Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/fermi_breakup/src/G4FermiPhaseSpaceDecay.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // Hadronic Process: Phase space decay for the Fermi BreakUp model
 28 // by V. Lara
 29 //
 30 // Modifications:
 31 // 01.04.2011 General cleanup by V.Ivanchenko: 
 32 //          - IsotropicVector is inlined
 33 //          - Momentum computation return zero or positive value
 34 //          - DumpProblem method is added providing more information
 35 //          - Reduced usage of exotic std functions  
 36 
 37 #include "G4FermiPhaseSpaceDecay.hh"
 38 
 39 #include "G4RandomDirection.hh"
 40 #include "G4Pow.hh"
 41 
 42 #include <CLHEP/Units/SystemOfUnits.h>
 43 #include <CLHEP/Units/PhysicalConstants.h>
 44 #include <CLHEP/Random/RandomEngine.h>
 45 
 46 G4FermiPhaseSpaceDecay::G4FermiPhaseSpaceDecay()
 47 {
 48   g4calc = G4Pow::GetInstance();
 49 }
 50 
 51 G4FermiPhaseSpaceDecay::~G4FermiPhaseSpaceDecay()
 52 {}
 53 
 54 std::vector<G4LorentzVector*>* G4FermiPhaseSpaceDecay::Decay(G4double M, 
 55                                const std::vector<G4double>& mr) const
 56   // Calculates momentum for N fragments (Kopylov's method of sampling is used)
 57 {
 58   std::size_t N = mr.size();
 59 
 60   std::vector<G4LorentzVector*>* P = 
 61     new std::vector<G4LorentzVector*>(N, nullptr);
 62 
 63   G4double mtot = 0.0;
 64   for(std::size_t k=0; k<N; ++k) { mtot += mr[k]; }
 65 
 66   G4double mu = mtot;
 67   G4double PFragMagCM = 0.0;
 68 
 69   // Primary mass is above the sum of mass of components
 70   G4double Mass = std::max(M, mtot + CLHEP::eV);
 71   G4double T = Mass-mtot;
 72 
 73   G4LorentzVector PFragCM(0.0,0.0,0.0,0.0);
 74   G4LorentzVector PRestCM(0.0,0.0,0.0,0.0);
 75   G4LorentzVector PRestLab(0.0,0.0,0.0,Mass);
 76 
 77   CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
 78 
 79   for (G4int k = (G4int)N-1; k>0; --k)
 80     {
 81       mu -= mr[k];
 82       if (k>1) { T *= BetaKopylov(k, rndmEngine); }
 83       else     { T = 0.0; }
 84       
 85       G4double RestMass = mu + T;
 86 
 87       PFragMagCM = PtwoBody(Mass,mr[k],RestMass);
 88       
 89       // Create a unit vector with a random direction isotropically distributed
 90       G4ThreeVector RandVector = PFragMagCM*G4RandomDirection();
 91 
 92       PFragCM.setVect(RandVector);
 93       PFragCM.setE(std::sqrt(PFragMagCM*PFragMagCM + mr[k]*mr[k]));
 94 
 95       PRestCM.setVect(-RandVector);
 96       PRestCM.setE(std::sqrt(PFragMagCM*PFragMagCM + RestMass*RestMass));
 97 
 98       G4ThreeVector BoostV = PRestLab.boostVector();
 99 
100       PFragCM.boost(BoostV);
101       (*P)[k] = new G4LorentzVector(PFragCM);
102 
103       PRestCM.boost(BoostV);
104       PRestLab = PRestCM;
105       
106       Mass = RestMass;
107     }
108 
109   (*P)[0] = new G4LorentzVector(PRestLab);
110 
111   return P;
112 }
113 
114 G4double G4FermiPhaseSpaceDecay::BetaKopylov(G4int K, 
115                      CLHEP::HepRandomEngine* rndmEngine) const
116 {
117   G4int N = 3*K - 5;
118   G4double xN = (G4double)N;
119   G4double xN1= (G4double)(N + 1);
120   G4double F;
121   // VI variant
122   G4double Fmax = std::sqrt(g4calc->powN(xN/xN1,N)/xN1); 
123   G4double chi;
124   do {
125     chi = rndmEngine->flat();
126     F = std::sqrt(g4calc->powN(chi,N)*(1-chi));      
127     // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
128    } while ( Fmax*rndmEngine->flat() > F);  
129   return chi;
130 }
131