Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 24.11.08 V. Grichine - first implementation 27 // 28 // 04.09.18 V. Ivantchenko Major revision of interfaces and implementation 29 // 27.05.19 V. Ivantchenko Removed obsolete methods and members 30 31 #include "G4ComponentGGNuclNuclXsc.hh" 32 33 #include "G4PhysicalConstants.hh" 34 #include "G4SystemOfUnits.hh" 35 #include "G4NucleiProperties.hh" 36 #include "G4ParticleDefinition.hh" 37 #include "G4HadronNucleonXsc.hh" 38 #include "G4ComponentGGHadronNucleusXsc.hh" 39 #include "G4NuclearRadii.hh" 40 #include "G4Pow.hh" 41 42 namespace 43 { 44 const G4double inve = 1./CLHEP::eplus; 45 } 46 47 G4ComponentGGNuclNuclXsc::G4ComponentGGNuclNuclXsc() 48 : G4VComponentCrossSection("Glauber-Gribov Nucl-nucl") 49 { 50 theProton = G4Proton::Proton(); 51 theNeutron = G4Neutron::Neutron(); 52 theLambda = G4Lambda::Lambda(); 53 fHNXsc = new G4HadronNucleonXsc(); 54 fHadrNucl = new G4ComponentGGHadronNucleusXsc(); 55 } 56 57 G4ComponentGGNuclNuclXsc::~G4ComponentGGNuclNuclXsc() 58 { 59 delete fHNXsc; 60 } 61 62 ////////////////////////////////////////////////////////////////////// 63 64 G4double G4ComponentGGNuclNuclXsc::GetTotalElementCrossSection( 65 const G4ParticleDefinition* aParticle, G4double kinEnergy, 66 G4int Z, G4double A) 67 { 68 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A)); 69 return fTotalXsc; 70 } 71 72 //////////////////////////////////////////////////////////////////// 73 74 G4double G4ComponentGGNuclNuclXsc::GetTotalIsotopeCrossSection( 75 const G4ParticleDefinition* aParticle, G4double kinEnergy, 76 G4int Z, G4int A) 77 { 78 ComputeCrossSections(aParticle, kinEnergy, Z, A); 79 return fTotalXsc; 80 } 81 82 ///////////////////////////////////////////////////////////////////// 83 84 G4double G4ComponentGGNuclNuclXsc::GetInelasticElementCrossSection( 85 const G4ParticleDefinition* aParticle, G4double kinEnergy, 86 G4int Z, G4double A) 87 { 88 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A)); 89 return fInelasticXsc; 90 } 91 92 //////////////////////////////////////////////////////////////////// 93 94 G4double G4ComponentGGNuclNuclXsc::GetInelasticIsotopeCrossSection( 95 const G4ParticleDefinition* aParticle, G4double kinEnergy, 96 G4int Z, G4int A) 97 { 98 ComputeCrossSections(aParticle, kinEnergy, Z, A); 99 return fInelasticXsc; 100 } 101 102 ////////////////////////////////////////////////////////////////// 103 104 G4double G4ComponentGGNuclNuclXsc::GetElasticElementCrossSection( 105 const G4ParticleDefinition* aParticle, G4double kinEnergy, 106 G4int Z, G4double A) 107 { 108 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A)); 109 return fElasticXsc; 110 } 111 112 /////////////////////////////////////////////////////////////////// 113 114 G4double G4ComponentGGNuclNuclXsc::GetElasticIsotopeCrossSection( 115 const G4ParticleDefinition* aParticle, G4double kinEnergy, 116 G4int Z, G4int A) 117 { 118 ComputeCrossSections(aParticle, kinEnergy, Z, A); 119 return fElasticXsc; 120 } 121 122 //////////////////////////////////////////////////////////////// 123 124 G4double G4ComponentGGNuclNuclXsc::ComputeQuasiElasticRatio( 125 const G4ParticleDefinition* aParticle, G4double kinEnergy, 126 G4int Z, G4int A) 127 { 128 ComputeCrossSections(aParticle, kinEnergy, Z, A); 129 return (fInelasticXsc > fProductionXsc) 130 ? (fInelasticXsc - fProductionXsc)/fInelasticXsc : 0.0; 131 } 132 133 ////////////////////////////////////////////////////////////////////// 134 135 void G4ComponentGGNuclNuclXsc::BuildPhysicsTable(const G4ParticleDefinition&) 136 {} 137 138 ////////////////////////////////////////////////////////////////////// 139 140 void G4ComponentGGNuclNuclXsc::DumpPhysicsTable(const G4ParticleDefinition&) 141 { 142 G4cout << "G4ComponentGGNuclNuclXsc: uses Glauber-Gribov formula" << G4endl; 143 } 144 145 ////////////////////////////////////////////////////////////////////// 146 147 void G4ComponentGGNuclNuclXsc::Description(std::ostream& outFile) const 148 { 149 outFile << "G4ComponentGGNuclNuclXsc calculates total, inelastic and\n" 150 << "elastic cross sections for nucleus-nucleus collisions using\n" 151 << "the Glauber model with Gribov corrections. It is valid for\n" 152 << "all incident energies above 100 keV./n" 153 << "For the hydrogen target G4HadronNucleonXsc class is used.\n"; 154 } 155 156 /////////////////////////////////////////////////////////////////////////////// 157 // 158 // Calculates total and inelastic Xsc, derives elastic as total - inelastic 159 // accordong to Glauber model with Gribov correction calculated in the dipole 160 // approximation on light cone. Gaussian density of point-like nucleons helps 161 // to calculate rest integrals of the model. [1] B.Z. Kopeliovich, 162 // nucl-th/0306044 + simplification above 163 164 void G4ComponentGGNuclNuclXsc::ComputeCrossSections( 165 const G4ParticleDefinition* aParticle, G4double kinEnergy, 166 G4int Z, G4int A) 167 { 168 // check cache 169 if(aParticle == fParticle && fZ == Z && fA == A && kinEnergy == fEnergy) 170 { return; } 171 fParticle = aParticle; 172 fZ = Z; 173 fA = A; 174 fEnergy = kinEnergy; 175 G4Pow* pG4Pow = G4Pow::GetInstance(); 176 177 G4int pZ = G4lrint(aParticle->GetPDGCharge()*inve); 178 G4int pA = aParticle->GetBaryonNumber(); 179 G4int pL = aParticle->GetNumberOfLambdasInHypernucleus(); 180 G4bool pHN = aParticle->IsHypernucleus(); 181 G4double cHN(0.88); 182 183 // hydrogen 184 if(1 == Z && 1 == A) { 185 G4double e = kinEnergy*CLHEP::proton_mass_c2/aParticle->GetPDGMass(); 186 fHadrNucl->ComputeCrossSections( theProton, e, pZ, pA, pL ); 187 fTotalXsc = fHadrNucl->GetTotalGlauberGribovXsc(); 188 fElasticXsc = fHadrNucl->GetElasticGlauberGribovXsc(); 189 fInelasticXsc = fHadrNucl->GetInelasticGlauberGribovXsc(); 190 fProductionXsc = fHadrNucl->GetProductionGlauberGribovXsc(); 191 fDiffractionXsc = fHadrNucl->GetDiffractionGlauberGribovXsc(); 192 return; 193 } 194 static const G4double cofInelastic = 2.4; 195 static const G4double cofTotal = 2.0; 196 197 G4double pTkin = kinEnergy/(G4double)pA; 198 199 G4int pN = pA - pZ; 200 G4int tN = A - Z; 201 202 G4double tR = G4NuclearRadii::Radius(Z, A); 203 G4double pR = G4NuclearRadii::Radius(pZ, pA); 204 205 if(pHN) 206 pR *= std::sqrt( pG4Pow->Z23( pA - pL ) + cHN*pG4Pow->Z23( pL ) )/pG4Pow->Z13(pA); 207 208 G4double cB = ComputeCoulombBarier(aParticle, kinEnergy, Z, A, pR, tR); 209 210 if ( cB > 0. ) 211 { 212 G4double sigma = (pZ*Z+pN*tN)*fHNXsc->HadronNucleonXscNS(theProton, theProton, pTkin); 213 if(pHN) sigma += pL*A*fHNXsc->HadronNucleonXsc(theLambda, theProton, pTkin); 214 G4double ppInXsc = fHNXsc->GetInelasticHadronNucleonXsc(); 215 216 sigma += (pZ*tN+pN*Z)*fHNXsc->HadronNucleonXscNS(theNeutron, theProton, pTkin); 217 G4double npInXsc = fHNXsc->GetInelasticHadronNucleonXsc(); 218 219 G4double nucleusSquare = cofTotal*CLHEP::pi*( pR*pR + tR*tR ); // basically 2piRR 220 221 G4double ratio= sigma/nucleusSquare; 222 fTotalXsc = nucleusSquare*G4Log( 1. + ratio )*cB; 223 fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )*cB/cofInelastic; 224 fElasticXsc = std::max(fTotalXsc - fInelasticXsc, 0.0); 225 226 G4double difratio = ratio/(1.+ratio); 227 fDiffractionXsc = 0.5*nucleusSquare*( difratio - G4Log( 1. + difratio ) ); 228 229 G4double xratio= ((pZ*Z+pN*tN)*ppInXsc + (pZ*tN+pN*Z)*npInXsc)/nucleusSquare; 230 fProductionXsc = nucleusSquare*G4Log( 1. + cofInelastic*xratio)*cB/cofInelastic; 231 fProductionXsc = std::min(fProductionXsc, fInelasticXsc); 232 } 233 else 234 { 235 fInelasticXsc = fTotalXsc = fElasticXsc = fProductionXsc = fDiffractionXsc = 0.; 236 } 237 } 238 239 /////////////////////////////////////////////////////////////////////////////// 240 241 G4double G4ComponentGGNuclNuclXsc::ComputeCoulombBarier( 242 const G4ParticleDefinition* aParticle, 243 G4double pTkin, G4int Z, G4int A, 244 G4double pR, G4double tR) 245 { 246 G4int pZ = aParticle->GetPDGCharge()*inve; 247 G4double pM = aParticle->GetPDGMass(); 248 G4double tM = G4NucleiProperties::GetNuclearMass(A, Z); 249 G4double pElab = pTkin + pM; 250 G4double totEcm = std::sqrt(pM*pM + tM*tM + 2.*pElab*tM); 251 G4double totTcm = totEcm - pM -tM; 252 253 // 0.5 defines shape of Cross section correction 254 // at cB = totTcm it become zero 255 static const G4double qfact = 0.5*CLHEP::elm_coupling; 256 G4double bC = qfact*pZ*Z/(pR + tR); 257 258 G4double ratio = (totTcm <= bC) ? 0. : 1. - bC/totTcm; 259 260 #ifdef G4VERBOSE 261 if (GetVerboseLevel() > 1) { 262 G4cout << "G4ComponentGGNuclNuclXsc::ComputeCoulombBarier(..)=" <<ratio 263 << "; pTkin(GeV)=" << pTkin/CLHEP::MeV 264 << " totTcm= " << totTcm/CLHEP::MeV<< "; bC=" << bC/CLHEP::MeV 265 << G4endl; 266 } 267 #endif 268 return ratio; 269 } 270 271 ////////////////////////////////////////////////////////////////////////// 272 // 273 // Return single-diffraction/inelastic cross-section ratio 274 275 G4double G4ComponentGGNuclNuclXsc::GetRatioSD( 276 const G4DynamicParticle* aParticle, G4double tA, G4double tZ) 277 { 278 ComputeCrossSections(aParticle->GetDefinition(), 279 aParticle->GetKineticEnergy(), 280 G4lrint(tZ), G4lrint(tA)); 281 282 return (fInelasticXsc > 0.0) ? fDiffractionXsc/fInelasticXsc : 0.0; 283 } 284 285 ////////////////////////////////////////////////////////////////////////// 286 // 287 // Return quasi-elastic/inelastic cross-section ratio 288 289 G4double G4ComponentGGNuclNuclXsc::GetRatioQE( 290 const G4DynamicParticle* aParticle, G4double tA, G4double tZ) 291 { 292 ComputeCrossSections(aParticle->GetDefinition(), 293 aParticle->GetKineticEnergy(), 294 G4lrint(tZ), G4lrint(tA)); 295 296 return (fInelasticXsc > 0.0) ? 1.0 - fProductionXsc/fInelasticXsc : 0.0; 297 } 298 299 /////////////////////////////////////////////////////////////////////////////// 300