Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsKaonMinusElasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 //
 28 //
 29 // G4 Physics class: G4ChipsKaonMinusElasticXS for pA elastic cross sections
 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
 31 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
 32 //
 33 // -------------------------------------------------------------------------------
 34 // Short description: Interaction cross-sections for the elastic process. 
 35 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
 36 // -------------------------------------------------------------------------------
 37 //
 38 
 39 #include "G4ChipsKaonMinusElasticXS.hh"
 40 #include "G4SystemOfUnits.hh"
 41 #include "G4DynamicParticle.hh"
 42 #include "G4ParticleDefinition.hh"
 43 #include "G4KaonMinus.hh"
 44 #include "G4Nucleus.hh"
 45 #include "G4ParticleTable.hh"
 46 #include "G4NucleiProperties.hh"
 47 #include "G4IonTable.hh"
 48 #include "G4AutoLock.hh"
 49 
 50 // factory
 51 #include "G4CrossSectionFactory.hh"
 52 //
 53 G4_DECLARE_XS_FACTORY(G4ChipsKaonMinusElasticXS);
 54 
 55 
 56 namespace {
 57     G4double mK;//= G4KaonMinus::KaonMinus()->GetPDGMass()*.001; // MeV to GeV//Cannot initialize here, needs particles
 58     G4double mK2;//= mK*mK;
 59     G4Mutex initM = G4MUTEX_INITIALIZER;
 60     const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
 61     const G4double third=1./3.;
 62     const G4double fifth=1./5.;
 63     const G4double sevth=1./7.;
 64     const G4double pwd=2727;
 65     const G4int n_kmpel=36;                // #of parameters for pp-elastic ( < nPoints=128)
 66     //                        -0-   -1- -2-  -3- -4- -5-  -6- -7-   -8-   -9--10- -11--12-
 67     const G4double kmp_el[n_kmpel]={5.2,.0557,3.5,2.23,.7,.075,.004,.39,.000156,.15,1.,.0156,5.,
 68         74.,3.,3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,
 69         1.2e6,3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
 70     //                        -13-14--15-16--17--18--19- -20- -21- -22-  -23- -24- -25-
 71     //                        -26-  -27-   -28-  -29-  -30- -31-  -32- -33- -34- -35-
 72     const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
 73 }
 74 
 75 G4ChipsKaonMinusElasticXS::G4ChipsKaonMinusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
 76 {
 77   G4AutoLock l(&initM);
 78   mK = G4KaonMinus::KaonMinus()->GetPDGMass()*.001;
 79   mK2 = mK*mK;
 80   l.unlock();
 81   lPMin=-8.;  //Min tabulatedLogarithmMomentum/D
 82   lPMax= 8.;  //Max tabulatedLogarithmMomentum/D
 83   dlnP=(lPMax-lPMin)/nLast;// LogStep inTable /D
 84   onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)/L
 85   lastSIG=0.; //Last calculated cross section /L
 86   lastLP=-10.;//LastLog(mom_of IncidentHadron)/L
 87   lastTM=0.; //Last t_maximum                /L
 88   theSS=0.;  //TheLastSqSlope of 1st difr.Max/L
 89   theS1=0.;  //TheLastMantissa of 1st difrMax/L
 90   theB1=0.;  //TheLastSlope of 1st difructMax/L
 91   theS2=0.;  //TheLastMantissa of 2nd difrMax/L
 92   theB2=0.;  //TheLastSlope of 2nd difructMax/L
 93   theS3=0.;  //TheLastMantissa of 3d difr.Max/L
 94   theB3=0.;  //TheLastSlope of 3d difruct.Max/L
 95   theS4=0.;  //TheLastMantissa of 4th difrMax/L
 96   theB4=0.;  //TheLastSlope of 4th difructMax/L
 97   lastTZ=0;  // Last atomic number of theTarget
 98   lastTN=0;  // Last # of neutrons in theTarget
 99   lastPIN=0.;// Last initialized max momentum
100   lastCST=0; // Elastic cross-section table
101   lastPAR=0; // ParametersForFunctionCalculation
102   lastSST=0; // E-dep ofSqardSlope of 1st difMax
103   lastS1T=0; // E-dep of mantissa of 1st dif.Max
104   lastB1T=0; // E-dep of the slope of 1st difMax
105   lastS2T=0; // E-dep of mantissa of 2nd difrMax
106   lastB2T=0; // E-dep of the slope of 2nd difMax
107   lastS3T=0; // E-dep of mantissa of 3d difr.Max
108   lastB3T=0; // E-dep of the slope of 3d difrMax
109   lastS4T=0; // E-dep of mantissa of 4th difrMax
110   lastB4T=0; // E-dep of the slope of 4th difMax
111   lastN=0;   // The last N of calculated nucleus
112   lastZ=0;   // The last Z of calculated nucleus
113   lastP=0.;  // LastUsed inCrossSection Momentum
114   lastTH=0.; // Last threshold momentum
115   lastCS=0.; // Last value of the Cross Section
116   lastI=0;   // The last position in the DAMDB
117 }
118 
119 G4ChipsKaonMinusElasticXS::~G4ChipsKaonMinusElasticXS()
120 {
121   std::vector<G4double*>::iterator pos;
122   for (pos=CST.begin(); pos<CST.end(); pos++)
123   { delete [] *pos; }
124   CST.clear();
125   for (pos=PAR.begin(); pos<PAR.end(); pos++)
126   { delete [] *pos; }
127   PAR.clear();
128   for (pos=SST.begin(); pos<SST.end(); pos++)
129   { delete [] *pos; }
130   SST.clear();
131   for (pos=S1T.begin(); pos<S1T.end(); pos++)
132   { delete [] *pos; }
133   S1T.clear();
134   for (pos=B1T.begin(); pos<B1T.end(); pos++)
135   { delete [] *pos; }
136   B1T.clear();
137   for (pos=S2T.begin(); pos<S2T.end(); pos++)
138   { delete [] *pos; }
139   S2T.clear();
140   for (pos=B2T.begin(); pos<B2T.end(); pos++)
141   { delete [] *pos; }
142   B2T.clear();
143   for (pos=S3T.begin(); pos<S3T.end(); pos++)
144   { delete [] *pos; }
145   S3T.clear();
146   for (pos=B3T.begin(); pos<B3T.end(); pos++)
147   { delete [] *pos; }
148   B3T.clear();
149   for (pos=S4T.begin(); pos<S4T.end(); pos++)
150   { delete [] *pos; }
151   S4T.clear();
152   for (pos=B4T.begin(); pos<B4T.end(); pos++)
153   { delete [] *pos; }
154   B4T.clear();
155 }
156 
157 void
158 G4ChipsKaonMinusElasticXS::CrossSectionDescription(std::ostream& outFile) const
159 {
160     outFile << "G4ChipsKaonMinusElasticXS provides the elastic cross\n"
161             << "section for K- nucleus scattering as a function of incident\n"
162             << "momentum. The cross section is calculated using M. Kossov's\n"
163             << "CHIPS parameterization of cross section data.\n";
164 }
165 
166 G4bool G4ChipsKaonMinusElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int,    
167              const G4Element*,
168              const G4Material*)
169 {
170   return true;
171 }
172 
173 // The main member function giving the collision cross section (P is in IU, CS is in mb)
174 // Make pMom in independent units ! (Now it is MeV)
175 G4double G4ChipsKaonMinusElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
176               const G4Isotope*,
177               const G4Element*,
178               const G4Material*)
179 {
180   G4double pMom=Pt->GetTotalMomentum();
181   G4int tgN = A - tgZ;
182   
183   return GetChipsCrossSection(pMom, tgZ, tgN, -321);
184 }
185 
186 G4double G4ChipsKaonMinusElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int)
187 {
188 
189   G4bool fCS = false;
190 
191   G4double pEn=pMom;
192   onlyCS=fCS;
193 
194   G4bool in=false;                   // By default the isotope must be found in the AMDB
195   lastP   = 0.;                      // New momentum history (nothing to compare with)
196   lastN   = tgN;                     // The last N of the calculated nucleus
197   lastZ   = tgZ;                     // The last Z of the calculated nucleus
198   lastI   = (G4int)colN.size();      // Size of the Associative Memory DB in the heap
199   if(lastI) for(G4int i=0; i<lastI; ++i) // Loop over proj/tgZ/tgN lines of DB
200   {                                  // The nucleus with projPDG is found in AMDB
201     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
202     {
203       lastI=i;
204       lastTH =colTH[i];              // Last THreshold (A-dependent)
205       if(pEn<=lastTH)
206       {
207         return 0.;                   // Energy is below the Threshold value
208       }
209       lastP  =colP [i];              // Last Momentum  (A-dependent)
210       lastCS =colCS[i];              // Last CrossSect (A-dependent)
211       //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
212       if(lastP == pMom)              // Do not recalculate
213       {
214         CalculateCrossSection(fCS,-1,i,-321,lastZ,lastN,pMom); // Update param's only
215         return lastCS*millibarn;     // Use theLastCS
216       }
217       in = true;                       // This is the case when the isotop is found in DB
218       // Momentum pMom is in IU ! @@ Units
219       lastCS=CalculateCrossSection(fCS,-1,i,-321,lastZ,lastN,pMom); // read & update
220       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
221       {
222         lastTH=pEn;
223       }
224       break;                           // Go out of the LOOP with found lastI
225     }
226   } // End of attampt to find the nucleus in DB
227   if(!in)                            // This nucleus has not been calculated previously
228   {
229     //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
230     lastCS=CalculateCrossSection(fCS,0,lastI,-321,lastZ,lastN,pMom);//calculate&create
231     if(lastCS<=0.)
232     {
233       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
234       if(pEn>lastTH)
235       {
236         lastTH=pEn;
237       }
238     }
239     colN.push_back(tgN);
240     colZ.push_back(tgZ);
241     colP.push_back(pMom);
242     colTH.push_back(lastTH);
243     colCS.push_back(lastCS);
244     return lastCS*millibarn;
245   } // End of creation of the new set of parameters
246   else
247   {
248     colP[lastI]=pMom;
249     colCS[lastI]=lastCS;
250   }
251   return lastCS*millibarn;
252 }
253 
254 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
255 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
256 G4double G4ChipsKaonMinusElasticXS::CalculateCrossSection(G4bool CS, G4int F,
257                                     G4int I, G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
258 {
259   G4double pMom=pIU/GeV;                // All calculations are in GeV
260   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
261   lastLP=std::log(pMom);                // Make a logarithm of the momentum for calculation
262   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
263   {
264     if(F<0)                             // the AMDB must be loded
265     {
266       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
267       lastPAR = PAR[I];                 // Pointer to the parameter set
268       lastCST = CST[I];                 // Pointer to the total sross-section table
269       lastSST = SST[I];                 // Pointer to the first squared slope
270       lastS1T = S1T[I];                 // Pointer to the first mantissa
271       lastB1T = B1T[I];                 // Pointer to the first slope
272       lastS2T = S2T[I];                 // Pointer to the second mantissa
273       lastB2T = B2T[I];                 // Pointer to the second slope
274       lastS3T = S3T[I];                 // Pointer to the third mantissa
275       lastB3T = B3T[I];                 // Pointer to the rhird slope
276       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
277       lastB4T = B4T[I];                 // Pointer to the 4-th slope
278     }
279     if(lastLP>lastPIN && lastLP<lPMax)
280     {
281       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
282       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
283     }
284   }
285   else                                  // This isotope wasn't initialized => CREATE
286   {
287     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
288     lastPAR[nLast]=0;                   // Initialization for VALGRIND
289     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
290     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
291     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
292     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
293     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
294     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
295     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
296     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
297     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
298     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
299     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
300     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
301     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
302     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
303     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
304     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
305     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
306     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
307     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
308     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
309     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
310     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
311     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
312   } // End of creation/update of the new set of parameters and tables
313   // =----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
314   if(lastLP>lastPIN && lastLP<lPMax)
315   {
316     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
317   }
318   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
319   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
320   {
321     if(lastLP==lastPIN)
322     {
323       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
324       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
325       if(blast<0 || blast>=nLast) G4cout<<"G4QKMElCS::CCS:b="<<blast<<",n="<<nLast<<G4endl;
326       lastSIG = lastCST[blast];
327       if(!onlyCS)                       // Skip the differential cross-section parameters
328       {
329         theSS  = lastSST[blast];
330         theS1  = lastS1T[blast];
331         theB1  = lastB1T[blast];
332         theS2  = lastS2T[blast];
333         theB2  = lastB2T[blast];
334         theS3  = lastS3T[blast];
335         theB3  = lastB3T[blast];
336         theS4  = lastS4T[blast];
337         theB4  = lastB4T[blast];
338       }
339     }
340     else
341     {
342       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
343       G4int    blast=static_cast<int>(shift);    // the lower bin number
344       if(blast<0)   blast=0;
345       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
346       shift-=blast;                              // step inside the unit bin
347       G4int lastL=blast+1;                       // the upper bin number
348       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
349       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
350       if(!onlyCS)                       // Skip the differential cross-section parameters
351       {
352         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
353         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
354         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
355         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
356         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
357         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
358         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
359         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
360         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
361         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
362         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
363         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
364         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
365         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
366         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
367         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
368         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
369         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
370       }
371     }
372   }
373   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
374   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
375   return lastSIG;
376 }
377 
378 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
379 G4double G4ChipsKaonMinusElasticXS::GetPTables(G4double LP,G4double ILP, G4int PDG,
380                                                        G4int tgZ, G4int tgN)
381 {
382   // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
383   if(PDG == -321)
384   {
385     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
386     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
387     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
388     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
389     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
390     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
391     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
392     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
393     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
394     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
395     //
396     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
397     {
398       if ( tgZ == 1 && tgN == 0 )
399       {
400         for (G4int ip=0; ip<n_kmpel; ip++) lastPAR[ip]=kmp_el[ip]; // PiMinus+P
401       }
402       else
403       {
404         G4double a=tgZ+tgN;
405         G4double sa=std::sqrt(a);
406         G4double ssa=std::sqrt(sa);
407         G4double asa=a*sa;
408         G4double a2=a*a;
409         G4double a3=a2*a;
410         G4double a4=a3*a;
411         G4double a5=a4*a;
412         G4double a6=a4*a2;
413         G4double a7=a6*a;
414         G4double a8=a7*a;
415         G4double a9=a8*a;
416         G4double a10=a5*a5;
417         G4double a12=a6*a6;
418         G4double a14=a7*a7;
419         G4double a16=a8*a8;
420         G4double a17=a16*a;
421         //G4double a20=a16*a4;
422         G4double a32=a16*a16;
423         // Reaction cross-section parameters (kmael_fit.f)
424         lastPAR[0]=.06*asa/(1.+a*(.01+.1/ssa));                              // p1
425         lastPAR[1]=.75*asa/(1.+.009*a);                                      // p2
426         lastPAR[2]=.1*a2*ssa/(1.+.0015*a2/ssa);                              // p3
427         lastPAR[3]=1./(1.+500./a2);                                          // p4
428         lastPAR[4]=4.2;                                                      // p5
429         lastPAR[5]=0.;                                                       // p6 not used
430         lastPAR[6]=0.;                                                       // p7 not used
431         lastPAR[7]=0.;                                                       // p8 not used
432         lastPAR[8]=0.;                                                       // p9 not used
433         // @@ the differential cross-section is parameterized separately for A>6 & A<7
434         if(a<6.5)
435         {
436           G4double a28=a16*a12;
437           // The main pre-exponent      (pel_sg)
438           lastPAR[ 9]=4000*a;                                // p1
439           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
440           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
441           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
442           lastPAR[13]=.28*a;                                 // p5
443           lastPAR[14]=1.2*a2+2.3;                            // p6
444           lastPAR[15]=3.8/a;                                 // p7
445           // The main slope             (pel_sl)
446           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
447           lastPAR[17]=.2*a;                                  // p2
448           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
449           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
450           // The main quadratic         (pel_sh)
451           lastPAR[20]=2.25*a3;                               // p1
452           lastPAR[21]=18.;                                   // p2
453           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
454           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
455           // The 1st max pre-exponent   (pel_qq)
456           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
457           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
458           lastPAR[26]=.0006*a3;                              // p3
459           // The 1st max slope          (pel_qs)
460           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
461           lastPAR[28]=.114;                                  // p2
462           lastPAR[29]=.003;                                  // p3
463           lastPAR[30]=2.e-23;                                // p4
464           // The effective pre-exponent (pel_ss)
465           lastPAR[31]=1./(1.+.0001*a8);                      // p1
466           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
467           lastPAR[33]=.03;                                   // p3
468           // The effective slope        (pel_sb)
469           lastPAR[34]=a/2;                                   // p1
470           lastPAR[35]=2.e-7*a4;                              // p2
471           lastPAR[36]=4.;                                    // p3
472           lastPAR[37]=64./a3;                                // p4
473           // The gloria pre-exponent    (pel_us)
474           lastPAR[38]=1.e8*std::exp(.32*asa);                // p1
475           lastPAR[39]=20.*std::exp(.45*asa);                 // p2
476           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
477           lastPAR[41]=2.5e5*std::exp(.085*a3);               // p4
478           lastPAR[42]=2.5*a;                                 // p5
479           // The gloria slope           (pel_ub)
480           lastPAR[43]=920.+.03*a8*a3;                        // p1
481           lastPAR[44]=93.+.0023*a12;                         // p2
482         }
483         else
484         {
485           G4double p1a10=2.2e-28*a10;
486           G4double r4a16=6.e14/a16;
487           G4double s4a16=r4a16*r4a16;
488           // a24
489           // a36
490           // The main pre-exponent      (peh_sg)
491           lastPAR[ 9]=4.5*std::pow(a,1.15);                  // p1
492           lastPAR[10]=.06*std::pow(a,.6);                    // p2
493           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
494           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
495           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
496           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
497           // The main slope             (peh_sl)
498           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
499           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
500           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
501           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
502           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
503           lastPAR[20]=9.+100./a;                             // p6
504           // The main quadratic         (peh_sh)
505           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
506           lastPAR[22]=7.e-15*a4*asa;                         // p2
507           lastPAR[23]=9000./a4;                              // p3
508           // The 1st max pre-exponent   (peh_qq)
509           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
510           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
511           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
512           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
513           // The 1st max slope          (peh_qs)
514           lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
515           lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11);           // p2
516           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
517           lastPAR[31]=100./asa;                              // p4
518           // The 2nd max pre-exponent   (peh_ss)
519           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
520           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
521           lastPAR[34]=1.3+3.e5/a4;                           // p3
522           lastPAR[35]=500./(a2+50.)+3;                       // p4
523           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
524           // The 2nd max slope          (peh_sb)
525           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
526           lastPAR[38]=.0005*a5;                              // p2
527           lastPAR[39]=.002*a5;                               // p3
528           lastPAR[40]=10.;                                   // p4
529           // The effective pre-exponent (peh_us)
530           lastPAR[41]=.05+.005*a;                            // p1
531           lastPAR[42]=7.e-8/sa;                              // p2
532           lastPAR[43]=.8*sa;                                 // p3
533           lastPAR[44]=.02*sa;                                // p4
534           lastPAR[45]=1.e8/a3;                               // p5
535           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
536           // The effective slope        (peh_ub)
537           lastPAR[47]=24.;                                   // p1
538           lastPAR[48]=20./sa;                                // p2
539           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
540           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
541         }
542         // Parameter for lowEnergyNeutrons
543         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
544       }
545       lastPAR[nLast]=pwd;
546       // and initialize the zero element of the table
547       G4double lp=lPMin;                                      // ln(momentum)
548       G4bool memCS=onlyCS;                                    // ??
549       onlyCS=false;
550       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
551       onlyCS=memCS;
552       lastSST[0]=theSS;
553       lastS1T[0]=theS1;
554       lastB1T[0]=theB1;
555       lastS2T[0]=theS2;
556       lastB2T[0]=theB2;
557       lastS3T[0]=theS3;
558       lastB3T[0]=theB3;
559       lastS4T[0]=theS4;
560       lastB4T[0]=theB4;
561     }
562     if(LP>ILP)
563     {
564       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
565       if(ini<0) ini=0;
566       if(ini<nPoints)
567       {
568         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
569         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
570         if(fin>=ini)
571         {
572           G4double lp=0.;
573           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
574           {
575             lp=lPMin+ip*dlnP;                     // ln(momentum)
576             G4bool memCS=onlyCS;
577             onlyCS=false;
578             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
579             onlyCS=memCS;
580             lastSST[ip]=theSS;
581             lastS1T[ip]=theS1;
582             lastB1T[ip]=theB1;
583             lastS2T[ip]=theS2;
584             lastB2T[ip]=theB2;
585             lastS3T[ip]=theS3;
586             lastB3T[ip]=theB3;
587             lastS4T[ip]=theS4;
588             lastB4T[ip]=theB4;
589           }
590           return lp;
591         }
592         else G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG
593                    <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
594                    <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
595       }
596       else G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG
597                  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
598                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
599     }
600   }
601   else
602   {
603     // G4cout<<"*Error*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
604     //       <<", N="<<tgN<<", while it is defined only for PDG=-321"<<G4endl;
605     // throw G4QException("G4ChipsKaonMinusElasticXS::GetPTables:onlyK-'s implemented");
606     G4ExceptionDescription ed;
607     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
608        << ", while it is defined only for PDG=-321 (K-) " << G4endl;
609     G4Exception("G4ChipsKaonMinusElasticXS::GetPTables()", "HAD_CHPS_0000",
610                 FatalException, ed);
611   }
612   return ILP;
613 }
614 
615 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
616 G4double G4ChipsKaonMinusElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
617 {
618   if(PDG==310 || PDG==130) PDG=-321;
619   if(PDG!=-321)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetET:PDG="<<PDG<<G4endl;
620   if(onlyCS) G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetExT: onlyCS=1"<<G4endl;
621   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
622   G4double q2=0.;
623   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
624   {
625     G4double E1=lastTM*theB1;
626     G4double R1=(1.-std::exp(-E1));
627     G4double E2=lastTM*theB2;
628     G4double R2=(1.-std::exp(-E2*E2*E2));
629     G4double E3=lastTM*theB3;
630     G4double R3=(1.-std::exp(-E3));
631     G4double I1=R1*theS1/theB1;
632     G4double I2=R2*theS2;
633     G4double I3=R3*theS3;
634     G4double I12=I1+I2;
635     G4double rand=(I12+I3)*G4UniformRand();
636     if     (rand<I1 )
637     {
638       G4double ran=R1*G4UniformRand();
639       if(ran>1.) ran=1.;
640       q2=-std::log(1.-ran)/theB1;
641     }
642     else if(rand<I12)
643     {
644       G4double ran=R2*G4UniformRand();
645       if(ran>1.) ran=1.;
646       q2=-std::log(1.-ran);
647       if(q2<0.) q2=0.;
648       q2=std::pow(q2,third)/theB2;
649     }
650     else
651     {
652       G4double ran=R3*G4UniformRand();
653       if(ran>1.) ran=1.;
654       q2=-std::log(1.-ran)/theB3;
655     }
656   }
657   else
658   {
659     G4double a=tgZ+tgN;
660     G4double E1=lastTM*(theB1+lastTM*theSS);
661     G4double R1=(1.-std::exp(-E1));
662     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
663     G4double tm2=lastTM*lastTM;
664     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
665     if(a>6.5)E2*=tm2;                               // for heavy nuclei
666     G4double R2=(1.-std::exp(-E2));
667     G4double E3=lastTM*theB3;
668     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
669     G4double R3=(1.-std::exp(-E3));
670     G4double E4=lastTM*theB4;
671     G4double R4=(1.-std::exp(-E4));
672     G4double I1=R1*theS1;
673     G4double I2=R2*theS2;
674     G4double I3=R3*theS3;
675     G4double I4=R4*theS4;
676     G4double I12=I1+I2;
677     G4double I13=I12+I3;
678     G4double rand=(I13+I4)*G4UniformRand();
679     if(rand<I1)
680     {
681       G4double ran=R1*G4UniformRand();
682       if(ran>1.) ran=1.;
683       q2=-std::log(1.-ran)/theB1;
684       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
685     }
686     else if(rand<I12)
687     {
688       G4double ran=R2*G4UniformRand();
689       if(ran>1.) ran=1.;
690       q2=-std::log(1.-ran)/theB2;
691       if(q2<0.) q2=0.;
692       if(a<6.5) q2=std::pow(q2,third);
693       else      q2=std::pow(q2,fifth);
694     }
695     else if(rand<I13)
696     {
697       G4double ran=R3*G4UniformRand();
698       if(ran>1.) ran=1.;
699       q2=-std::log(1.-ran)/theB3;
700       if(q2<0.) q2=0.;
701       if(a>6.5) q2=std::pow(q2,sevth);
702     }
703     else
704     {
705       G4double ran=R4*G4UniformRand();
706       if(ran>1.) ran=1.;
707       q2=-std::log(1.-ran)/theB4;
708       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
709     }
710   }
711   if(q2<0.) q2=0.;
712   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QKaonMinusElasticCS::GetExchT: -t="<<q2<<G4endl;
713   if(q2>lastTM)
714   {
715     q2=lastTM;
716   }
717   return q2*GeVSQ;
718 }
719 
720 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
721 G4double G4ChipsKaonMinusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
722 {
723   if(onlyCS)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetSl:onlCS=true"<<G4endl;
724   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
725   if(PDG != -321)
726   {
727     // G4cout<<"*Error*G4ChipsKaonMinusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
728     //       <<", N="<<tgN<<", while it is defined only for PDG=-321"<<G4endl;
729     // throw G4QException("G4ChipsKaonMinusElasticXS::GetSlope:Only K- is implemented");
730     G4ExceptionDescription ed;
731     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
732        << ", while it is defined only for PDG=-321 (K-)" << G4endl;
733   }
734   if(theB1<0.) theB1=0.;
735   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QKaonMinusElCS::GetSlope:B1="<<theB1<<G4endl;
736   return theB1/GeVSQ;
737 }
738 
739 // Returns half max(Q2=-t) in independent units (MeV^2)
740 G4double G4ChipsKaonMinusElasticXS::GetHMaxT()
741 {
742   return lastTM*HGeVSQ;
743 }
744 
745 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
746 G4double G4ChipsKaonMinusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
747                                                     G4int tgN)
748 {
749   if(PDG!=-321)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetTV:PDG="<<PDG<<G4endl;
750 
751   //AR-24Apr2018 Switch to allow transuranic elements
752   const G4bool isHeavyElementAllowed = true;
753   if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
754   {
755     G4cout<<"*Warning*G4QKaonMinusElasticCS::GetTabV:(1-92)NoIsotopes for Z="<<tgZ<<G4endl;
756     return 0.;
757   }
758   G4int iZ=tgZ-1; // Z index
759   if(iZ<0)
760   {
761     iZ=0;         // conversion of the neutron target to the proton target
762     tgZ=1;
763     tgN=0;
764   }
765   G4double p=std::exp(lp);              // momentum
766   G4double sp=std::sqrt(p);             // sqrt(p)
767   G4double psp=p*sp;                    // p*sqrt(p)
768   G4double p2=p*p;            
769   G4double p3=p2*p;
770   G4double p4=p3*p;
771   if ( tgZ == 1 && tgN == 0 )           // KaonMinus+P
772   {
773     G4double dl2=lp-lastPAR[12];
774     theSS=lastPAR[35];
775     theS1=(lastPAR[13]+lastPAR[14]*dl2*dl2)/(1.+lastPAR[15]/p4/p)+
776           (lastPAR[16]/p2+lastPAR[17]*p)/(p4+lastPAR[18]*sp);
777     theB1=lastPAR[19]*std::pow(p,lastPAR[20])/(1.+lastPAR[21]/p3);
778     theS2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]*p);
779     theB2=lastPAR[25]+lastPAR[26]/(p4+lastPAR[27]/sp); 
780     theS3=lastPAR[28]+lastPAR[29]/(p4*p4+lastPAR[30]*p2+lastPAR[31]);
781     theB3=lastPAR[32]+lastPAR[33]/(p4+lastPAR[34]); 
782     theS4=0.;
783     theB4=0.; 
784     // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
785     G4double dp=lp-lastPAR[2];
786     return lastPAR[0]/psp+(lastPAR[1]*dp*dp+lastPAR[3])/(1.-lastPAR[4]/sp+lastPAR[5]/p4)+
787      lastPAR[6]/(sqr(p-lastPAR[7])+lastPAR[8])+lastPAR[9]/(sqr(p-lastPAR[10])+lastPAR[11]);
788   }
789   else
790   {
791     G4double p5=p4*p;
792     G4double p6=p5*p;
793     G4double p8=p6*p2;
794     G4double p10=p8*p2;
795     G4double p12=p10*p2;
796     G4double p16=p8*p8;
797     //G4double p24=p16*p8;
798     G4double dl=lp-5.;
799     G4double a=tgZ+tgN;
800     G4double pah=std::pow(p,a/2);
801     G4double pa=pah*pah;
802     G4double pa2=pa*pa;
803     if(a<6.5)
804     {
805       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
806             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
807       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
808       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
809       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
810       theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
811       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
812       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
813       theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
814                 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
815       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
816     }
817     else
818     {
819       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
820             lastPAR[13]/(p5+lastPAR[14]/p16);
821       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
822             lastPAR[17]/(1.+lastPAR[18]/p4);
823       theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
824       theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
825       theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
826       theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
827             lastPAR[33]/(1.+lastPAR[34]/p6);
828       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
829       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
830             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
831       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
832     }
833     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
834     G4double dlp=lp-lastPAR[4]; // ax
835     //         p1               p2          p3                 p4
836     return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p3)/(1.+lastPAR[3]/p2/sp);
837   }
838   return 0.;
839 } // End of GetTableValues
840 
841 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
842 G4double G4ChipsKaonMinusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
843                                                     G4double pP)
844 {
845   G4double pP2=pP*pP;                                 // squared momentum of the projectile
846   if(tgZ || tgN>-1)                                   // ---> pipA
847   {
848     G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
849 
850     G4double dmt=mt+mt;
851     G4double mds=dmt*std::sqrt(pP2+mK2)+mK2+mt*mt;    // Mondelstam mds
852     return dmt*dmt*pP2/mds;
853   }
854   else
855   {
856     G4ExceptionDescription ed;
857     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
858        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
859     G4Exception("G4ChipsKaonMinusElasticXS::GetQ2max()", "HAD_CHPS_0000",
860                 FatalException, ed);
861     return 0;
862   }
863 }
864