Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4RKFieldIntegrator 27 #include "G4RKFieldIntegrator.hh" 28 #include "G4PhysicalConstants.hh" 29 #include "G4SystemOfUnits.hh" 30 #include "G4NucleiProperties.hh" 31 #include "G4FermiMomentum.hh" 32 #include "G4NuclearFermiDensity.hh" 33 #include "G4NuclearShellModelDensity.hh" 34 #include "G4Nucleon.hh" 35 #include "G4Exp.hh" 36 #include "G4Log.hh" 37 #include "G4Pow.hh" 38 39 // Class G4RKFieldIntegrator 40 //************************************************************************************************************************************* 41 42 // only theActive are propagated, nothing else 43 // only theSpectators define the field, nothing else 44 45 void G4RKFieldIntegrator::Transport(G4KineticTrackVector &theActive, const G4KineticTrackVector &theSpectators, G4double theTimeStep) 46 { 47 (void)theActive; 48 (void)theSpectators; 49 (void)theTimeStep; 50 } 51 52 53 G4double G4RKFieldIntegrator::CalculateTotalEnergy(const G4KineticTrackVector& Barions) 54 { 55 const G4double Alpha = 0.25/fermi/fermi; 56 const G4double t1 = -7264.04*fermi*fermi*fermi; 57 const G4double tGamma = 87.65*fermi*fermi*fermi*fermi*fermi*fermi; 58 // const G4double Gamma = 1.676; 59 const G4double Vo = -0.498*fermi; 60 const G4double GammaY = 1.4*fermi; 61 62 G4double Etot = 0; 63 G4int nBarion = (G4int)Barions.size(); 64 for(G4int c1 = 0; c1 < nBarion; ++c1) 65 { 66 G4KineticTrack* p1 = Barions.operator[](c1); 67 // Ekin 68 Etot += p1->Get4Momentum().e(); 69 for(G4int c2 = c1 + 1; c2 < nBarion; ++c2) 70 { 71 G4KineticTrack* p2 = Barions.operator[](c2); 72 G4double r12 = (p1->GetPosition() - p2->GetPosition()).mag()*fermi; 73 74 // Esk2 75 Etot += t1*G4Pow::GetInstance()->A23(Alpha/pi)*G4Exp(-Alpha*r12*r12); 76 77 // Eyuk 78 Etot += Vo*0.5/r12*G4Exp(1/(4*Alpha*GammaY*GammaY))* 79 (G4Exp(-r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) - std::sqrt(Alpha)*r12)) - 80 G4Exp( r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) + std::sqrt(Alpha)*r12))); 81 82 // Ecoul 83 Etot += 1.44*p1->GetDefinition()->GetPDGCharge()*p2->GetDefinition()->GetPDGCharge()/r12*Erf(std::sqrt(Alpha)*r12); 84 85 // Epaul 86 Etot = 0; 87 88 for(G4int c3 = c2 + 1; c3 < nBarion; c3++) 89 { 90 G4KineticTrack* p3 = Barions.operator[](c3); 91 G4double r13 = (p1->GetPosition() - p3->GetPosition()).mag()*fermi; 92 93 // Esk3 94 Etot = tGamma*G4Pow::GetInstance()->powA(4*Alpha*Alpha/3/pi/pi, 1.5)*G4Exp(-Alpha*(r12*r12 + r13*r13)); 95 } 96 } 97 } 98 return Etot; 99 } 100 101 //************************************************************************************************ 102 // originated from the Numerical recipes error function 103 G4double G4RKFieldIntegrator::Erf(G4double X) 104 { 105 const G4double Z1 = 1; 106 const G4double HF = Z1/2; 107 const G4double C1 = 0.56418958; 108 109 const G4double P10 = +3.6767877; 110 const G4double Q10 = +3.2584593; 111 const G4double P11 = -9.7970465E-2; 112 113 // static G4ThreadLocal G4double P2[5] = { 7.3738883, 6.8650185, 3.0317993, 0.56316962, 4.3187787e-5 }; 114 // static G4ThreadLocal G4double Q2[5] = { 7.3739609, 15.184908, 12.79553, 5.3542168, 1. }; 115 const G4double P2[5] = { 7.3738883, 6.8650185, 3.0317993, 0.56316962, 4.3187787e-5 }; 116 const G4double Q2[5] = { 7.3739609, 15.184908, 12.79553, 5.3542168, 1. }; 117 118 const G4double P30 = -1.2436854E-1; 119 const G4double Q30 = +4.4091706E-1; 120 const G4double P31 = -9.6821036E-2; 121 122 G4double V = std::abs(X); 123 G4double H; 124 G4double Y; 125 G4int c1; 126 127 if(V < HF) 128 { 129 Y = V*V; 130 H = X*(P10 + P11*Y)/(Q10+Y); 131 } 132 else 133 { 134 if(V < 4) 135 { 136 G4double AP = P2[4]; 137 G4double AQ = Q2[4]; 138 for(c1 = 3; c1 >= 0; c1--) 139 { 140 AP = P2[c1] + V*AP; 141 AQ = Q2[c1] + V*AQ; 142 } 143 H = 1 - G4Exp(-V*V)*AP/AQ; 144 } 145 else 146 { 147 Y = 1./V*V; 148 H = 1 - G4Exp(-V*V)*(C1+Y*(P30 + P31*Y)/(Q30 + Y))/V; 149 } 150 if (X < 0) 151 H = -H; 152 } 153 return H; 154 } 155 156 //************************************************************************************************ 157 //This is a QMD version to calculate excitation energy of a fragment, 158 //which consists from G4KTV &the Particles 159 /* 160 G4double G4RKFieldIntegrator::GetExcitationEnergy(const G4KineticTrackVector &theParticles) 161 { 162 // Excitation energy of a fragment consisting from A nucleons and Z protons 163 // is Etot - Z*Mp - (A - Z)*Mn - B(A, Z), where B(A,Z) is the binding energy of fragment 164 // and Mp, Mn are proton and neutron mass, respectively. 165 G4int NZ = 0; 166 G4int NA = 0; 167 G4double Etot = CalculateTotalEnergy(theParticles); 168 for(G4int cParticle = 0; cParticle < theParticles.length(); cParticle++) 169 { 170 G4KineticTrack* pKineticTrack = theParticles.at(cParticle); 171 G4int Encoding = std::abs(pKineticTrack->GetDefinition()->GetPDGEncoding()); 172 if (Encoding == 2212) 173 NZ++, NA++; 174 if (Encoding == 2112) 175 NA++; 176 Etot -= pKineticTrack->GetDefinition()->GetPDGMass(); 177 } 178 return Etot - G4NucleiProperties::GetBindingEnergy(NZ, NA); 179 } 180 */ 181 182 //************************************************************************************************************************************* 183 //This is a simplified method to get excitation energy of a residual 184 // nucleus with nHitNucleons. 185 G4double G4RKFieldIntegrator::GetExcitationEnergy(G4int nHitNucleons, const G4KineticTrackVector &) 186 { 187 const G4double MeanE = 50; 188 G4double Sum = 0; 189 for(G4int c1 = 0; c1 < nHitNucleons; ++c1) 190 { 191 Sum += -MeanE*G4Log(G4UniformRand()); 192 } 193 return Sum; 194 } 195 //************************************************************************************************************************************* 196 197 /* 198 //This is free propagation of particles for CASCADE mode. Target nucleons should be frozen 199 void G4RKFieldIntegrator::Integrate(G4KineticTrackVector& theParticles) 200 { 201 for(G4int cParticle = 0; cParticle < theParticles.length(); ++cParticle) 202 { 203 G4KineticTrack* pKineticTrack = theParticles.at(cParticle); 204 pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector()); 205 } 206 } 207 */ 208 //************************************************************************************************************************************* 209 210 void G4RKFieldIntegrator::Integrate(const G4KineticTrackVector& theBarions, G4double theTimeStep) 211 { 212 for(std::size_t cParticle = 0; cParticle < theBarions.size(); ++cParticle) 213 { 214 G4KineticTrack* pKineticTrack = theBarions[cParticle]; 215 pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector()); 216 } 217 } 218 219 //************************************************************************************************************************************* 220 221 // constant to calculate theCoulomb barrier 222 const G4double G4RKFieldIntegrator::coulomb = 1.44 / 1.14 * MeV; 223 224 // kaon's potential constant (real part only) 225 // 0.35 + i0.82 or 0.63 + i0.89 fermi 226 const G4double G4RKFieldIntegrator::a_kaon = 0.35; 227 228 // pion's potential constant (real part only) 229 //!! for pions it has todiffer from kaons 230 // 0.35 + i0.82 or 0.63 + i0.89 fermi 231 const G4double G4RKFieldIntegrator::a_pion = 0.35; 232 233 // antiproton's potential constant (real part only) 234 // 1.53 + i2.50 fermi 235 const G4double G4RKFieldIntegrator::a_antiproton = 1.53; 236 237 // methods for calculating potentials for different types of particles 238 // aPosition is relative to the nucleus center 239 G4double G4RKFieldIntegrator::GetNeutronPotential(G4double ) 240 { 241 /* 242 const G4double Mn = 939.56563 * MeV; // mass of nuetron 243 244 G4VNuclearDensity *theDencity; 245 if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ); 246 else theDencity = new G4NuclearFermiDensity(theA, theZ); 247 248 // GetDencity() accepts only G4ThreeVector so build it: 249 G4ThreeVector aPosition(0.0, 0.0, radius); 250 G4double density = theDencity->GetDensity(aPosition); 251 delete theDencity; 252 253 G4FermiMomentum *fm = new G4FermiMomentum(); 254 fm->Init(theA, theZ); 255 G4double fermiMomentum = fm->GetFermiMomentum(density); 256 delete fm; 257 258 return sqr(fermiMomentum)/(2 * Mn) 259 + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA; 260 //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA; 261 */ 262 263 return 0.0; 264 } 265 266 G4double G4RKFieldIntegrator::GetProtonPotential(G4double ) 267 { 268 /* 269 // calculate Coulomb barrier value 270 G4double theCoulombBarrier = coulomb * theZ/(1. + G4Pow::GetInstance()->Z13(theA)); 271 const G4double Mp = 938.27231 * MeV; // mass of proton 272 273 G4VNuclearDensity *theDencity; 274 if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ); 275 else theDencity = new G4NuclearFermiDensity(theA, theZ); 276 277 // GetDencity() accepts only G4ThreeVector so build it: 278 G4ThreeVector aPosition(0.0, 0.0, radius); 279 G4double density = theDencity->GetDensity(aPosition); 280 delete theDencity; 281 282 G4FermiMomentum *fm = new G4FermiMomentum(); 283 fm->Init(theA, theZ); 284 G4double fermiMomentum = fm->GetFermiMomentum(density); 285 delete fm; 286 287 return sqr(fermiMomentum)/ (2 * Mp) 288 + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA; 289 //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA 290 + theCoulombBarrier; 291 */ 292 293 return 0.0; 294 } 295 296 G4double G4RKFieldIntegrator::GetAntiprotonPotential(G4double ) 297 { 298 /* 299 //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ); 300 G4double theM = theZ * G4Proton::Proton()->GetPDGMass() 301 + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass() 302 + G4CreateNucleus::GetBindingEnergy(theZ, theA); 303 304 const G4double Mp = 938.27231 * MeV; // mass of proton 305 G4double mu = (theM * Mp)/(theM + Mp); 306 307 // antiproton's potential coefficient 308 // V = coeff_antiproton * nucleus_density 309 G4double coeff_antiproton = -2.*pi/mu * (1. + Mp) * a_antiproton; 310 311 G4VNuclearDensity *theDencity; 312 if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ); 313 else theDencity = new G4NuclearFermiDensity(theA, theZ); 314 315 // GetDencity() accepts only G4ThreeVector so build it: 316 G4ThreeVector aPosition(0.0, 0.0, radius); 317 G4double density = theDencity->GetDensity(aPosition); 318 delete theDencity; 319 320 return coeff_antiproton * density; 321 */ 322 323 return 0.0; 324 } 325 326 G4double G4RKFieldIntegrator::GetKaonPotential(G4double ) 327 { 328 /* 329 //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ); 330 G4double theM = theZ * G4Proton::Proton()->GetPDGMass() 331 + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass() 332 + G4CreateNucleus::GetBindingEnergy(theZ, theA); 333 334 const G4double Mk = 496. * MeV; // mass of "kaon" 335 G4double mu = (theM * Mk)/(theM + Mk); 336 337 // kaon's potential coefficient 338 // V = coeff_kaon * nucleus_density 339 G4double coeff_kaon = -2.*pi/mu * (1. + Mk/theM) * a_kaon; 340 341 G4VNuclearDensity *theDencity; 342 if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ); 343 else theDencity = new G4NuclearFermiDensity(theA, theZ); 344 345 // GetDencity() accepts only G4ThreeVector so build it: 346 G4ThreeVector aPosition(0.0, 0.0, radius); 347 G4double density = theDencity->GetDensity(aPosition); 348 delete theDencity; 349 350 return coeff_kaon * density; 351 */ 352 353 return 0.0; 354 } 355 356 G4double G4RKFieldIntegrator::GetPionPotential(G4double ) 357 { 358 /* 359 //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ); 360 G4double theM = theZ * G4Proton::Proton()->GetPDGMass() 361 + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass() 362 + G4CreateNucleus::GetBindingEnergy(theZ, theA); 363 364 const G4double Mpi = 139. * MeV; // mass of "pion" 365 G4double mu = (theM * Mpi)/(theM + Mpi); 366 367 // pion's potential coefficient 368 // V = coeff_pion * nucleus_density 369 G4double coeff_pion = -2.*pi/mu * (1. + Mpi) * a_pion; 370 371 G4VNuclearDensity *theDencity; 372 if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ); 373 else theDencity = new G4NuclearFermiDensity(theA, theZ); 374 375 // GetDencity() accepts only G4ThreeVector so build it: 376 G4ThreeVector aPosition(0.0, 0.0, radius); 377 G4double density = theDencity->GetDensity(aPosition); 378 delete theDencity; 379 380 return coeff_pion * density; 381 */ 382 383 return 0.0; 384 } 385