Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsPionPlusInelasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
 28 //
 29 //
 30 // G4 Physics class: G4ChipsPionPlusInelasticXS for gamma+A cross sections
 31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
 32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
 33 //
 34 // -------------------------------------------------------------------------------------
 35 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for 
 36 // pion interactions. Original author: M. Kossov
 37 // -------------------------------------------------------------------------------------
 38 //
 39 
 40 #include "G4ChipsPionPlusInelasticXS.hh"
 41 #include "G4SystemOfUnits.hh"
 42 #include "G4DynamicParticle.hh"
 43 #include "G4ParticleDefinition.hh"
 44 #include "G4PionPlus.hh"
 45 
 46 #include "G4Log.hh"
 47 #include "G4Exp.hh"
 48 #include "G4Pow.hh"
 49 
 50 // factory
 51 #include "G4CrossSectionFactory.hh"
 52 //
 53 G4_DECLARE_XS_FACTORY(G4ChipsPionPlusInelasticXS);
 54 
 55 G4ChipsPionPlusInelasticXS::G4ChipsPionPlusInelasticXS():G4VCrossSectionDataSet(Default_Name())
 56 {
 57   // Initialization of the
 58   lastLEN=0; // Pointer to lastArray of LowEn CS
 59   lastHEN=0; // Pointer to lastArray of HighEn CS
 60   lastN=0;   // The last N of calculated nucleus
 61   lastZ=0;   // The last Z of calculated nucleus
 62   lastP=0.;  // Last used in cross section Momentum
 63   lastTH=0.; // Last threshold momentum
 64   lastCS=0.; // Last value of the Cross Section
 65   lastI=0;   // The last position in the DAMDB
 66   LEN = new std::vector<G4double*>;
 67   HEN = new std::vector<G4double*>;
 68 }
 69 
 70 
 71 G4ChipsPionPlusInelasticXS::~G4ChipsPionPlusInelasticXS()
 72 {
 73   std::size_t lens=LEN->size();
 74   for(std::size_t i=0; i<lens; ++i) delete[] (*LEN)[i];
 75   delete LEN;
 76   std::size_t hens=HEN->size();
 77   for(std::size_t i=0; i<hens; ++i) delete[] (*HEN)[i];
 78   delete HEN;
 79 }
 80 
 81 void
 82 G4ChipsPionPlusInelasticXS::CrossSectionDescription(std::ostream& outFile) const
 83 {
 84     outFile << "G4ChipsPionPlusInelasticXS provides the inelastic cross\n"
 85             << "section for pion+ nucleus scattering as a function of incident\n"
 86             << "momentum. The cross section is calculated using M. Kossov's\n"
 87             << "CHIPS parameterization of cross section data.\n";
 88 }
 89 
 90 G4bool G4ChipsPionPlusInelasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int,    
 91          const G4Element*,
 92          const G4Material*)
 93 {
 94   return true;
 95 }
 96 
 97 // The main member function giving the collision cross section (P is in IU, CS is in mb)
 98 // Make pMom in independent units ! (Now it is MeV)
 99 G4double G4ChipsPionPlusInelasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
100               const G4Isotope*,
101               const G4Element*,
102               const G4Material*)
103 {
104   G4double pMom=Pt->GetTotalMomentum();
105   G4int tgN = A - tgZ;
106   
107   return GetChipsCrossSection(pMom, tgZ, tgN, 211);
108 }
109 
110 
111 G4double G4ChipsPionPlusInelasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int)
112 {
113 
114   G4bool in=false;                     // By default the isotope must be found in the AMDB
115   if(tgN!=lastN || tgZ!=lastZ)         // The nucleus was not the last used isotope
116   {
117     in = false;                        // By default the isotope haven't be found in AMDB  
118     lastP   = 0.;                      // New momentum history (nothing to compare with)
119     lastN   = tgN;                     // The last N of the calculated nucleus
120     lastZ   = tgZ;                     // The last Z of the calculated nucleus
121     lastI   = (G4int)colN.size();      // Size of the Associative Memory DB in the heap
122     j  = 0;                            // A#0f records found in DB for this projectile
123     if(lastI) for(G4int i=0; i<lastI; ++i) // AMDB exists, try to find the (Z,N) isotope
124     {
125       if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
126       {
127         lastI=i;                       // Remember the index for future fast/last use
128         lastTH =colTH[i];              // The last THreshold (A-dependent)
129         if(pMom<=lastTH)
130         {
131           return 0.;                   // Energy is below the Threshold value
132         }
133         lastP  =colP [i];              // Last Momentum  (A-dependent)
134         lastCS =colCS[i];              // Last CrossSect (A-dependent)
135         in = true;                     // This is the case when the isotop is found in DB
136         // Momentum pMom is in IU ! @@ Units
137         lastCS=CalculateCrossSection(-1,j,211,lastZ,lastN,pMom); // read & update
138         if(lastCS<=0. && pMom>lastTH)  // Correct the threshold (@@ No intermediate Zeros)
139         {
140           lastCS=0.;
141           lastTH=pMom;
142         }
143         break;                         // Go out of the LOOP
144       }
145       j++;                             // Increment a#0f records found in DB
146     }
147     if(!in)                            // This isotope has not been calculated previously
148     {
149       //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
150       lastCS=CalculateCrossSection(0,j,211,lastZ,lastN,pMom); //calculate & create
151       //if(lastCS>0.)                   // It means that the AMBD was initialized
152       //{
153 
154       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
155         colN.push_back(tgN);
156         colZ.push_back(tgZ);
157         colP.push_back(pMom);
158         colTH.push_back(lastTH);
159         colCS.push_back(lastCS);
160       //} // M.K. Presence of H1 with high threshold breaks the syncronization
161       return lastCS*millibarn;
162     } // End of creation of the new set of parameters
163     else
164     {
165       colP[lastI]=pMom;
166       colCS[lastI]=lastCS;
167     }
168   } // End of parameters udate
169   else if(pMom<=lastTH)
170   {
171     return 0.;                         // Momentum is below the Threshold Value -> CS=0
172   }
173   else                                 // It is the last used -> use the current tables
174   {
175     lastCS=CalculateCrossSection(1,j,211,lastZ,lastN,pMom); // Only read and UpdateDB
176     lastP=pMom;
177   }
178   return lastCS*millibarn;
179 }
180 
181 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
182 G4double G4ChipsPionPlusInelasticXS::CalculateCrossSection(G4int F, G4int I,
183                                         G4int, G4int targZ, G4int targN, G4double Momentum)
184 {
185   static const G4double THmin=27.;     // default minimum Momentum (MeV/c) Threshold
186   static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
187   static const G4double dP=10.;        // step for the LEN (Low ENergy) table MeV/c
188   static const G4double dPG=dP*.001;   // step for the LEN (Low ENergy) table GeV/c
189   static const G4int    nL=105;        // A#of LEN points in E (step 10 MeV/c)
190   static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
191   static const G4double Pmax=227000.;  // maxP for the HEN (High ENergy) part 227 GeV
192   static const G4int    nH=224;        // A#of HEN points in lnE
193   static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
194   static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
195   static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
196   static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
197 
198   if(F<=0)                             // This isotope was not the last used isotop
199   {
200     if(F<0)                            // This isotope was found in DAMDB =-----=> RETRIEVE
201     {
202       G4int sync=(G4int)LEN->size();
203       if(sync<=I) G4cerr<<"*!*G4ChipsPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
204       lastLEN=(*LEN)[I];               // Pointer to prepared LowEnergy cross sections
205       lastHEN=(*HEN)[I];               // Pointer to prepared High Energy cross sections
206     }
207     else                               // This isotope wasn't calculated before => CREATE
208     {
209       lastLEN = new G4double[nL];      // Allocate memory for the new LEN cross sections
210       lastHEN = new G4double[nH];      // Allocate memory for the new HEN cross sections
211       // --- Instead of making a separate function ---
212       G4double P=THmiG;                // Table threshold in GeV/c
213       for(G4int k=0; k<nL; k++)
214       {
215         lastLEN[k] = CrossSectionLin(targZ, targN, P);
216         P+=dPG;
217       }
218       G4double lP=milPG;
219       for(G4int n=0; n<nH; n++)
220       {
221         lastHEN[n] = CrossSectionLog(targZ, targN, lP);
222         lP+=dlP;
223       }
224       // --- End of possible separate function
225       // *** The synchronization check ***
226       G4int sync=(G4int)LEN->size();
227       if(sync!=I)
228       {
229         G4cerr<<"***G4ChipsPiMinusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
230               <<", N="<<targN<<", F="<<F<<G4endl;
231         //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
232       }
233       LEN->push_back(lastLEN);         // remember the Low Energy Table
234       HEN->push_back(lastHEN);         // remember the High Energy Table
235     } // End of creation of the new set of parameters
236   } // End of parameters udate
237   // =-----------------= NOW the Magic Formula =-------------------------=
238   G4double sigma;
239   if (Momentum<lastTH) return 0.;      // It must be already checked in the interface class
240   else if (Momentum<Pmin)              // High Energy region
241   {
242     sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
243   }
244   else if (Momentum<Pmax)              // High Energy region
245   {
246     G4double lP=G4Log(Momentum);
247     sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
248   }
249   else                                 // UHE region (calculation, not frequent)
250   {
251     G4double P=0.001*Momentum;         // Approximation formula is for P in GeV/c
252     sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
253   }
254   if (sigma<0.) return 0.;
255   return sigma;
256 }
257 
258 // Electromagnetic momentum-threshold (in MeV/c) 
259 G4double G4ChipsPionPlusInelasticXS::ThresholdMomentum(G4int tZ, G4int tN)
260 {
261   static const G4double third=1./3.;
262   static const G4double pM = G4PionPlus::PionPlus()->Definition()->GetPDGMass(); // Projectile mass in MeV
263   static const G4double tpM= pM+pM;       // Doubled projectile mass (MeV)
264   G4double tA=tZ+tN;
265   if(tZ<.99 || tN<0.) return 0.;
266   else if(tZ==1 && tN==0) return 300.;    // A threshold on the free proton
267   //G4double dE=1.263*tZ/(1.+G4Pow::GetInstance()->powA(tA,third));
268   G4double dE=tZ/(1.+G4Pow::GetInstance()->powA(tA,third)); // Safety for diffused edge of the nucleus (QE)
269   G4double tM=931.5*tA;
270   G4double T=dE+dE*(dE/2+pM)/tM;
271   return std::sqrt(T*(tpM+T));
272 }
273 
274 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
275 G4double G4ChipsPionPlusInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
276 {
277   G4double lP=G4Log(P);
278   return CrossSectionFormula(tZ, tN, P, lP);
279 }
280 
281 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
282 G4double G4ChipsPionPlusInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
283 {
284   G4double P=G4Exp(lP);
285   return CrossSectionFormula(tZ, tN, P, lP);
286 }
287 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
288 G4double G4ChipsPionPlusInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
289                                                               G4double P, G4double lP)
290 {
291   G4double sigma=0.;
292   if(tZ==1 && !tN)                        // PiPlus-Proton interaction from G4QuasiElRatios
293   {
294     G4double ld=lP-3.5;
295     G4double ld2=ld*ld;
296     G4double p2=P*P;
297     G4double p4=p2*p2;
298     G4double sp=std::sqrt(P);
299     G4double lm=lP-.32;
300     G4double md=lm*lm+.04;
301     G4double El=(.0557*ld2+2.4+6./sp)/(1.+3./p4);
302     G4double To=(.3*ld2+22.3+5./sp)/(1.+1./p4);
303     sigma=(To-El)+.1/md;
304   }
305   else if(tZ==1 && tN==1)                 // pimp_tot
306   {
307     G4double p2=P*P;
308     G4double d=lP-2.7;
309     G4double f=lP+1.25;
310     G4double gg=lP-.017;
311     sigma=(.55*d*d+38.+23./std::sqrt(P))/(1.+.3/p2/p2)+18./(f*f+.1089)+.02/(gg*gg+.0025);
312   }
313   else if(tZ<97 && tN<152)                // General solution
314   {
315     G4double d=lP-4.2;
316     G4double p2=P*P;
317     G4double p4=p2*p2;
318     G4double a=tN+tZ;                     // A of the target
319     G4double al=G4Log(a);
320     G4double sa=std::sqrt(a);
321     G4double ssa=std::sqrt(sa);
322     G4double a2=a*a;
323     G4double c=41.*G4Exp(al*.68)*(1.+44./a2)/(1.+8./a)/(1.+200./a2/a2);
324     G4double f=290.*ssa/(1.+34./a/ssa);
325     G4double gg=-1.32-al*.043;
326     G4double u=lP-gg;
327     G4double h=al*(.4-.055*al);
328     G4double r=.01+a2*5.E-8;
329     sigma=(c+d*d)/(1.+(.2-.009*sa)/p4)+f/(u*u+h*h)/(1.+r/p2);
330   }
331   else
332   {
333     G4cerr<<"-Warning-G4ChipsPiPlusNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
334     sigma=0.;
335   }
336   if(sigma<0.) return 0.;
337   return sigma;  
338 }
339 
340 G4double G4ChipsPionPlusInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
341 {
342   if(DX<=0. || N<2)
343     {
344       G4cerr<<"***G4ChipsPionPlusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
345       return Y[0];
346     }
347   
348   G4int    N2=N-2;
349   G4double d=(X-X0)/DX;
350   G4int         jj=static_cast<int>(d);
351   if     (jj<0)  jj=0;
352   else if(jj>N2) jj=N2;
353   d-=jj; // excess
354   G4double yi=Y[jj];
355   G4double sigma=yi+(Y[jj+1]-yi)*d;
356   
357   return sigma;
358 }
359