Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // 28 // 29 // G4 Physics class: G4ChipsKaonMinusElasticXS for pA elastic cross sections 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010 31 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010 32 // 33 // ------------------------------------------------------------------------------- 34 // Short description: Interaction cross-sections for the elastic process. 35 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski 36 // ------------------------------------------------------------------------------- 37 // 38 39 #include "G4ChipsKaonMinusElasticXS.hh" 40 #include "G4SystemOfUnits.hh" 41 #include "G4DynamicParticle.hh" 42 #include "G4ParticleDefinition.hh" 43 #include "G4KaonMinus.hh" 44 #include "G4Nucleus.hh" 45 #include "G4ParticleTable.hh" 46 #include "G4NucleiProperties.hh" 47 #include "G4IonTable.hh" 48 #include "G4AutoLock.hh" 49 50 // factory 51 #include "G4CrossSectionFactory.hh" 52 // 53 G4_DECLARE_XS_FACTORY(G4ChipsKaonMinusElasticXS); 54 55 56 namespace { 57 G4double mK;//= G4KaonMinus::KaonMinus()->GetPDGMass()*.001; // MeV to GeV//Cannot initialize here, needs particles 58 G4double mK2;//= mK*mK; 59 G4Mutex initM = G4MUTEX_INITIALIZER; 60 const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt; 61 const G4double third=1./3.; 62 const G4double fifth=1./5.; 63 const G4double sevth=1./7.; 64 const G4double pwd=2727; 65 const G4int n_kmpel=36; // #of parameters for pp-elastic ( < nPoints=128) 66 // -0- -1- -2- -3- -4- -5- -6- -7- -8- -9--10- -11--12- 67 const G4double kmp_el[n_kmpel]={5.2,.0557,3.5,2.23,.7,.075,.004,.39,.000156,.15,1.,.0156,5., 68 74.,3.,3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46, 69 1.2e6,3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.}; 70 // -13-14--15-16--17--18--19- -20- -21- -22- -23- -24- -25- 71 // -26- -27- -28- -29- -30- -31- -32- -33- -34- -35- 72 const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.; 73 } 74 75 G4ChipsKaonMinusElasticXS::G4ChipsKaonMinusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1) 76 { 77 G4AutoLock l(&initM); 78 mK = G4KaonMinus::KaonMinus()->GetPDGMass()*.001; 79 mK2 = mK*mK; 80 l.unlock(); 81 lPMin=-8.; //Min tabulatedLogarithmMomentum/D 82 lPMax= 8.; //Max tabulatedLogarithmMomentum/D 83 dlnP=(lPMax-lPMin)/nLast;// LogStep inTable /D 84 onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)/L 85 lastSIG=0.; //Last calculated cross section /L 86 lastLP=-10.;//LastLog(mom_of IncidentHadron)/L 87 lastTM=0.; //Last t_maximum /L 88 theSS=0.; //TheLastSqSlope of 1st difr.Max/L 89 theS1=0.; //TheLastMantissa of 1st difrMax/L 90 theB1=0.; //TheLastSlope of 1st difructMax/L 91 theS2=0.; //TheLastMantissa of 2nd difrMax/L 92 theB2=0.; //TheLastSlope of 2nd difructMax/L 93 theS3=0.; //TheLastMantissa of 3d difr.Max/L 94 theB3=0.; //TheLastSlope of 3d difruct.Max/L 95 theS4=0.; //TheLastMantissa of 4th difrMax/L 96 theB4=0.; //TheLastSlope of 4th difructMax/L 97 lastTZ=0; // Last atomic number of theTarget 98 lastTN=0; // Last # of neutrons in theTarget 99 lastPIN=0.;// Last initialized max momentum 100 lastCST=0; // Elastic cross-section table 101 lastPAR=0; // ParametersForFunctionCalculation 102 lastSST=0; // E-dep ofSqardSlope of 1st difMax 103 lastS1T=0; // E-dep of mantissa of 1st dif.Max 104 lastB1T=0; // E-dep of the slope of 1st difMax 105 lastS2T=0; // E-dep of mantissa of 2nd difrMax 106 lastB2T=0; // E-dep of the slope of 2nd difMax 107 lastS3T=0; // E-dep of mantissa of 3d difr.Max 108 lastB3T=0; // E-dep of the slope of 3d difrMax 109 lastS4T=0; // E-dep of mantissa of 4th difrMax 110 lastB4T=0; // E-dep of the slope of 4th difMax 111 lastN=0; // The last N of calculated nucleus 112 lastZ=0; // The last Z of calculated nucleus 113 lastP=0.; // LastUsed inCrossSection Momentum 114 lastTH=0.; // Last threshold momentum 115 lastCS=0.; // Last value of the Cross Section 116 lastI=0; // The last position in the DAMDB 117 } 118 119 G4ChipsKaonMinusElasticXS::~G4ChipsKaonMinusElasticXS() 120 { 121 std::vector<G4double*>::iterator pos; 122 for (pos=CST.begin(); pos<CST.end(); pos++) 123 { delete [] *pos; } 124 CST.clear(); 125 for (pos=PAR.begin(); pos<PAR.end(); pos++) 126 { delete [] *pos; } 127 PAR.clear(); 128 for (pos=SST.begin(); pos<SST.end(); pos++) 129 { delete [] *pos; } 130 SST.clear(); 131 for (pos=S1T.begin(); pos<S1T.end(); pos++) 132 { delete [] *pos; } 133 S1T.clear(); 134 for (pos=B1T.begin(); pos<B1T.end(); pos++) 135 { delete [] *pos; } 136 B1T.clear(); 137 for (pos=S2T.begin(); pos<S2T.end(); pos++) 138 { delete [] *pos; } 139 S2T.clear(); 140 for (pos=B2T.begin(); pos<B2T.end(); pos++) 141 { delete [] *pos; } 142 B2T.clear(); 143 for (pos=S3T.begin(); pos<S3T.end(); pos++) 144 { delete [] *pos; } 145 S3T.clear(); 146 for (pos=B3T.begin(); pos<B3T.end(); pos++) 147 { delete [] *pos; } 148 B3T.clear(); 149 for (pos=S4T.begin(); pos<S4T.end(); pos++) 150 { delete [] *pos; } 151 S4T.clear(); 152 for (pos=B4T.begin(); pos<B4T.end(); pos++) 153 { delete [] *pos; } 154 B4T.clear(); 155 } 156 157 void 158 G4ChipsKaonMinusElasticXS::CrossSectionDescription(std::ostream& outFile) const 159 { 160 outFile << "G4ChipsKaonMinusElasticXS provides the elastic cross\n" 161 << "section for K- nucleus scattering as a function of incident\n" 162 << "momentum. The cross section is calculated using M. Kossov's\n" 163 << "CHIPS parameterization of cross section data.\n"; 164 } 165 166 G4bool G4ChipsKaonMinusElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int, 167 const G4Element*, 168 const G4Material*) 169 { 170 return true; 171 } 172 173 // The main member function giving the collision cross section (P is in IU, CS is in mb) 174 // Make pMom in independent units ! (Now it is MeV) 175 G4double G4ChipsKaonMinusElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A, 176 const G4Isotope*, 177 const G4Element*, 178 const G4Material*) 179 { 180 G4double pMom=Pt->GetTotalMomentum(); 181 G4int tgN = A - tgZ; 182 183 return GetChipsCrossSection(pMom, tgZ, tgN, -321); 184 } 185 186 G4double G4ChipsKaonMinusElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int) 187 { 188 189 G4bool fCS = false; 190 191 G4double pEn=pMom; 192 onlyCS=fCS; 193 194 G4bool in=false; // By default the isotope must be found in the AMDB 195 lastP = 0.; // New momentum history (nothing to compare with) 196 lastN = tgN; // The last N of the calculated nucleus 197 lastZ = tgZ; // The last Z of the calculated nucleus 198 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap 199 if(lastI) for(G4int i=0; i<lastI; ++i) // Loop over proj/tgZ/tgN lines of DB 200 { // The nucleus with projPDG is found in AMDB 201 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB 202 { 203 lastI=i; 204 lastTH =colTH[i]; // Last THreshold (A-dependent) 205 if(pEn<=lastTH) 206 { 207 return 0.; // Energy is below the Threshold value 208 } 209 lastP =colP [i]; // Last Momentum (A-dependent) 210 lastCS =colCS[i]; // Last CrossSect (A-dependent) 211 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance) 212 if(lastP == pMom) // Do not recalculate 213 { 214 CalculateCrossSection(fCS,-1,i,-321,lastZ,lastN,pMom); // Update param's only 215 return lastCS*millibarn; // Use theLastCS 216 } 217 in = true; // This is the case when the isotop is found in DB 218 // Momentum pMom is in IU ! @@ Units 219 lastCS=CalculateCrossSection(fCS,-1,i,-321,lastZ,lastN,pMom); // read & update 220 if(lastCS<=0. && pEn>lastTH) // Correct the threshold 221 { 222 lastTH=pEn; 223 } 224 break; // Go out of the LOOP with found lastI 225 } 226 } // End of attampt to find the nucleus in DB 227 if(!in) // This nucleus has not been calculated previously 228 { 229 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU) 230 lastCS=CalculateCrossSection(fCS,0,lastI,-321,lastZ,lastN,pMom);//calculate&create 231 if(lastCS<=0.) 232 { 233 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last 234 if(pEn>lastTH) 235 { 236 lastTH=pEn; 237 } 238 } 239 colN.push_back(tgN); 240 colZ.push_back(tgZ); 241 colP.push_back(pMom); 242 colTH.push_back(lastTH); 243 colCS.push_back(lastCS); 244 return lastCS*millibarn; 245 } // End of creation of the new set of parameters 246 else 247 { 248 colP[lastI]=pMom; 249 colCS[lastI]=lastCS; 250 } 251 return lastCS*millibarn; 252 } 253 254 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?) 255 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB) 256 G4double G4ChipsKaonMinusElasticXS::CalculateCrossSection(G4bool CS, G4int F, 257 G4int I, G4int PDG, G4int tgZ, G4int tgN, G4double pIU) 258 { 259 G4double pMom=pIU/GeV; // All calculations are in GeV 260 onlyCS=CS; // Flag to calculate only CS (not Si/Bi) 261 lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation 262 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE 263 { 264 if(F<0) // the AMDB must be loded 265 { 266 lastPIN = PIN[I]; // Max log(P) initialised for this table set 267 lastPAR = PAR[I]; // Pointer to the parameter set 268 lastCST = CST[I]; // Pointer to the total sross-section table 269 lastSST = SST[I]; // Pointer to the first squared slope 270 lastS1T = S1T[I]; // Pointer to the first mantissa 271 lastB1T = B1T[I]; // Pointer to the first slope 272 lastS2T = S2T[I]; // Pointer to the second mantissa 273 lastB2T = B2T[I]; // Pointer to the second slope 274 lastS3T = S3T[I]; // Pointer to the third mantissa 275 lastB3T = B3T[I]; // Pointer to the rhird slope 276 lastS4T = S4T[I]; // Pointer to the 4-th mantissa 277 lastB4T = B4T[I]; // Pointer to the 4-th slope 278 } 279 if(lastLP>lastPIN && lastLP<lPMax) 280 { 281 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs 282 PIN[I]=lastPIN; // Remember the new P-Limit of the tables 283 } 284 } 285 else // This isotope wasn't initialized => CREATE 286 { 287 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function 288 lastPAR[nLast]=0; // Initialization for VALGRIND 289 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function 290 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope 291 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa 292 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope 293 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa 294 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope 295 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa 296 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope 297 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa 298 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope 299 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables 300 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB 301 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB 302 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB 303 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB 304 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB 305 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB 306 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB 307 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB 308 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB 309 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB 310 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB 311 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB 312 } // End of creation/update of the new set of parameters and tables 313 // =----------= NOW Update (if necessary) and Calculate the Cross Section =-----------= 314 if(lastLP>lastPIN && lastLP<lPMax) 315 { 316 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN); 317 } 318 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2) 319 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables 320 { 321 if(lastLP==lastPIN) 322 { 323 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin 324 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0) 325 if(blast<0 || blast>=nLast) G4cout<<"G4QKMElCS::CCS:b="<<blast<<",n="<<nLast<<G4endl; 326 lastSIG = lastCST[blast]; 327 if(!onlyCS) // Skip the differential cross-section parameters 328 { 329 theSS = lastSST[blast]; 330 theS1 = lastS1T[blast]; 331 theB1 = lastB1T[blast]; 332 theS2 = lastS2T[blast]; 333 theB2 = lastB2T[blast]; 334 theS3 = lastS3T[blast]; 335 theB3 = lastB3T[blast]; 336 theS4 = lastS4T[blast]; 337 theB4 = lastB4T[blast]; 338 } 339 } 340 else 341 { 342 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table 343 G4int blast=static_cast<int>(shift); // the lower bin number 344 if(blast<0) blast=0; 345 if(blast>=nLast) blast=nLast-1; // low edge of the last bin 346 shift-=blast; // step inside the unit bin 347 G4int lastL=blast+1; // the upper bin number 348 G4double SIGL=lastCST[blast]; // the basic value of the cross-section 349 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section 350 if(!onlyCS) // Skip the differential cross-section parameters 351 { 352 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope 353 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope 354 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa 355 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa 356 G4double B1TL=lastB1T[blast]; // the low bin of the first slope 357 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope 358 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa 359 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa 360 G4double B2TL=lastB2T[blast]; // the low bin of the second slope 361 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope 362 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa 363 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa 364 G4double B3TL=lastB3T[blast]; // the low bin of the third slope 365 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope 366 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa 367 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa 368 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope 369 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope 370 } 371 } 372 } 373 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table 374 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added 375 return lastSIG; 376 } 377 378 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated 379 G4double G4ChipsKaonMinusElasticXS::GetPTables(G4double LP,G4double ILP, G4int PDG, 380 G4int tgZ, G4int tgN) 381 { 382 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters 383 if(PDG == -321) 384 { 385 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) -- 386 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom| 387 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4); 388 // par(0) par(7) par(1) par(2) par(4) par(5) par(6) 389 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp), 390 // par(8) par(9) par(10) par(11) par(12)par(13) par(14) 391 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp); 392 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23) 393 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0. 394 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31) 395 // 396 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition 397 { 398 if ( tgZ == 1 && tgN == 0 ) 399 { 400 for (G4int ip=0; ip<n_kmpel; ip++) lastPAR[ip]=kmp_el[ip]; // PiMinus+P 401 } 402 else 403 { 404 G4double a=tgZ+tgN; 405 G4double sa=std::sqrt(a); 406 G4double ssa=std::sqrt(sa); 407 G4double asa=a*sa; 408 G4double a2=a*a; 409 G4double a3=a2*a; 410 G4double a4=a3*a; 411 G4double a5=a4*a; 412 G4double a6=a4*a2; 413 G4double a7=a6*a; 414 G4double a8=a7*a; 415 G4double a9=a8*a; 416 G4double a10=a5*a5; 417 G4double a12=a6*a6; 418 G4double a14=a7*a7; 419 G4double a16=a8*a8; 420 G4double a17=a16*a; 421 //G4double a20=a16*a4; 422 G4double a32=a16*a16; 423 // Reaction cross-section parameters (kmael_fit.f) 424 lastPAR[0]=.06*asa/(1.+a*(.01+.1/ssa)); // p1 425 lastPAR[1]=.75*asa/(1.+.009*a); // p2 426 lastPAR[2]=.1*a2*ssa/(1.+.0015*a2/ssa); // p3 427 lastPAR[3]=1./(1.+500./a2); // p4 428 lastPAR[4]=4.2; // p5 429 lastPAR[5]=0.; // p6 not used 430 lastPAR[6]=0.; // p7 not used 431 lastPAR[7]=0.; // p8 not used 432 lastPAR[8]=0.; // p9 not used 433 // @@ the differential cross-section is parameterized separately for A>6 & A<7 434 if(a<6.5) 435 { 436 G4double a28=a16*a12; 437 // The main pre-exponent (pel_sg) 438 lastPAR[ 9]=4000*a; // p1 439 lastPAR[10]=1.2e7*a8+380*a17; // p2 440 lastPAR[11]=.7/(1.+4.e-12*a16); // p3 441 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4 442 lastPAR[13]=.28*a; // p5 443 lastPAR[14]=1.2*a2+2.3; // p6 444 lastPAR[15]=3.8/a; // p7 445 // The main slope (pel_sl) 446 lastPAR[16]=.01/(1.+.0024*a5); // p1 447 lastPAR[17]=.2*a; // p2 448 lastPAR[18]=9.e-7/(1.+.035*a5); // p3 449 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4 450 // The main quadratic (pel_sh) 451 lastPAR[20]=2.25*a3; // p1 452 lastPAR[21]=18.; // p2 453 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3 454 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4 455 // The 1st max pre-exponent (pel_qq) 456 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1 457 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2 458 lastPAR[26]=.0006*a3; // p3 459 // The 1st max slope (pel_qs) 460 lastPAR[27]=10.+4.e-8*a12*a; // p1 461 lastPAR[28]=.114; // p2 462 lastPAR[29]=.003; // p3 463 lastPAR[30]=2.e-23; // p4 464 // The effective pre-exponent (pel_ss) 465 lastPAR[31]=1./(1.+.0001*a8); // p1 466 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2 467 lastPAR[33]=.03; // p3 468 // The effective slope (pel_sb) 469 lastPAR[34]=a/2; // p1 470 lastPAR[35]=2.e-7*a4; // p2 471 lastPAR[36]=4.; // p3 472 lastPAR[37]=64./a3; // p4 473 // The gloria pre-exponent (pel_us) 474 lastPAR[38]=1.e8*std::exp(.32*asa); // p1 475 lastPAR[39]=20.*std::exp(.45*asa); // p2 476 lastPAR[40]=7.e3+2.4e6/a5; // p3 477 lastPAR[41]=2.5e5*std::exp(.085*a3); // p4 478 lastPAR[42]=2.5*a; // p5 479 // The gloria slope (pel_ub) 480 lastPAR[43]=920.+.03*a8*a3; // p1 481 lastPAR[44]=93.+.0023*a12; // p2 482 } 483 else 484 { 485 G4double p1a10=2.2e-28*a10; 486 G4double r4a16=6.e14/a16; 487 G4double s4a16=r4a16*r4a16; 488 // a24 489 // a36 490 // The main pre-exponent (peh_sg) 491 lastPAR[ 9]=4.5*std::pow(a,1.15); // p1 492 lastPAR[10]=.06*std::pow(a,.6); // p2 493 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3 494 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4 495 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5 496 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6 497 // The main slope (peh_sl) 498 lastPAR[15]=400./a12+2.e-22*a9; // p1 499 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2 500 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3 501 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4 502 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5 503 lastPAR[20]=9.+100./a; // p6 504 // The main quadratic (peh_sh) 505 lastPAR[21]=.002*a3+3.e7/a6; // p1 506 lastPAR[22]=7.e-15*a4*asa; // p2 507 lastPAR[23]=9000./a4; // p3 508 // The 1st max pre-exponent (peh_qq) 509 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1 510 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2 511 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3 512 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4 513 // The 1st max slope (peh_qs) 514 lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1 515 lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2 516 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3 517 lastPAR[31]=100./asa; // p4 518 // The 2nd max pre-exponent (peh_ss) 519 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1 520 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2 521 lastPAR[34]=1.3+3.e5/a4; // p3 522 lastPAR[35]=500./(a2+50.)+3; // p4 523 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5 524 // The 2nd max slope (peh_sb) 525 lastPAR[37]=.4*asa+3.e-9*a6; // p1 526 lastPAR[38]=.0005*a5; // p2 527 lastPAR[39]=.002*a5; // p3 528 lastPAR[40]=10.; // p4 529 // The effective pre-exponent (peh_us) 530 lastPAR[41]=.05+.005*a; // p1 531 lastPAR[42]=7.e-8/sa; // p2 532 lastPAR[43]=.8*sa; // p3 533 lastPAR[44]=.02*sa; // p4 534 lastPAR[45]=1.e8/a3; // p5 535 lastPAR[46]=3.e32/(a32+1.e32); // p6 536 // The effective slope (peh_ub) 537 lastPAR[47]=24.; // p1 538 lastPAR[48]=20./sa; // p2 539 lastPAR[49]=7.e3*a/(sa+1.); // p3 540 lastPAR[50]=900.*sa/(1.+500./a3); // p4 541 } 542 // Parameter for lowEnergyNeutrons 543 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16); 544 } 545 lastPAR[nLast]=pwd; 546 // and initialize the zero element of the table 547 G4double lp=lPMin; // ln(momentum) 548 G4bool memCS=onlyCS; // ?? 549 onlyCS=false; 550 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables 551 onlyCS=memCS; 552 lastSST[0]=theSS; 553 lastS1T[0]=theS1; 554 lastB1T[0]=theB1; 555 lastS2T[0]=theS2; 556 lastB2T[0]=theB2; 557 lastS3T[0]=theS3; 558 lastB3T[0]=theB3; 559 lastS4T[0]=theS4; 560 lastB4T[0]=theB4; 561 } 562 if(LP>ILP) 563 { 564 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this 565 if(ini<0) ini=0; 566 if(ini<nPoints) 567 { 568 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization 569 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization 570 if(fin>=ini) 571 { 572 G4double lp=0.; 573 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3 574 { 575 lp=lPMin+ip*dlnP; // ln(momentum) 576 G4bool memCS=onlyCS; 577 onlyCS=false; 578 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS) 579 onlyCS=memCS; 580 lastSST[ip]=theSS; 581 lastS1T[ip]=theS1; 582 lastB1T[ip]=theB1; 583 lastS2T[ip]=theS2; 584 lastB2T[ip]=theB2; 585 lastS3T[ip]=theS3; 586 lastB3T[ip]=theB3; 587 lastS4T[ip]=theS4; 588 lastB4T[ip]=theB4; 589 } 590 return lp; 591 } 592 else G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG 593 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP 594 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl; 595 } 596 else G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG 597 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP 598 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl; 599 } 600 } 601 else 602 { 603 // G4cout<<"*Error*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ 604 // <<", N="<<tgN<<", while it is defined only for PDG=-321"<<G4endl; 605 // throw G4QException("G4ChipsKaonMinusElasticXS::GetPTables:onlyK-'s implemented"); 606 G4ExceptionDescription ed; 607 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 608 << ", while it is defined only for PDG=-321 (K-) " << G4endl; 609 G4Exception("G4ChipsKaonMinusElasticXS::GetPTables()", "HAD_CHPS_0000", 610 FatalException, ed); 611 } 612 return ILP; 613 } 614 615 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV) 616 G4double G4ChipsKaonMinusElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG) 617 { 618 if(PDG==310 || PDG==130) PDG=-321; 619 if(PDG!=-321)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetET:PDG="<<PDG<<G4endl; 620 if(onlyCS) G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetExT: onlyCS=1"<<G4endl; 621 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV) 622 G4double q2=0.; 623 if(tgZ==1 && tgN==0) // ===> p+p=p+p 624 { 625 G4double E1=lastTM*theB1; 626 G4double R1=(1.-std::exp(-E1)); 627 G4double E2=lastTM*theB2; 628 G4double R2=(1.-std::exp(-E2*E2*E2)); 629 G4double E3=lastTM*theB3; 630 G4double R3=(1.-std::exp(-E3)); 631 G4double I1=R1*theS1/theB1; 632 G4double I2=R2*theS2; 633 G4double I3=R3*theS3; 634 G4double I12=I1+I2; 635 G4double rand=(I12+I3)*G4UniformRand(); 636 if (rand<I1 ) 637 { 638 G4double ran=R1*G4UniformRand(); 639 if(ran>1.) ran=1.; 640 q2=-std::log(1.-ran)/theB1; 641 } 642 else if(rand<I12) 643 { 644 G4double ran=R2*G4UniformRand(); 645 if(ran>1.) ran=1.; 646 q2=-std::log(1.-ran); 647 if(q2<0.) q2=0.; 648 q2=std::pow(q2,third)/theB2; 649 } 650 else 651 { 652 G4double ran=R3*G4UniformRand(); 653 if(ran>1.) ran=1.; 654 q2=-std::log(1.-ran)/theB3; 655 } 656 } 657 else 658 { 659 G4double a=tgZ+tgN; 660 G4double E1=lastTM*(theB1+lastTM*theSS); 661 G4double R1=(1.-std::exp(-E1)); 662 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check) 663 G4double tm2=lastTM*lastTM; 664 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st) 665 if(a>6.5)E2*=tm2; // for heavy nuclei 666 G4double R2=(1.-std::exp(-E2)); 667 G4double E3=lastTM*theB3; 668 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA 669 G4double R3=(1.-std::exp(-E3)); 670 G4double E4=lastTM*theB4; 671 G4double R4=(1.-std::exp(-E4)); 672 G4double I1=R1*theS1; 673 G4double I2=R2*theS2; 674 G4double I3=R3*theS3; 675 G4double I4=R4*theS4; 676 G4double I12=I1+I2; 677 G4double I13=I12+I3; 678 G4double rand=(I13+I4)*G4UniformRand(); 679 if(rand<I1) 680 { 681 G4double ran=R1*G4UniformRand(); 682 if(ran>1.) ran=1.; 683 q2=-std::log(1.-ran)/theB1; 684 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss; 685 } 686 else if(rand<I12) 687 { 688 G4double ran=R2*G4UniformRand(); 689 if(ran>1.) ran=1.; 690 q2=-std::log(1.-ran)/theB2; 691 if(q2<0.) q2=0.; 692 if(a<6.5) q2=std::pow(q2,third); 693 else q2=std::pow(q2,fifth); 694 } 695 else if(rand<I13) 696 { 697 G4double ran=R3*G4UniformRand(); 698 if(ran>1.) ran=1.; 699 q2=-std::log(1.-ran)/theB3; 700 if(q2<0.) q2=0.; 701 if(a>6.5) q2=std::pow(q2,sevth); 702 } 703 else 704 { 705 G4double ran=R4*G4UniformRand(); 706 if(ran>1.) ran=1.; 707 q2=-std::log(1.-ran)/theB4; 708 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0) 709 } 710 } 711 if(q2<0.) q2=0.; 712 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QKaonMinusElasticCS::GetExchT: -t="<<q2<<G4endl; 713 if(q2>lastTM) 714 { 715 q2=lastTM; 716 } 717 return q2*GeVSQ; 718 } 719 720 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT 721 G4double G4ChipsKaonMinusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG) 722 { 723 if(onlyCS)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetSl:onlCS=true"<<G4endl; 724 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV) 725 if(PDG != -321) 726 { 727 // G4cout<<"*Error*G4ChipsKaonMinusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ 728 // <<", N="<<tgN<<", while it is defined only for PDG=-321"<<G4endl; 729 // throw G4QException("G4ChipsKaonMinusElasticXS::GetSlope:Only K- is implemented"); 730 G4ExceptionDescription ed; 731 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 732 << ", while it is defined only for PDG=-321 (K-)" << G4endl; 733 } 734 if(theB1<0.) theB1=0.; 735 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QKaonMinusElCS::GetSlope:B1="<<theB1<<G4endl; 736 return theB1/GeVSQ; 737 } 738 739 // Returns half max(Q2=-t) in independent units (MeV^2) 740 G4double G4ChipsKaonMinusElasticXS::GetHMaxT() 741 { 742 return lastTM*HGeVSQ; 743 } 744 745 // lastLP is used, so calculating tables, one need to remember and then recover lastLP 746 G4double G4ChipsKaonMinusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ, 747 G4int tgN) 748 { 749 if(PDG!=-321)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetTV:PDG="<<PDG<<G4endl; 750 751 //AR-24Apr2018 Switch to allow transuranic elements 752 const G4bool isHeavyElementAllowed = true; 753 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92)) 754 { 755 G4cout<<"*Warning*G4QKaonMinusElasticCS::GetTabV:(1-92)NoIsotopes for Z="<<tgZ<<G4endl; 756 return 0.; 757 } 758 G4int iZ=tgZ-1; // Z index 759 if(iZ<0) 760 { 761 iZ=0; // conversion of the neutron target to the proton target 762 tgZ=1; 763 tgN=0; 764 } 765 G4double p=std::exp(lp); // momentum 766 G4double sp=std::sqrt(p); // sqrt(p) 767 G4double psp=p*sp; // p*sqrt(p) 768 G4double p2=p*p; 769 G4double p3=p2*p; 770 G4double p4=p3*p; 771 if ( tgZ == 1 && tgN == 0 ) // KaonMinus+P 772 { 773 G4double dl2=lp-lastPAR[12]; 774 theSS=lastPAR[35]; 775 theS1=(lastPAR[13]+lastPAR[14]*dl2*dl2)/(1.+lastPAR[15]/p4/p)+ 776 (lastPAR[16]/p2+lastPAR[17]*p)/(p4+lastPAR[18]*sp); 777 theB1=lastPAR[19]*std::pow(p,lastPAR[20])/(1.+lastPAR[21]/p3); 778 theS2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]*p); 779 theB2=lastPAR[25]+lastPAR[26]/(p4+lastPAR[27]/sp); 780 theS3=lastPAR[28]+lastPAR[29]/(p4*p4+lastPAR[30]*p2+lastPAR[31]); 781 theB3=lastPAR[32]+lastPAR[33]/(p4+lastPAR[34]); 782 theS4=0.; 783 theB4=0.; 784 // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG) 785 G4double dp=lp-lastPAR[2]; 786 return lastPAR[0]/psp+(lastPAR[1]*dp*dp+lastPAR[3])/(1.-lastPAR[4]/sp+lastPAR[5]/p4)+ 787 lastPAR[6]/(sqr(p-lastPAR[7])+lastPAR[8])+lastPAR[9]/(sqr(p-lastPAR[10])+lastPAR[11]); 788 } 789 else 790 { 791 G4double p5=p4*p; 792 G4double p6=p5*p; 793 G4double p8=p6*p2; 794 G4double p10=p8*p2; 795 G4double p12=p10*p2; 796 G4double p16=p8*p8; 797 //G4double p24=p16*p8; 798 G4double dl=lp-5.; 799 G4double a=tgZ+tgN; 800 G4double pah=std::pow(p,a/2); 801 G4double pa=pah*pah; 802 G4double pa2=pa*pa; 803 if(a<6.5) 804 { 805 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+ 806 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2); 807 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19]; 808 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16); 809 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26]; 810 theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16); 811 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33]; 812 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2); 813 theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+ 814 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42]))); 815 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]); 816 } 817 else 818 { 819 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+ 820 lastPAR[13]/(p5+lastPAR[14]/p16); 821 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+ 822 lastPAR[17]/(1.+lastPAR[18]/p4); 823 theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4); 824 theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27]; 825 theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]); 826 theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+ 827 lastPAR[33]/(1.+lastPAR[34]/p6); 828 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8); 829 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+ 830 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12); 831 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5); 832 } 833 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG) 834 G4double dlp=lp-lastPAR[4]; // ax 835 // p1 p2 p3 p4 836 return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p3)/(1.+lastPAR[3]/p2/sp); 837 } 838 return 0.; 839 } // End of GetTableValues 840 841 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ) 842 G4double G4ChipsKaonMinusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN, 843 G4double pP) 844 { 845 G4double pP2=pP*pP; // squared momentum of the projectile 846 if(tgZ || tgN>-1) // ---> pipA 847 { 848 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV 849 850 G4double dmt=mt+mt; 851 G4double mds=dmt*std::sqrt(pP2+mK2)+mK2+mt*mt; // Mondelstam mds 852 return dmt*dmt*pP2/mds; 853 } 854 else 855 { 856 G4ExceptionDescription ed; 857 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 858 << ", while it is defined only for p projectiles & Z_target>0" << G4endl; 859 G4Exception("G4ChipsKaonMinusElasticXS::GetQ2max()", "HAD_CHPS_0000", 860 FatalException, ed); 861 return 0; 862 } 863 } 864