Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/evaporation/src/G4EvaporationChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //J.M. Quesada (August2008). Based on:
 27 //
 28 // Hadronic Process: Nuclear De-excitations
 29 // by V. Lara (Oct 1998)
 30 //
 31 // Modified:
 32 // 03-09-2008 J.M. Quesada for external choice of inverse cross section option
 33 // 06-09-2008 J.M. Quesada Also external choices have been added for superimposed 
 34 //                 Coulomb barrier (if useSICB is set true, by default is false) 
 35 // 17-11-2010 V.Ivanchenko in constructor replace G4VEmissionProbability by 
 36 //            G4EvaporationProbability and do not new and delete probability
 37 //            object at each call; use G4Pow
 38 
 39 #include "G4EvaporationChannel.hh"
 40 #include "G4EvaporationProbability.hh"
 41 #include "G4CoulombBarrier.hh"
 42 #include "G4NuclearLevelData.hh"
 43 #include "G4NucleiProperties.hh"
 44 #include "G4Pow.hh"
 45 #include "G4Log.hh"
 46 #include "G4Exp.hh"
 47 #include "G4PhysicalConstants.hh"
 48 #include "G4SystemOfUnits.hh"
 49 #include "Randomize.hh"
 50 #include "G4RandomDirection.hh"
 51 #include "G4PhysicsModelCatalog.hh"
 52 
 53 G4EvaporationChannel::G4EvaporationChannel(G4int anA, G4int aZ, 
 54              G4EvaporationProbability* aprob):
 55   G4VEvaporationChannel(),
 56   theProbability(aprob),
 57   theCoulombBarrier(new G4CoulombBarrier(anA, aZ)),
 58   theA(anA), theZ(aZ)
 59 { 
 60   secID = G4PhysicsModelCatalog::GetModelID("model_G4EvaporationChannel");
 61   evapMass = G4NucleiProperties::GetNuclearMass(theA, theZ);
 62   evapMass2 = evapMass*evapMass;
 63   theLevelData = G4NuclearLevelData::GetInstance();
 64 }
 65 
 66 G4EvaporationChannel::~G4EvaporationChannel()
 67 {
 68   delete theCoulombBarrier;
 69 }
 70 
 71 void G4EvaporationChannel::Initialise()
 72 {
 73   theProbability->Initialise();
 74   G4VEvaporationChannel::Initialise();  
 75 }
 76 
 77 G4double G4EvaporationChannel::GetEmissionProbability(G4Fragment* fragment)
 78 {
 79   theProbability->ResetProbability();
 80   G4int fragA = fragment->GetA_asInt();
 81   G4int fragZ = fragment->GetZ_asInt();
 82   resA = fragA - theA;
 83   resZ = fragZ - theZ;
 84 
 85   // Only channels which are physically allowed are taken into account 
 86   if(resA < theA || resA < resZ || resZ < 0 || (resA == theA && resZ < theZ)
 87      || ((resA > 1) && (resA == resZ || resZ == 0)))
 88     { return 0.0; }
 89 
 90   G4double exEnergy = fragment->GetExcitationEnergy();
 91   G4double fragMass = fragment->GetGroundStateMass();
 92   mass = fragMass + exEnergy;
 93   resMass = G4NucleiProperties::GetNuclearMass(resA, resZ);
 94   if (mass <= evapMass + resMass) { return 0.0; } 
 95 
 96   ekinmax = 0.5*((mass-resMass)*(mass+resMass) + evapMass2)/mass - evapMass;
 97 
 98   // for OPTxs=1 elim=0 for all fragments - x-section include the CoulombBarrier
 99   G4double elim = 0.0;
100   if(theZ > 0) {
101     bCoulomb = theCoulombBarrier->GetCoulombBarrier(resA, resZ, 0.0);
102 
103     // for OPTxs >0 penetration under the barrier is taken into account
104     elim = (0 < OPTxs) ? bCoulomb*0.5 : bCoulomb;
105   }
106   /*
107   G4cout << "G4EvaporationChannel::Initialize Z=" << theZ <<" A=" << theA 
108      << " FragZ=" << fragZ << " FragA=" << fragA << G4endl;
109   G4cout << "      Eex=" << exEnergy << " CB=" << bCoulomb
110          << " Elim=" << elim << " Efree=" << mass - resMass - evapMass 
111    << G4endl;
112   */
113   // Coulomb barrier compound at rest
114   G4double resM = mass - evapMass - elim;
115   if (resM < resMass) { return 0.0; }
116   G4double ekinmin = 0.5*((mass-resM)*(mass+resM) + evapMass2)/mass - evapMass;
117 
118   /*  
119   G4cout << "Emin= " <<ekinmin<<" Emax= "<<ekinmax
120    << " mass= " << mass << " resM= " << resMass 
121    << " evapM= " << evapMass << G4endl;
122   */
123   if(ekinmax <= ekinmin) { return 0.0; }
124 
125   theProbability->SetDecayKinematics(resZ, resA, resMass, mass);
126   G4double prob = theProbability->TotalProbability(*fragment, ekinmin,
127                                                    ekinmax, bCoulomb,
128                                                    exEnergy);
129   return prob;
130 }
131 
132 G4Fragment* G4EvaporationChannel::EmittedFragment(G4Fragment* theNucleus)
133 {
134   G4double ekin = ekinmax;
135   // assumed, that TotalProbability(...) was already called
136   // if value iz zero no possiblity to sample final state
137   if(resA > 4 && theProbability->GetProbability() > 0.0) {
138     ekin = theProbability->SampleEnergy();
139   }
140   ekin = std::max(ekin, 0.0);
141   G4LorentzVector lv0 = theNucleus->GetMomentum();
142   G4LorentzVector lv(std::sqrt(ekin*(ekin + 2.0*evapMass))*G4RandomDirection(), 
143                      ekin + evapMass);
144   lv.boost(lv0.boostVector());
145 
146   G4Fragment* evFragment = new G4Fragment(theA, theZ, lv);
147   evFragment->SetCreatorModelID(secID);
148   lv0 -= lv;
149   theNucleus->SetZAandMomentum(lv0, resZ, resA);
150   theNucleus->SetCreatorModelID(secID);
151   return evFragment; 
152 } 
153 
154 G4double G4EvaporationChannel::ComputeInverseXSection(G4Fragment* frag,
155                                                       G4double kinEnergy)
156 {
157   G4double p = ComputeProbability(frag, kinEnergy);
158   return (p > 0.0) ? theProbability->RecentXS() : 0.0;
159 }
160 
161 G4double G4EvaporationChannel::ComputeProbability(G4Fragment* frag,
162                                                   G4double kinEnergy)
163 {
164   G4double prob = GetEmissionProbability(frag);
165   if (prob <= 0.0) { return 0.0; }
166 
167   bCoulomb = (theZ > 0) ? theCoulombBarrier->GetCoulombBarrier(resA, resZ, 0.0) : 0.0;
168   G4double p = theProbability->ComputeProbability(kinEnergy, bCoulomb);
169   return p;
170 }
171