetUseSoftCutoff(G4bool val)
219 {
220   if(IsLocked()) { return; }
221   fUseSoftCutoff = val;
222 }
223 
224 void G4DeexPrecoParameters::SetUseCEM(G4bool val)
225 {
226   if(IsLocked()) { return; }
227   fUseCEM = val;
228 }
229 
230 void G4DeexPrecoParameters::SetUseGNASH(G4bool val)
231 {
232   if(IsLocked()) { return; }
233   fUseGNASH = val;
234 }
235 
236 void G4DeexPrecoParameters::SetUseHETC(G4bool val)
237 {
238   if(IsLocked()) { return; }
239   fUseHETC = val;
240 }
241 
242 void G4DeexPrecoParameters::SetUseAngularGen(G4bool val)
243 {
244   if(IsLocked()) { return; }
245   fUseAngularGen = val;
246 }
247 
248 void G4DeexPrecoParameters::SetPrecoDummy(G4bool val)
249 {
250   if(IsLocked()) { return; }
251   fPrecoDummy = val;
252   fDeexChannelType = fDummy;  
253 }
254 
255 void G4DeexPrecoParameters::SetCorrelatedGamma(G4bool val)
256 {
257   if(IsLocked()) { return; }
258   fCorrelatedGamma = val; 
259 }
260 
261 void G4DeexPrecoParameters::SetStoreICLevelData(G4bool val)
262 {
263   if(IsLocked()) { return; }
264   fStoreAllLevels = val;
265 }
266 
267 void G4DeexPrecoParameters::SetStoreAllLevels(G4bool val)
268 {
269   SetStoreICLevelData(val);
270 }
271 
272 void G4DeexPrecoParameters::SetInternalConversionFlag(G4bool val)
273 {
274   if(IsLocked()) { return; }
275   fInternalConversion = val;
276 }
277 
278 void G4DeexPrecoParameters::SetLevelDensityFlag(G4bool val)
279 {
280   if(IsLocked()) { return; }
281   fLD = val;
282 }
283 
284 void G4DeexPrecoParameters::SetDiscreteExcitationFlag(G4bool val)
285 {
286   if(IsLocked()) { return; }
287   fFD = val;
288 }
289 
290 void G4DeexPrecoParameters::SetIsomerProduction(G4bool val)
291 {
292   if(IsLocked()) { return; }
293   fIsomerFlag = val;
294 }
295 
296 void G4DeexPrecoParameters::SetDeexChannelsType(G4DeexChannelType val)
297 {
298   if(IsLocked()) { return; }
299   fDeexChannelType = val;
300 }
301 
302 std::ostream& G4DeexPrecoParameters::StreamInfo(std::ostream& os) const
303 {
304   static const G4String namm[5] = {"Evaporation","GEM","Evaporation+GEM","GEMVI","Dummy"};
305   static const G4int nmm[5] = {8, 68, 68, 31, 0};
306   G4int idx = fDeexChannelType;
307 
308   G4long prec = os.precision(5);
309   os << "=======================================================================" << "\n";
310   os << "======       Geant4 Native Pre-compound Model Parameters       ========" << "\n";
311   os << "=======================================================================" << "\n";
312   os << "Type of pre-compound inverse x-section              " << fPrecoType << "\n";
313   os << "Pre-compound model active                           " << (!fPrecoDummy) << "\n";
314   os << "Pre-compound excitation low energy                  " 
315      << G4BestUnit(fPrecoLowEnergy, "Energy") << "\n";
316   os << "Pre-compound excitation high energy                 " 
317      << G4BestUnit(fPrecoHighEnergy, "Energy") << "\n";
318   os << "Angular generator for pre-compound model            " << fUseAngularGen << "\n";
319   os << "Use NeverGoBack option for pre-compound model       " << fNeverGoBack << "\n";
320   os << "Use SoftCutOff option for pre-compound model        " << fUseSoftCutoff << "\n";
321   os << "Use CEM transitions for pre-compound model          " << fUseCEM << "\n";
322   os << "Use GNASH transitions for pre-compound model        " << fUseGNASH << "\n";
323   os << "Use HETC submodel for pre-compound model            " << fUseHETC << "\n";
324   os << "=======================================================================" << "\n";
325   os << "======       Nuclear De-excitation Module Parameters           ========" << "\n";
326   os << "=======================================================================" << "\n";
327   os << "Type of de-excitation inverse x-section             " << fDeexType << "\n";
328   os << "Type of de-excitation factory                       " << namm[idx] << "\n";
329   os << "Number of de-excitation channels                    " << nmm[idx] << "\n";
330   os << "Min excitation energy                               " 
331      << G4BestUnit(fMinExcitation, "Energy") << "\n";
332   os << "Min energy per nucleon for multifragmentation       " 
333      << G4BestUnit(fMinExPerNucleounForMF, "Energy") << "\n";
334   os << "Limit excitation energy for Fermi BreakUp           " 
335      << G4BestUnit(fFBUEnergyLimit, "Energy") << "\n";
336   os << "Level density (1/MeV)                               " 
337      << fLevelDensity*CLHEP::MeV << "\n";
338   os << "Use simple level density model                      " << fLD << "\n";
339   os << "Use discrete excitation energy of the residual      " << fFD << "\n";
340   os << "Time limit for long lived isomeres                  " 
341      << G4BestUnit(fMaxLifeTime, "Time") << "\n";
342   os << "Isomer production flag                              " << fIsomerFlag << "\n";
343   os << "Internal e- conversion flag                         " 
344      << fInternalConversion << "\n";
345   os << "Store e- internal conversion data                   " << fStoreAllLevels << "\n";
346   os << "Correlated gamma emission flag                      " << fCorrelatedGamma << "\n";
347   os << "Max 2J for sampling of angular correlations         " << fTwoJMAX << "\n";  
348   os << "=======================================================================" << G4endl;
349   os.precision(prec);
350   return os;
351 }
352 
353 G4int G4DeexPrecoParameters::GetVerbose() const
354 {
355   G4int verb = G4HadronicParameters::Instance()->GetVerboseLevel();
356   return (verb > 0) ? std::max(fVerbose, verb) : verb;
357 }
358 
359 void G4DeexPrecoParameters::Dump()
360 {
361   if(!fIsPrinted && GetVerbose() > 0 && G4Threading::IsMasterThread()) {
362     StreamInfo(G4cout);
363     fIsPrinted = true;
364   }
365 }
366 
367 std::ostream& operator<< (std::ostream& os, const G4DeexPrecoParameters& par)
368 {
369   return par.StreamInfo(os);
370 }
371 
372 G4bool G4DeexPrecoParameters::IsLocked() const
373 {
374   return (!G4Threading::IsMasterThread() ||
375     (fStateManager->GetCurrentState() != G4State_PreInit));
376 }
377