Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/coherent_elastic/src/G4NeutrinoElectronNcModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // Geant4 Header : G4NeutrinoElectronNcModel
 28 //
 29 // Author : V.Grichine 6.4.17
 30 //  
 31 
 32 #include "G4NeutrinoElectronNcModel.hh"
 33 #include "G4SystemOfUnits.hh"
 34 #include "G4ParticleTable.hh"
 35 #include "G4ParticleDefinition.hh"
 36 #include "G4IonTable.hh"
 37 #include "Randomize.hh"
 38 #include "G4Electron.hh"
 39 #include "G4HadronicParameters.hh"
 40 #include "G4PhysicsModelCatalog.hh"
 41 
 42 using namespace std;
 43 using namespace CLHEP;
 44 
 45 G4NeutrinoElectronNcModel::G4NeutrinoElectronNcModel(const G4String& name) 
 46   : G4HadronElastic(name)
 47 {
 48   secID = G4PhysicsModelCatalog::GetModelID( "model_" + name );
 49 
 50   SetMinEnergy( 0.0*GeV );
 51   SetMaxEnergy( G4HadronicParameters::Instance()->GetMaxEnergy() );
 52   SetLowestEnergyLimit(1.e-6*eV);  
 53 
 54   theElectron = G4Electron::Electron();
 55   // PDG2016: sin^2 theta Weinberg
 56 
 57   fSin2tW = 0.23129; // 0.2312;
 58 
 59   fCutEnergy = 0.; // default value
 60 }
 61 
 62 
 63 G4NeutrinoElectronNcModel::~G4NeutrinoElectronNcModel()
 64 {}
 65 
 66 void G4NeutrinoElectronNcModel::ModelDescription(std::ostream& outFile) const
 67 {
 68   outFile << "G4NeutrinoElectronNcModel is a neutrino-electron (neutral current) elastic scattering\n"
 69     << "model which uses the standard model \n"
 70     << "transfer parameterization.  The model is fully relativistic\n";
 71 }
 72 
 73 /////////////////////////////////////////////////////////
 74 
 75 G4bool G4NeutrinoElectronNcModel::IsApplicable(const G4HadProjectile & aTrack, G4Nucleus&)
 76 {
 77   G4bool result  = false;
 78   G4String pName = aTrack.GetDefinition()->GetParticleName();
 79   G4double minEnergy = 0.;
 80   G4double energy = aTrack.GetTotalEnergy();
 81 
 82   if( fCutEnergy > 0. ) // min detected recoil electron energy
 83   {
 84     minEnergy = 0.5*(fCutEnergy+sqrt(fCutEnergy*(fCutEnergy+2.*electron_mass_c2)));
 85   }
 86   if( ( pName == "nu_e"   || pName == "anti_nu_e"   || 
 87         pName == "nu_mu"  || pName == "anti_nu_nu"  || 
 88         pName == "nu_tau" || pName == "anti_nu_tau"   ) &&
 89         energy > minEnergy                                 )
 90   {
 91     result = true;
 92   }
 93   return result;
 94 }
 95 
 96 ////////////////////////////////////////////////
 97 //
 98 //
 99 
100 G4HadFinalState* G4NeutrinoElectronNcModel::ApplyYourself(
101      const G4HadProjectile& aTrack, G4Nucleus&)
102 {
103   theParticleChange.Clear();
104 
105   const G4HadProjectile* aParticle = &aTrack;
106   G4double nuTkin = aParticle->GetKineticEnergy();
107 
108   if( nuTkin <= LowestEnergyLimit() ) 
109   {
110     theParticleChange.SetEnergyChange(nuTkin);
111     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
112     return &theParticleChange;
113   }
114   // sample and make final state in lab frame
115 
116   G4double eTkin = SampleElectronTkin( aParticle );
117 
118   if( eTkin > fCutEnergy )
119   {
120     G4double ePlab = sqrt( eTkin*(eTkin + 2.*electron_mass_c2) );
121 
122     G4double cost2  = eTkin*(nuTkin + electron_mass_c2)*(nuTkin + electron_mass_c2);
123              cost2 /= nuTkin*nuTkin*(eTkin + 2.*electron_mass_c2);
124 
125     if( cost2 > 1. ) cost2 = 1.;
126     if( cost2 < 0. ) cost2 = 0.;
127 
128     G4double cost = sqrt(cost2);
129     G4double sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
130     G4double phi  = G4UniformRand()*CLHEP::twopi;
131 
132     G4ThreeVector eP( sint*std::cos(phi), sint*std::sin(phi), cost );
133     eP *= ePlab;
134     G4LorentzVector lvt2( eP, eTkin + electron_mass_c2 );
135     G4DynamicParticle * aSec = new G4DynamicParticle( theElectron, lvt2 );
136     theParticleChange.AddSecondary( aSec, secID );
137 
138     G4LorentzVector lvp1 = aParticle->Get4Momentum();
139     G4LorentzVector lvt1(0.,0.,0.,electron_mass_c2);
140     G4LorentzVector lvsum = lvp1+lvt1;
141 
142     G4LorentzVector lvp2 = lvsum-lvt2;
143     G4double nuTkin2 = lvp2.e()-aParticle->GetDefinition()->GetPDGMass();
144     theParticleChange.SetEnergyChange(nuTkin2);
145     theParticleChange.SetMomentumChange(lvp2.vect().unit());
146   }
147   else if( eTkin > 0.0 ) 
148   {
149     theParticleChange.SetLocalEnergyDeposit( eTkin );
150     nuTkin -= eTkin;
151 
152     if( nuTkin > 0. )
153     {
154       theParticleChange.SetEnergyChange( nuTkin );
155       theParticleChange.SetMomentumChange( aTrack.Get4Momentum().vect().unit() );
156     }
157   }
158   else 
159   {
160     theParticleChange.SetEnergyChange( nuTkin );
161     theParticleChange.SetMomentumChange( aTrack.Get4Momentum().vect().unit() );
162   }
163   return &theParticleChange;
164 }
165 
166 //////////////////////////////////////////////////////
167 //
168 // sample recoil electron energy in lab frame
169 
170 G4double G4NeutrinoElectronNcModel::SampleElectronTkin(const G4HadProjectile* aParticle)
171 {
172   G4double result = 0., xi, cofL, cofR, cofL2, cofR2, cofLR;
173 
174   G4double energy = aParticle->GetTotalEnergy();
175   if( energy == 0.) return result; // vmg: < th?? as in xsc 
176 
177   G4String pName  = aParticle->GetDefinition()->GetParticleName();
178 
179   if( pName == "nu_e")
180   {
181     cofL = 0.5 + fSin2tW;
182     cofR = fSin2tW;
183   }
184   else if( pName == "anti_nu_e")
185   {
186     cofL = fSin2tW;
187     cofR = 0.5 + fSin2tW;
188   }
189   else if( pName == "nu_mu")
190   {
191     cofL = -0.5 + fSin2tW;
192     cofR = fSin2tW;
193   }
194   else if( pName == "anti_nu_mu")
195   {
196     cofL = fSin2tW;
197     cofR = -0.5 + fSin2tW;
198   }
199   else if( pName == "nu_tau") // vmg: nu_tau as nu_mu ???
200   {
201     cofL = -0.5 + fSin2tW;
202     cofR = fSin2tW;
203   }
204   else if( pName == "anti_nu_tau")
205   {
206     cofL = fSin2tW;
207     cofR = -0.5 + fSin2tW;
208   }
209   else
210   {
211     return result;
212   }
213   xi = 0.5*electron_mass_c2/energy;
214 
215   cofL2 = cofL*cofL;
216   cofR2 = cofR*cofR;
217   cofLR = cofL*cofR;
218 
219   // cofs of Tkin/Enu 3rd equation
220 
221   G4double a = cofR2/3.;
222   G4double b = -(cofR2+cofLR*xi);
223   G4double c = cofL2+cofR2;
224 
225   G4double xMax  = 1./(1. + xi);
226   G4double xMax2 = xMax*xMax;
227   G4double xMax3 = xMax*xMax2;
228 
229   G4double d  = -( a*xMax3 + b*xMax2 + c*xMax );
230            d *= G4UniformRand();
231 
232   // G4cout<<a<<"   "<<b<<"   "<<c<<"   "<<d<<G4endl<<G4endl;
233 
234   // cofs of the incomplete 3rd equation
235 
236   G4double p  = c/a;
237            p -= b*b/a/a/3.;
238   G4double q  = d/a;
239            q -= b*c/a/a/3.;
240            q += 2*b*b*b/a/a/a/27.;
241 
242 
243   // cofs for the incomplete colutions
244 
245   G4double D  = p*p*p/3./3./3.;
246            D += q*q/2./2.;
247 
248      // G4cout<<"D = "<<D<<G4endl;
249      // D = -D;
250      // G4complex A1 = G4complex(- q/2., std::sqrt(-D) );
251      // G4complex A  = std::pow(A1,1./3.);
252 
253      // G4complex B1 = G4complex(- q/2., -std::sqrt(-D) );
254      // G4complex B  = std::pow(B1,1./3.);
255 
256   G4double A1 = - q/2. + std::sqrt(D);
257   G4double A = std::pow(A1,1./3.);
258 
259   G4double B1 = - q/2. - std::sqrt(D);
260   G4double B = std::pow(-B1,1./3.);
261            B = -B;
262 
263   // roots of the incomplete 3rd equation
264 
265   G4complex y1 =  A + B;
266   // G4complex y2 = -0.5*(A + B) + 0.5*std::sqrt(3.)*(A - B)*G4complex(0.,1.);
267   // G4complex y3 = -0.5*(A + B) - 0.5*std::sqrt(3.)*(A - B)*G4complex(0.,1.);
268  
269   G4complex x1 = y1 - b/a/3.;
270   // G4complex x2 = y2 - b/a/3.;
271   // G4complex x3 = y3 - b/a/3.;
272 
273   // G4cout<<"re_x1 = "<<real(x1)<<"; re_x2 = "<<real(x2)<<"; re_x3 = "<<real(x3)<<G4endl;
274   // G4cout<<"im_x1 = "<<imag(x1)<<"; im_x2 = "<<imag(x2)<<"; im_x3 = "<<imag(x3)<<G4endl<<G4endl;
275 
276   result = real(x1)*energy;
277 
278   return result;
279 }
280 
281 //
282 //
283 ///////////////////////////
284