Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // Hadronic Process: Phase space decay for the Fermi BreakUp model 28 // by V. Lara 29 // 30 // Modifications: 31 // 01.04.2011 General cleanup by V.Ivanchenko: 32 // - IsotropicVector is inlined 33 // - Momentum computation return zero or positive value 34 // - DumpProblem method is added providing more information 35 // - Reduced usage of exotic std functions 36 37 #include "G4FermiPhaseSpaceDecay.hh" 38 39 #include "G4RandomDirection.hh" 40 #include "G4Pow.hh" 41 42 #include <CLHEP/Units/SystemOfUnits.h> 43 #include <CLHEP/Units/PhysicalConstants.h> 44 #include <CLHEP/Random/RandomEngine.h> 45 46 G4FermiPhaseSpaceDecay::G4FermiPhaseSpaceDecay() 47 { 48 g4calc = G4Pow::GetInstance(); 49 } 50 51 G4FermiPhaseSpaceDecay::~G4FermiPhaseSpaceDecay() 52 {} 53 54 std::vector<G4LorentzVector*>* G4FermiPhaseSpaceDecay::Decay(G4double M, 55 const std::vector<G4double>& mr) const 56 // Calculates momentum for N fragments (Kopylov's method of sampling is used) 57 { 58 std::size_t N = mr.size(); 59 60 std::vector<G4LorentzVector*>* P = 61 new std::vector<G4LorentzVector*>(N, nullptr); 62 63 G4double mtot = 0.0; 64 for(std::size_t k=0; k<N; ++k) { mtot += mr[k]; } 65 66 G4double mu = mtot; 67 G4double PFragMagCM = 0.0; 68 69 // Primary mass is above the sum of mass of components 70 G4double Mass = std::max(M, mtot + CLHEP::eV); 71 G4double T = Mass-mtot; 72 73 G4LorentzVector PFragCM(0.0,0.0,0.0,0.0); 74 G4LorentzVector PRestCM(0.0,0.0,0.0,0.0); 75 G4LorentzVector PRestLab(0.0,0.0,0.0,Mass); 76 77 CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine(); 78 79 for (G4int k = (G4int)N-1; k>0; --k) 80 { 81 mu -= mr[k]; 82 if (k>1) { T *= BetaKopylov(k, rndmEngine); } 83 else { T = 0.0; } 84 85 G4double RestMass = mu + T; 86 87 PFragMagCM = PtwoBody(Mass,mr[k],RestMass); 88 89 // Create a unit vector with a random direction isotropically distributed 90 G4ThreeVector RandVector = PFragMagCM*G4RandomDirection(); 91 92 PFragCM.setVect(RandVector); 93 PFragCM.setE(std::sqrt(PFragMagCM*PFragMagCM + mr[k]*mr[k])); 94 95 PRestCM.setVect(-RandVector); 96 PRestCM.setE(std::sqrt(PFragMagCM*PFragMagCM + RestMass*RestMass)); 97 98 G4ThreeVector BoostV = PRestLab.boostVector(); 99 100 PFragCM.boost(BoostV); 101 (*P)[k] = new G4LorentzVector(PFragCM); 102 103 PRestCM.boost(BoostV); 104 PRestLab = PRestCM; 105 106 Mass = RestMass; 107 } 108 109 (*P)[0] = new G4LorentzVector(PRestLab); 110 111 return P; 112 } 113 114 G4double G4FermiPhaseSpaceDecay::BetaKopylov(G4int K, 115 CLHEP::HepRandomEngine* rndmEngine) const 116 { 117 G4int N = 3*K - 5; 118 G4double xN = (G4double)N; 119 G4double xN1= (G4double)(N + 1); 120 G4double F; 121 // VI variant 122 G4double Fmax = std::sqrt(g4calc->powN(xN/xN1,N)/xN1); 123 G4double chi; 124 do { 125 chi = rndmEngine->flat(); 126 F = std::sqrt(g4calc->powN(chi,N)*(1-chi)); 127 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko 128 } while ( Fmax*rndmEngine->flat() > F); 129 return chi; 130 } 131