Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsPionPlusElasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 //
 28 //
 29 // G4 Physics class: G4ChipsPionPlusElasticXS for pA elastic cross sections
 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
 31 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
 32 // 
 33 // -------------------------------------------------------------------------------
 34 // Short description: Interaction cross-sections for the elastic process. 
 35 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
 36 // -------------------------------------------------------------------------------
 37 
 38 
 39 #include "G4ChipsPionPlusElasticXS.hh"
 40 #include "G4SystemOfUnits.hh"
 41 #include "G4DynamicParticle.hh"
 42 #include "G4ParticleDefinition.hh"
 43 #include "G4PionPlus.hh"
 44 #include "G4Nucleus.hh"
 45 #include "G4ParticleTable.hh"
 46 #include "G4NucleiProperties.hh"
 47 #include "G4IonTable.hh"
 48 #include "G4Log.hh"
 49 #include "G4Exp.hh"
 50 #include "G4Pow.hh"
 51 
 52 // factory
 53 #include "G4CrossSectionFactory.hh"
 54 //
 55 G4_DECLARE_XS_FACTORY(G4ChipsPionPlusElasticXS);
 56 
 57 G4ChipsPionPlusElasticXS::G4ChipsPionPlusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
 58 {
 59   lPMin=-8.;  // Min tabulated logarithmMomentum(D)
 60   lPMax= 8.;  // Max tabulated logarithmMomentum(D)
 61   dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D)
 62   onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L)
 63   lastSIG=0.; // Last calculated cross section  (L)
 64   lastLP=-10.;// Last log(mom_of IncidentHadron)(L)
 65   lastTM=0.;  // Last t_maximum                 (L)
 66   theSS=0.;   // TheLastSqSlope of 1st difr.Max(L)
 67   theS1=0.;   // TheLastMantissa of 1st difr.Max(L)
 68   theB1=0.;   // TheLastSlope of 1st difruct.Max(L)
 69   theS2=0.;   // TheLastMantissa of 2nd difr.Max(L)
 70   theB2=0.;   // TheLastSlope of 2nd difruct.Max(L)
 71   theS3=0.;   // TheLastMantissa of 3d difr. Max(L)
 72   theB3=0.;   // TheLastSlope of 3d difruct. Max(L)
 73   theS4=0.;   // TheLastMantissa of 4th difr.Max(L)
 74   theB4=0.;   // TheLastSlope of 4th difruct.Max(L)
 75   lastTZ=0;   // Last atomic number of the target
 76   lastTN=0;   // Last # of neutrons in the target
 77   lastPIN=0.; // Last initialized max momentum
 78   lastCST=0;  // Elastic cross-section table
 79   lastPAR=0;  // ParametersForFunctionalCalculation
 80   lastSST=0;  // E-dep of SqaredSlope of 1st difMax
 81   lastS1T=0;  // E-dep of mantissa of 1st dif.Max
 82   lastB1T=0;  // E-dep of the slope of 1st difMax
 83   lastS2T=0;  // E-dep of mantissa of 2nd difrMax
 84   lastB2T=0;  // E-dep of the slope of 2nd difMax
 85   lastS3T=0;  // E-dep of mantissa of 3d difr.Max
 86   lastB3T=0;  // E-dep of the slope of 3d difrMax
 87   lastS4T=0;  // E-dep of mantissa of 4th difrMax
 88   lastB4T=0;  // E-dep of the slope of 4th difMax
 89   lastN=0;    // The last N of calculated nucleus
 90   lastZ=0;    // The last Z of calculated nucleus
 91   lastP=0.;   // LastUsed in cross section Momentum
 92   lastTH=0.;  // Last threshold momentum
 93   lastCS=0.;  // Last value of the Cross Section
 94   lastI=0;    // The last position in the DAMDB
 95 }
 96 
 97 G4ChipsPionPlusElasticXS::~G4ChipsPionPlusElasticXS()
 98 {
 99   std::vector<G4double*>::iterator pos;
100   for (pos=CST.begin(); pos<CST.end(); pos++)
101   { delete [] *pos; }
102   CST.clear();
103   for (pos=PAR.begin(); pos<PAR.end(); pos++)
104   { delete [] *pos; }
105   PAR.clear();
106   for (pos=SST.begin(); pos<SST.end(); pos++)
107   { delete [] *pos; }
108   SST.clear();
109   for (pos=S1T.begin(); pos<S1T.end(); pos++)
110   { delete [] *pos; }
111   S1T.clear();
112   for (pos=B1T.begin(); pos<B1T.end(); pos++)
113   { delete [] *pos; }
114   B1T.clear();
115   for (pos=S2T.begin(); pos<S2T.end(); pos++)
116   { delete [] *pos; }
117   S2T.clear();
118   for (pos=B2T.begin(); pos<B2T.end(); pos++)
119   { delete [] *pos; }
120   B2T.clear();
121   for (pos=S3T.begin(); pos<S3T.end(); pos++)
122   { delete [] *pos; }
123   S3T.clear();
124   for (pos=B3T.begin(); pos<B3T.end(); pos++)
125   { delete [] *pos; }
126   B3T.clear();
127   for (pos=S4T.begin(); pos<S4T.end(); pos++)
128   { delete [] *pos; }
129   S4T.clear();
130   for (pos=B4T.begin(); pos<B4T.end(); pos++)
131   { delete [] *pos; }
132   B4T.clear();
133 }
134 
135 void
136 G4ChipsPionPlusElasticXS::CrossSectionDescription(std::ostream& outFile) const
137 {
138     outFile << "G4ChipsPionPlusElasticXS provides the elastic cross\n"
139             << "section for pion+ nucleus scattering as a function of incident\n"
140             << "momentum. The cross section is calculated using M. Kossov's\n"
141             << "CHIPS parameterization of cross section data.\n";
142 }
143 
144 G4bool G4ChipsPionPlusElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int,    
145              const G4Element*,
146              const G4Material*)
147 {
148   return true;
149 }
150 
151 // The main member function giving the collision cross section (P is in IU, CS is in mb)
152 // Make pMom in independent units ! (Now it is MeV)
153 G4double G4ChipsPionPlusElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
154                                                       const G4Isotope*,
155                                                       const G4Element*,
156                                                       const G4Material*)
157 {
158   G4double pMom=Pt->GetTotalMomentum();
159   G4int tgN = A - tgZ;
160   
161   return GetChipsCrossSection(pMom, tgZ, tgN, 211);
162 }
163 
164 G4double G4ChipsPionPlusElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int)
165 {
166   G4double pEn=pMom;
167   G4bool fCS = false;
168   onlyCS=fCS;
169 
170   G4bool in=false;                   // By default the isotope must be found in the AMDB
171   lastP   = 0.;                      // New momentum history (nothing to compare with)
172   lastN   = tgN;                     // The last N of the calculated nucleus
173   lastZ   = tgZ;                     // The last Z of the calculated nucleus
174   lastI   = (G4int)colN.size();      // Size of the Associative Memory DB in the heap
175   if(lastI) for(G4int i=0; i<lastI; ++i) // Loop over proj/tgZ/tgN lines of DB
176   {                                  // The nucleus with projPDG is found in AMDB
177     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
178     {
179       lastI=i;
180       lastTH =colTH[i];              // Last THreshold (A-dependent)
181       if(pEn<=lastTH)
182       {
183         return 0.;                   // Energy is below the Threshold value
184       }
185       lastP  =colP [i];              // Last Momentum  (A-dependent)
186       lastCS =colCS[i];              // Last CrossSect (A-dependent)
187       //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
188       if(lastP == pMom)              // Do not recalculate
189       {
190         CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // Update param's only
191         return lastCS*millibarn;     // Use theLastCS
192       }
193       in = true;                       // This is the case when the isotop is found in DB
194       // Momentum pMom is in IU ! @@ Units
195       lastCS=CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // read & update
196       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
197       {
198         lastTH=pEn;
199       }
200       break;                           // Go out of the LOOP with found lastI
201     }
202   } // End of attampt to find the nucleus in DB
203   if(!in)                            // This nucleus has not been calculated previously
204   {
205     //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
206     lastCS=CalculateCrossSection(fCS,0,lastI,211,lastZ,lastN,pMom);//calculate&create
207     if(lastCS<=0.)
208     {
209       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
210       if(pEn>lastTH)
211       {
212         lastTH=pEn;
213       }
214     }
215     colN.push_back(tgN);
216     colZ.push_back(tgZ);
217     colP.push_back(pMom);
218     colTH.push_back(lastTH);
219     colCS.push_back(lastCS);
220     return lastCS*millibarn;
221   } // End of creation of the new set of parameters
222   else
223   {
224     colP[lastI]=pMom;
225     colCS[lastI]=lastCS;
226   }
227   return lastCS*millibarn;
228 }
229 
230 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
231 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
232 G4double G4ChipsPionPlusElasticXS::CalculateCrossSection(G4bool CS, G4int F, G4int I,
233                                              G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
234 {
235   G4double pMom=pIU/GeV;                // All calculations are in GeV
236   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
237   lastLP=G4Log(pMom);                // Make a logarithm of the momentum for calculation
238   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
239   {
240     if(F<0)                             // the AMDB must be loded
241     {
242       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
243       lastPAR = PAR[I];                 // Pointer to the parameter set
244       lastCST = CST[I];                 // Pointer to the total sross-section table
245       lastSST = SST[I];                 // Pointer to the first squared slope
246       lastS1T = S1T[I];                 // Pointer to the first mantissa
247       lastB1T = B1T[I];                 // Pointer to the first slope
248       lastS2T = S2T[I];                 // Pointer to the second mantissa
249       lastB2T = B2T[I];                 // Pointer to the second slope
250       lastS3T = S3T[I];                 // Pointer to the third mantissa
251       lastB3T = B3T[I];                 // Pointer to the rhird slope
252       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
253       lastB4T = B4T[I];                 // Pointer to the 4-th slope
254     }
255     if(lastLP>lastPIN && lastLP<lPMax)
256     {
257       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
258       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
259     }
260   }
261   else                                  // This isotope wasn't initialized => CREATE
262   {
263     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
264     lastPAR[nLast]=0;                   // Initialization for VALGRIND
265     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
266     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
267     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
268     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
269     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
270     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
271     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
272     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
273     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
274     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
275     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
276     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
277     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
278     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
279     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
280     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
281     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
282     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
283     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
284     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
285     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
286     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
287     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
288   } // End of creation/update of the new set of parameters and tables
289   // =-----------= NOW Update (if necessary) and Calculate the Cross Section =----------=
290   if(lastLP>lastPIN && lastLP<lPMax)
291   {
292     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
293   }
294   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
295   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
296   {
297     if(lastLP==lastPIN)
298     {
299       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
300       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
301       if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
302       lastSIG = lastCST[blast];
303       if(!onlyCS)                       // Skip the differential cross-section parameters
304       {
305         theSS  = lastSST[blast];
306         theS1  = lastS1T[blast];
307         theB1  = lastB1T[blast];
308         theS2  = lastS2T[blast];
309         theB2  = lastB2T[blast];
310         theS3  = lastS3T[blast];
311         theB3  = lastB3T[blast];
312         theS4  = lastS4T[blast];
313         theB4  = lastB4T[blast];
314       }
315     }
316     else
317     {
318       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
319       G4int    blast=static_cast<int>(shift);    // the lower bin number
320       if(blast<0)   blast=0;
321       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
322       shift-=blast;                              // step inside the unit bin
323       G4int lastL=blast+1;                       // the upper bin number
324       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
325       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
326       if(!onlyCS)                       // Skip the differential cross-section parameters
327       {
328         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
329         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
330         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
331         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
332         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
333         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
334         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
335         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
336         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
337         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
338         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
339         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
340         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
341         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
342         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
343         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
344         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
345         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
346       }
347     }
348   }
349   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
350   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
351   return lastSIG;
352 }
353 
354 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
355 G4double G4ChipsPionPlusElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
356                                                   G4int tgZ, G4int tgN)
357 {
358   // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
359   static const G4double pwd=2727;
360   const G4int n_pippel=35;               // #of parameters for pip_p-elastic (<nPoints=128)
361   //                           -0- -1-   -2- -3- -4-  -5-   -6-  -7--8--9--10-11-12--13-
362   G4double pipp_el[n_pippel]={1.27,13.,.0676,3.5,.32,.0576,.0557,2.4,6.,3.,.7,5.,74.,3.,
363                               3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,
364                               3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
365   //                         -14--15--16--17--18- -19--20-  -21-  -22-  -23- -24- -25-
366   //                          -26-   -27-  -28-  -29- -30-  -31- -32- -33- -34-
367   if(PDG == 211)
368   {
369     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
370     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
371     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
372     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
373     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
374     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
375     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
376     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
377     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
378     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
379     //
380     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
381     {
382       if ( tgZ == 1 && tgN == 0 )
383       {
384         for (G4int ip=0; ip<n_pippel; ip++) lastPAR[ip]=pipp_el[ip]; // PiPlus+P
385       }
386       else
387       {
388         G4double a=tgZ+tgN;
389         G4double sa=std::sqrt(a);
390         G4double ssa=std::sqrt(sa);
391         G4double asa=a*sa;
392         G4double a2=a*a;
393         G4double a3=a2*a;
394         G4double a4=a3*a;
395         G4double a5=a4*a;
396         G4double a6=a4*a2;
397         G4double a7=a6*a;
398         G4double a8=a7*a;
399         G4double a9=a8*a;
400         G4double a10=a5*a5;
401         G4double a12=a6*a6;
402         G4double a14=a7*a7;
403         G4double a16=a8*a8;
404         G4double a17=a16*a;
405         //G4double a20=a16*a4;
406         G4double a32=a16*a16;
407         // Reaction cross-section parameters (pel=peh_fit.f)
408         lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a);                              // p1
409         lastPAR[1]=a/(1./4.4+1./a);                                          // p2
410         lastPAR[2]=.22/G4Pow::GetInstance()->powA(a,.33);                                      // p3
411         lastPAR[3]=.5*a/(1.+3./a+1800./a8);                                  // p4
412         lastPAR[4]=3.E-4*G4Pow::GetInstance()->powA(a,.32)/(1.+14./a2);                        // p5
413         lastPAR[5]=0.;                                                       // p6 not used
414         lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2);                              // p7
415         lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4);                           // p8
416         lastPAR[8]=0.;                                                       // p9 not used
417         // @@ the differential cross-section is parameterized separately for A>6 & A<7
418         if(a<6.5)
419         {
420           G4double a28=a16*a12;
421           // The main pre-exponent      (pel_sg)
422           lastPAR[ 9]=4000*a;                                // p1
423           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
424           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
425           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
426           lastPAR[13]=.28*a;                                 // p5
427           lastPAR[14]=1.2*a2+2.3;                            // p6
428           lastPAR[15]=3.8/a;                                 // p7
429           // The main slope             (pel_sl)
430           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
431           lastPAR[17]=.2*a;                                  // p2
432           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
433           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
434           // The main quadratic         (pel_sh)
435           lastPAR[20]=2.25*a3;                               // p1
436           lastPAR[21]=18.;                                   // p2
437           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
438           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
439           // The 1st max pre-exponent   (pel_qq)
440           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
441           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
442           lastPAR[26]=.0006*a3;                              // p3
443           // The 1st max slope          (pel_qs)
444           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
445           lastPAR[28]=.114;                                  // p2
446           lastPAR[29]=.003;                                  // p3
447           lastPAR[30]=2.e-23;                                // p4
448           // The effective pre-exponent (pel_ss)
449           lastPAR[31]=1./(1.+.0001*a8);                      // p1
450           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
451           lastPAR[33]=.03;                                   // p3
452           // The effective slope        (pel_sb)
453           lastPAR[34]=a/2;                                   // p1
454           lastPAR[35]=2.e-7*a4;                              // p2
455           lastPAR[36]=4.;                                    // p3
456           lastPAR[37]=64./a3;                                // p4
457           // The gloria pre-exponent    (pel_us)
458           lastPAR[38]=1.e8*G4Exp(.32*asa);                // p1
459           lastPAR[39]=20.*G4Exp(.45*asa);                 // p2
460           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
461           lastPAR[41]=2.5e5*G4Exp(.085*a3);               // p4
462           lastPAR[42]=2.5*a;                                 // p5
463           // The gloria slope           (pel_ub)
464           lastPAR[43]=920.+.03*a8*a3;                        // p1
465           lastPAR[44]=93.+.0023*a12;                         // p2
466         }
467         else
468         {
469           G4double p1a10=2.2e-28*a10;
470           G4double r4a16=6.e14/a16;
471           G4double s4a16=r4a16*r4a16;
472           // a24
473           // a36
474           // The main pre-exponent      (peh_sg)
475           lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15);                  // p1
476           lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6);                    // p2
477           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
478           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
479           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
480           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
481           // The main slope             (peh_sl)
482           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
483           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
484           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
485           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
486           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
487           lastPAR[20]=9.+100./a;                             // p6
488           // The main quadratic         (peh_sh)
489           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
490           lastPAR[22]=7.e-15*a4*asa;                         // p2
491           lastPAR[23]=9000./a4;                              // p3
492           // The 1st max pre-exponent   (peh_qq)
493           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
494           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
495           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
496           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
497           // The 1st max slope          (peh_qs)
498           lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1
499           lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11);           // p2
500           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
501           lastPAR[31]=100./asa;                              // p4
502           // The 2nd max pre-exponent   (peh_ss)
503           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
504           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
505           lastPAR[34]=1.3+3.e5/a4;                           // p3
506           lastPAR[35]=500./(a2+50.)+3;                       // p4
507           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
508           // The 2nd max slope          (peh_sb)
509           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
510           lastPAR[38]=.0005*a5;                              // p2
511           lastPAR[39]=.002*a5;                               // p3
512           lastPAR[40]=10.;                                   // p4
513           // The effective pre-exponent (peh_us)
514           lastPAR[41]=.05+.005*a;                            // p1
515           lastPAR[42]=7.e-8/sa;                              // p2
516           lastPAR[43]=.8*sa;                                 // p3
517           lastPAR[44]=.02*sa;                                // p4
518           lastPAR[45]=1.e8/a3;                               // p5
519           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
520           // The effective slope        (peh_ub)
521           lastPAR[47]=24.;                                   // p1
522           lastPAR[48]=20./sa;                                // p2
523           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
524           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
525         }
526         // Parameter for lowEnergyNeutrons
527         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
528       }
529       lastPAR[nLast]=pwd;
530       // and initialize the zero element of the table
531       G4double lp=lPMin;                                      // ln(momentum)
532       G4bool memCS=onlyCS;                                    // ??
533       onlyCS=false;
534       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
535       onlyCS=memCS;
536       lastSST[0]=theSS;
537       lastS1T[0]=theS1;
538       lastB1T[0]=theB1;
539       lastS2T[0]=theS2;
540       lastB2T[0]=theB2;
541       lastS3T[0]=theS3;
542       lastB3T[0]=theB3;
543       lastS4T[0]=theS4;
544       lastB4T[0]=theB4;
545     }
546     if(LP>ILP)
547     {
548       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
549       if(ini<0) ini=0;
550       if(ini<nPoints)
551       {
552         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
553         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
554         if(fin>=ini)
555         {
556           G4double lp=0.;
557           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
558           {
559             lp=lPMin+ip*dlnP;                     // ln(momentum)
560             G4bool memCS=onlyCS;
561             onlyCS=false;
562             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
563             onlyCS=memCS;
564             lastSST[ip]=theSS;
565             lastS1T[ip]=theS1;
566             lastB1T[ip]=theB1;
567             lastS2T[ip]=theS2;
568             lastB2T[ip]=theB2;
569             lastS3T[ip]=theS3;
570             lastB3T[ip]=theB3;
571             lastS4T[ip]=theS4;
572             lastB4T[ip]=theB4;
573           }
574           return lp;
575         }
576         else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG
577                    <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
578                    <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
579       }
580       else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="
581                  <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
582                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
583     }
584   }
585   else
586   {
587     // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
588     //       <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
589     // throw G4QException("G4ChipsPionPlusElasticXS::GetPTables:only pipA implemented");
590     G4ExceptionDescription ed;
591     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
592        << ", while it is defined only for PDG=211 (pi+)" << G4endl;
593     G4Exception("G4ChipsPionPlusElasticXS::GetPTables()", "HAD_CHPS_0000",
594                 FatalException, ed);
595   }
596   return ILP;
597 }
598 
599 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
600 G4double G4ChipsPionPlusElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
601 {
602   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
603   static const G4double third=1./3.;
604   static const G4double fifth=1./5.;
605   static const G4double sevth=1./7.;
606   if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExT:PDG="<<PDG<<G4endl;
607   if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExchanT:onlyCS=1"<<G4endl;
608   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
609   G4double q2=0.;
610   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
611   {
612     G4double E1=lastTM*theB1;
613     G4double R1=(1.-G4Exp(-E1));
614     G4double E2=lastTM*theB2;
615     G4double R2=(1.-G4Exp(-E2*E2*E2));
616     G4double E3=lastTM*theB3;
617     G4double R3=(1.-G4Exp(-E3));
618     G4double I1=R1*theS1/theB1;
619     G4double I2=R2*theS2;
620     G4double I3=R3*theS3;
621     G4double I12=I1+I2;
622     G4double rand=(I12+I3)*G4UniformRand();
623     if     (rand<I1 )
624     {
625       G4double ran=R1*G4UniformRand();
626       if(ran>1.) ran=1.;
627       q2=-G4Log(1.-ran)/theB1;
628     }
629     else if(rand<I12)
630     {
631       G4double ran=R2*G4UniformRand();
632       if(ran>1.) ran=1.;
633       q2=-G4Log(1.-ran);
634       if(q2<0.) q2=0.;
635       q2=G4Pow::GetInstance()->powA(q2,third)/theB2;
636     }
637     else
638     {
639       G4double ran=R3*G4UniformRand();
640       if(ran>1.) ran=1.;
641       q2=-G4Log(1.-ran)/theB3;
642     }
643   }
644   else
645   {
646     G4double a=tgZ+tgN;
647     G4double E1=lastTM*(theB1+lastTM*theSS);
648     G4double R1=(1.-G4Exp(-E1));
649     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
650     G4double tm2=lastTM*lastTM;
651     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
652     if(a>6.5)E2*=tm2;                               // for heavy nuclei
653     G4double R2=(1.-G4Exp(-E2));
654     G4double E3=lastTM*theB3;
655     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
656     G4double R3=(1.-G4Exp(-E3));
657     G4double E4=lastTM*theB4;
658     G4double R4=(1.-G4Exp(-E4));
659     G4double I1=R1*theS1;
660     G4double I2=R2*theS2;
661     G4double I3=R3*theS3;
662     G4double I4=R4*theS4;
663     G4double I12=I1+I2;
664     G4double I13=I12+I3;
665     G4double rand=(I13+I4)*G4UniformRand();
666     if(rand<I1)
667     {
668       G4double ran=R1*G4UniformRand();
669       if(ran>1.) ran=1.;
670       q2=-G4Log(1.-ran)/theB1;
671       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
672     }
673     else if(rand<I12)
674     {
675       G4double ran=R2*G4UniformRand();
676       if(ran>1.) ran=1.;
677       q2=-G4Log(1.-ran)/theB2;
678       if(q2<0.) q2=0.;
679       if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third);
680       else      q2=G4Pow::GetInstance()->powA(q2,fifth);
681     }
682     else if(rand<I13)
683     {
684       G4double ran=R3*G4UniformRand();
685       if(ran>1.) ran=1.;
686       q2=-G4Log(1.-ran)/theB3;
687       if(q2<0.) q2=0.;
688       if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth);
689     }
690     else
691     {
692       G4double ran=R4*G4UniformRand();
693       if(ran>1.) ran=1.;
694       q2=-G4Log(1.-ran)/theB4;
695       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
696     }
697   }
698   if(q2<0.) q2=0.;
699   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
700   if(q2>lastTM)
701   {
702     q2=lastTM;
703   }
704   return q2*GeVSQ;
705 }
706 
707 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
708 G4double G4ChipsPionPlusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
709 {
710   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
711   if(onlyCS)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetSlope:onlyCS=true"<<G4endl;
712   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
713   if(PDG != 211)
714   {
715     // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
716     //       <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
717     // throw G4QException("G4ChipsPionPlusElasticXS::GetSlope: pipA are implemented");
718     G4ExceptionDescription ed;
719     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
720        << ", while it is defined only for PDG=211 (pi-)" << G4endl;
721     G4Exception("G4ChipsPionPlusElasticXS::GetSlope()", "HAD_CHPS_000",
722                 FatalException, ed);
723   }
724   if(theB1<0.) theB1=0.;
725   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
726   return theB1/GeVSQ;
727 }
728 
729 // Returns half max(Q2=-t) in independent units (MeV^2)
730 G4double G4ChipsPionPlusElasticXS::GetHMaxT()
731 {
732   static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
733   return lastTM*HGeVSQ;
734 }
735 
736 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
737 G4double G4ChipsPionPlusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
738                                                     G4int tgN)
739 {
740   if(PDG!= 211)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetTabV:PDG="<<PDG<<G4endl;
741 
742   //AR-24Apr2018 Switch to allow transuranic elements
743   const G4bool isHeavyElementAllowed = true;
744   if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
745   {
746     G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
747     return 0.;
748   }
749   G4int iZ=tgZ-1; // Z index
750   if(iZ<0)
751   {
752     iZ=0;         // conversion of the neutron target to the proton target
753     tgZ=1;
754     tgN=0;
755   }
756   G4double p=G4Exp(lp);              // momentum
757   G4double sp=std::sqrt(p);             // sqrt(p)
758   G4double p2=p*p;
759   G4double p3=p2*p;
760   G4double p4=p2*p2;
761   if ( tgZ == 1 && tgN == 0 ) // PiPlus+P
762   {
763     G4double dl2=lp-lastPAR[11];
764     theSS=lastPAR[34];
765     theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
766           (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
767     theB1=lastPAR[18]*G4Pow::GetInstance()->powA(p,lastPAR[19])/(1.+lastPAR[20]/p3);
768     theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
769     theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp); 
770     theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
771     theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]); 
772     theS4=0.;
773     theB4=0.; 
774     // Returns the total elastic pip-p cross-section (to avoid spoiling lastSIG)
775     G4double dl1=lp+lastPAR[0];  // lr
776     G4double lr2=dl1*dl1;        // lr2
777     G4double dl3=lp-lastPAR[3];  // ld
778     G4double dl4=lp-lastPAR[4];  // lm
779     return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])+(lastPAR[6]*dl3*dl3+lastPAR[7]+
780            lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+lastPAR[10]/(dl4*dl4+lastPAR[5]);
781   }
782   else
783   {
784     G4double p5=p4*p;
785     G4double p6=p5*p;
786     G4double p8=p6*p2;
787     G4double p10=p8*p2;
788     G4double p12=p10*p2;
789     G4double p16=p8*p8;
790     //G4double p24=p16*p8;
791     G4double dl=lp-5.;
792     G4double a=tgZ+tgN;
793     G4double pah=G4Pow::GetInstance()->powA(p,a/2);
794     G4double pa=pah*pah;
795     G4double pa2=pa*pa;
796     if(a<6.5)
797     {
798       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
799             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
800       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
801       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
802       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
803       theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
804       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
805       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
806       theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+
807                 lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42])));
808       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
809     }
810     else
811     {
812       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
813             lastPAR[13]/(p5+lastPAR[14]/p16);
814       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+
815             lastPAR[17]/(1.+lastPAR[18]/p4);
816       theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4);
817       theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
818       theB2=lastPAR[28]/G4Pow::GetInstance()->powA(p,lastPAR[29])+lastPAR[30]/G4Pow::GetInstance()->powA(p,lastPAR[31]);
819       theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
820             lastPAR[33]/(1.+lastPAR[34]/p6);
821       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
822       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
823             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
824       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
825     }
826     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
827     //         p1               p2              p3
828     return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
829            lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
830     //        p4             p5               p7           p8
831   }
832   return 0.;
833 } // End of GetTableValues
834 
835 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
836 G4double G4ChipsPionPlusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
837                                                 G4double pP)
838 {
839   static const G4double mPi= G4PionPlus::PionPlus()->GetPDGMass()*.001; // MeV to GeV
840   static const G4double mPi2= mPi*mPi;
841   G4double pP2=pP*pP;                                 // squared momentum of the projectile
842   if(tgZ || tgN>-1)                                   // ---> pipA
843   {
844     G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
845     G4double dmt=mt+mt;
846     G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt;    // Mondelstam mds
847     return dmt*dmt*pP2/mds;
848   }
849   else
850   {
851     G4ExceptionDescription ed;
852     ed << "PDG = " << PDG << ", Z = " << tgZ << ",N = " << tgN
853        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
854     G4Exception("G4ChipsPionPlusElasticXS::GetQ2max()", "HAD_CHPS_0000",
855                 FatalException, ed);
856     return 0;
857   }
858 }
859