Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/binary_cascade/src/G4RKFieldIntegrator.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4RKFieldIntegrator
 27 #include "G4RKFieldIntegrator.hh"
 28 #include "G4PhysicalConstants.hh"
 29 #include "G4SystemOfUnits.hh"
 30 #include "G4NucleiProperties.hh"
 31 #include "G4FermiMomentum.hh"
 32 #include "G4NuclearFermiDensity.hh"
 33 #include "G4NuclearShellModelDensity.hh"
 34 #include "G4Nucleon.hh"
 35 #include "G4Exp.hh"
 36 #include "G4Log.hh"
 37 #include "G4Pow.hh"
 38 
 39 // Class G4RKFieldIntegrator
 40 //*************************************************************************************************************************************
 41 
 42 // only theActive are propagated, nothing else
 43 // only theSpectators define the field, nothing else
 44 
 45 void G4RKFieldIntegrator::Transport(G4KineticTrackVector &theActive, const G4KineticTrackVector &theSpectators, G4double theTimeStep)
 46 {
 47    (void)theActive;
 48    (void)theSpectators;
 49    (void)theTimeStep;
 50 }
 51 
 52 
 53 G4double G4RKFieldIntegrator::CalculateTotalEnergy(const G4KineticTrackVector& Barions)
 54 {
 55    const G4double Alpha  =  0.25/fermi/fermi;
 56    const G4double t1     = -7264.04*fermi*fermi*fermi;
 57    const G4double tGamma =  87.65*fermi*fermi*fermi*fermi*fermi*fermi;
 58 //   const G4double Gamma  =  1.676;
 59    const G4double Vo     = -0.498*fermi;
 60    const G4double GammaY =  1.4*fermi;
 61 
 62    G4double Etot = 0;
 63    G4int nBarion = (G4int)Barions.size();
 64    for(G4int c1 = 0; c1 < nBarion; ++c1)
 65       {
 66       G4KineticTrack* p1 = Barions.operator[](c1);
 67    // Ekin
 68       Etot += p1->Get4Momentum().e();
 69       for(G4int c2 = c1 + 1; c2 < nBarion; ++c2)
 70          {
 71          G4KineticTrack* p2 = Barions.operator[](c2);
 72          G4double r12 = (p1->GetPosition() - p2->GetPosition()).mag()*fermi;
 73 
 74          //  Esk2
 75          Etot += t1*G4Pow::GetInstance()->A23(Alpha/pi)*G4Exp(-Alpha*r12*r12);
 76 
 77          // Eyuk
 78          Etot += Vo*0.5/r12*G4Exp(1/(4*Alpha*GammaY*GammaY))*
 79             (G4Exp(-r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) - std::sqrt(Alpha)*r12)) -
 80              G4Exp( r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) + std::sqrt(Alpha)*r12)));
 81 
 82          // Ecoul
 83          Etot += 1.44*p1->GetDefinition()->GetPDGCharge()*p2->GetDefinition()->GetPDGCharge()/r12*Erf(std::sqrt(Alpha)*r12);
 84 
 85          // Epaul
 86          Etot = 0;
 87 
 88          for(G4int c3 = c2 + 1; c3 < nBarion; c3++)
 89             {
 90             G4KineticTrack* p3 = Barions.operator[](c3);
 91             G4double r13 = (p1->GetPosition() - p3->GetPosition()).mag()*fermi;
 92 
 93             // Esk3
 94             Etot  = tGamma*G4Pow::GetInstance()->powA(4*Alpha*Alpha/3/pi/pi, 1.5)*G4Exp(-Alpha*(r12*r12 + r13*r13));
 95             }
 96          }
 97       }
 98    return Etot;
 99 }
100 
101 //************************************************************************************************
102 // originated from the Numerical recipes error function
103 G4double G4RKFieldIntegrator::Erf(G4double X)
104 {
105    const G4double Z1 = 1;
106    const G4double HF = Z1/2;
107    const G4double C1 = 0.56418958;
108 
109    const G4double P10 = +3.6767877;
110    const G4double Q10 = +3.2584593;
111    const G4double P11 = -9.7970465E-2;
112 
113 //   static G4ThreadLocal G4double P2[5] = { 7.3738883, 6.8650185,  3.0317993, 0.56316962, 4.3187787e-5 };
114 //   static G4ThreadLocal G4double Q2[5] = { 7.3739609, 15.184908, 12.79553,   5.3542168,  1. };
115    const G4double P2[5] = { 7.3738883, 6.8650185,  3.0317993, 0.56316962, 4.3187787e-5 };
116    const G4double Q2[5] = { 7.3739609, 15.184908, 12.79553,   5.3542168,  1. };
117 
118    const G4double P30 = -1.2436854E-1;
119    const G4double Q30 = +4.4091706E-1;
120    const G4double P31 = -9.6821036E-2;
121 
122    G4double V = std::abs(X);
123    G4double H;
124    G4double Y;
125    G4int c1;
126 
127    if(V < HF)
128       {
129       Y = V*V;
130       H = X*(P10 + P11*Y)/(Q10+Y);
131       }
132    else
133       {
134       if(V < 4)
135          {
136    G4double AP = P2[4];
137    G4double AQ = Q2[4];
138    for(c1 = 3; c1 >= 0; c1--)
139             {
140             AP = P2[c1] + V*AP;
141             AQ = Q2[c1] + V*AQ;
142             }
143    H = 1 - G4Exp(-V*V)*AP/AQ;
144    }
145       else
146         {
147         Y = 1./V*V;
148         H = 1 - G4Exp(-V*V)*(C1+Y*(P30 + P31*Y)/(Q30 + Y))/V;
149         }
150      if (X < 0)
151         H = -H;
152      }
153    return H;
154 }
155 
156 //************************************************************************************************
157 //This is a QMD version to calculate excitation energy of a fragment,
158 //which consists from G4KTV &the Particles
159 /*
160 G4double G4RKFieldIntegrator::GetExcitationEnergy(const G4KineticTrackVector &theParticles)
161 {
162    // Excitation energy of a fragment consisting from A nucleons and Z protons
163    // is Etot - Z*Mp - (A - Z)*Mn - B(A, Z), where B(A,Z) is the binding energy of fragment
164    //  and Mp, Mn are proton and neutron mass, respectively.
165    G4int NZ = 0;
166    G4int NA = 0;
167    G4double Etot = CalculateTotalEnergy(theParticles);
168    for(G4int cParticle = 0; cParticle < theParticles.length(); cParticle++)
169       {
170       G4KineticTrack* pKineticTrack = theParticles.at(cParticle);
171       G4int Encoding =  std::abs(pKineticTrack->GetDefinition()->GetPDGEncoding());
172       if (Encoding == 2212)
173           NZ++, NA++;
174       if (Encoding == 2112)
175           NA++;
176       Etot -= pKineticTrack->GetDefinition()->GetPDGMass();
177       }
178    return Etot - G4NucleiProperties::GetBindingEnergy(NZ, NA);
179 }
180 */
181 
182 //*************************************************************************************************************************************
183 //This is a simplified method to get excitation energy of a residual
184 // nucleus with nHitNucleons.
185 G4double G4RKFieldIntegrator::GetExcitationEnergy(G4int nHitNucleons, const G4KineticTrackVector &)
186 {
187    const G4double MeanE = 50;
188    G4double Sum = 0;
189    for(G4int c1 = 0; c1 < nHitNucleons; ++c1)
190        {
191        Sum += -MeanE*G4Log(G4UniformRand());
192        }
193    return Sum;
194 }
195 //*************************************************************************************************************************************
196 
197 /*
198 //This is free propagation of particles for CASCADE mode. Target nucleons should be frozen
199 void G4RKFieldIntegrator::Integrate(G4KineticTrackVector& theParticles)
200    {
201    for(G4int cParticle = 0; cParticle < theParticles.length(); ++cParticle)
202       {
203       G4KineticTrack* pKineticTrack = theParticles.at(cParticle);
204       pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector());
205       }
206    }
207 */
208 //*************************************************************************************************************************************
209 
210 void G4RKFieldIntegrator::Integrate(const G4KineticTrackVector& theBarions, G4double theTimeStep)
211 {
212    for(std::size_t cParticle = 0; cParticle < theBarions.size(); ++cParticle)
213       {
214       G4KineticTrack* pKineticTrack = theBarions[cParticle];
215       pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector());
216       }
217 }
218 
219 //*************************************************************************************************************************************
220 
221 // constant to calculate theCoulomb barrier
222 const G4double G4RKFieldIntegrator::coulomb = 1.44 / 1.14 * MeV;
223 
224 // kaon's potential constant (real part only)
225 // 0.35 + i0.82 or 0.63 + i0.89 fermi
226 const G4double G4RKFieldIntegrator::a_kaon = 0.35;
227 
228 // pion's potential constant (real part only)
229 //!! for pions it has todiffer from kaons
230 // 0.35 + i0.82 or 0.63 + i0.89 fermi
231 const G4double G4RKFieldIntegrator::a_pion = 0.35;
232 
233 // antiproton's potential constant (real part only)
234 // 1.53 + i2.50 fermi
235 const G4double G4RKFieldIntegrator::a_antiproton = 1.53;
236 
237 // methods for calculating potentials for different types of particles
238 // aPosition is relative to the nucleus center
239 G4double G4RKFieldIntegrator::GetNeutronPotential(G4double )
240 {
241    /*
242    const G4double Mn  = 939.56563 * MeV; // mass of nuetron
243 
244    G4VNuclearDensity *theDencity;
245    if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
246    else          theDencity = new G4NuclearFermiDensity(theA, theZ);
247 
248    // GetDencity() accepts only G4ThreeVector so build it:
249    G4ThreeVector aPosition(0.0, 0.0, radius);
250    G4double density = theDencity->GetDensity(aPosition);
251    delete theDencity;
252 
253    G4FermiMomentum *fm = new G4FermiMomentum();
254    fm->Init(theA, theZ);
255    G4double fermiMomentum = fm->GetFermiMomentum(density);
256    delete fm;
257 
258    return sqr(fermiMomentum)/(2 * Mn)
259       + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
260       //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA;
261    */
262 
263    return 0.0;
264 }
265 
266 G4double G4RKFieldIntegrator::GetProtonPotential(G4double )
267 {
268    /*
269    // calculate Coulomb barrier value
270    G4double theCoulombBarrier = coulomb * theZ/(1. + G4Pow::GetInstance()->Z13(theA));
271    const G4double Mp  = 938.27231 * MeV; // mass of proton
272 
273    G4VNuclearDensity *theDencity;
274    if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
275    else          theDencity = new G4NuclearFermiDensity(theA, theZ);
276 
277    // GetDencity() accepts only G4ThreeVector so build it:
278    G4ThreeVector aPosition(0.0, 0.0, radius);
279    G4double density = theDencity->GetDensity(aPosition);
280    delete theDencity;
281 
282    G4FermiMomentum *fm = new G4FermiMomentum();
283    fm->Init(theA, theZ);
284    G4double fermiMomentum = fm->GetFermiMomentum(density);
285    delete fm;
286 
287    return sqr(fermiMomentum)/ (2 * Mp)
288       + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
289       //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA
290       + theCoulombBarrier;
291    */
292 
293    return 0.0;
294 }
295 
296 G4double G4RKFieldIntegrator::GetAntiprotonPotential(G4double )
297 {
298    /*
299    //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
300    G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
301       + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
302       + G4CreateNucleus::GetBindingEnergy(theZ, theA);
303 
304    const G4double Mp  = 938.27231 * MeV; // mass of proton
305    G4double mu = (theM * Mp)/(theM + Mp);
306 
307    // antiproton's potential coefficient
308    //   V = coeff_antiproton * nucleus_density
309    G4double coeff_antiproton = -2.*pi/mu * (1. + Mp) * a_antiproton;
310 
311    G4VNuclearDensity *theDencity;
312    if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
313    else          theDencity = new G4NuclearFermiDensity(theA, theZ);
314 
315    // GetDencity() accepts only G4ThreeVector so build it:
316    G4ThreeVector aPosition(0.0, 0.0, radius);
317    G4double density = theDencity->GetDensity(aPosition);
318    delete theDencity;
319 
320    return coeff_antiproton * density;
321    */
322 
323    return 0.0;
324 }
325 
326 G4double G4RKFieldIntegrator::GetKaonPotential(G4double )
327 {
328    /*
329    //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
330    G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
331       + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
332       + G4CreateNucleus::GetBindingEnergy(theZ, theA);
333 
334    const G4double Mk  = 496. * MeV;      // mass of "kaon"
335    G4double mu = (theM * Mk)/(theM + Mk);
336 
337    // kaon's potential coefficient
338    //   V = coeff_kaon * nucleus_density
339    G4double coeff_kaon = -2.*pi/mu * (1. + Mk/theM) * a_kaon;
340 
341    G4VNuclearDensity *theDencity;
342    if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
343    else          theDencity = new G4NuclearFermiDensity(theA, theZ);
344 
345    // GetDencity() accepts only G4ThreeVector so build it:
346    G4ThreeVector aPosition(0.0, 0.0, radius);
347    G4double density = theDencity->GetDensity(aPosition);
348    delete theDencity;
349 
350    return coeff_kaon * density;
351    */
352 
353    return 0.0;
354 }
355 
356 G4double G4RKFieldIntegrator::GetPionPotential(G4double )
357 {
358    /*
359    //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
360    G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
361       + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
362       + G4CreateNucleus::GetBindingEnergy(theZ, theA);
363 
364    const G4double Mpi = 139. * MeV;      // mass of "pion"
365    G4double mu = (theM * Mpi)/(theM + Mpi);
366 
367    // pion's potential coefficient
368    //   V = coeff_pion * nucleus_density
369    G4double coeff_pion = -2.*pi/mu * (1. + Mpi) * a_pion;
370 
371    G4VNuclearDensity *theDencity;
372    if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
373    else          theDencity = new G4NuclearFermiDensity(theA, theZ);
374 
375    // GetDencity() accepts only G4ThreeVector so build it:
376    G4ThreeVector aPosition(0.0, 0.0, radius);
377    G4double density = theDencity->GetDensity(aPosition);
378    delete theDencity;
379 
380    return coeff_pion * density;
381    */
382 
383    return 0.0;
384 }
385