Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsHyperonElasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 //
 28 //
 29 // G4 Physics class: G4ChipsHyperonElasticXS for pA elastic cross sections
 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
 31 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
 32 //
 33 // -------------------------------------------------------------------------------
 34 // Short description: Interaction cross-sections for the elastic process. 
 35 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
 36 // -------------------------------------------------------------------------------
 37 //
 38 
 39 #include "G4ChipsHyperonElasticXS.hh"
 40 #include "G4SystemOfUnits.hh"
 41 #include "G4DynamicParticle.hh"
 42 #include "G4ParticleDefinition.hh"
 43 #include "G4Lambda.hh"
 44 #include "G4SigmaPlus.hh"
 45 #include "G4SigmaMinus.hh"
 46 #include "G4SigmaZero.hh"
 47 #include "G4XiMinus.hh"
 48 #include "G4XiZero.hh"
 49 #include "G4OmegaMinus.hh"
 50 #include "G4Nucleus.hh"
 51 #include "G4ParticleTable.hh"
 52 #include "G4NucleiProperties.hh"
 53 #include "G4IonTable.hh"
 54 #include "G4Exp.hh"
 55 #include "G4Log.hh"
 56 #include "G4Pow.hh"
 57 
 58 // factory
 59 #include "G4CrossSectionFactory.hh"
 60 //
 61 G4_DECLARE_XS_FACTORY(G4ChipsHyperonElasticXS);
 62 
 63 G4ChipsHyperonElasticXS::G4ChipsHyperonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
 64 {
 65   lPMin=-8.;  //Min tabulatedLogarithmMomentum(D)
 66   lPMax= 8.;  //Max tabulatedLogarithmMomentum(D)
 67   dlnP=(lPMax-lPMin)/nLast;// LogStep inTable (D)
 68   onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)(L)
 69   lastSIG=0.; //Last calculated cross section (L)
 70   lastLP=-10.;//LastLog(mom_of IncidentHadron)(L)
 71   lastTM=0.;  //Last t_maximum                (L)
 72   theSS=0.;   //TheLastSqSlope of 1st difr.Max(L)
 73   theS1=0.;   //TheLastMantissa of 1st difrMax(L)
 74   theB1=0.;   //TheLastSlope of 1st difructMax(L)
 75   theS2=0.;   //TheLastMantissa of 2nd difrMax(L)
 76   theB2=0.;   //TheLastSlope of 2nd difructMax(L)
 77   theS3=0.;   //TheLastMantissa of 3d difr.Max(L)
 78   theB3=0.;   //TheLastSlope of 3d difruct.Max(L)
 79   theS4=0.;   //TheLastMantissa of 4th difrMax(L)
 80   theB4=0.;   //TheLastSlope of 4th difructMax(L)
 81   lastTZ=0;   // Last atomic number of the target
 82   lastTN=0;   // Last # of neutrons in the target
 83   lastPIN=0.; // Last initialized max momentum
 84   lastCST=0;  // Elastic cross-section table
 85   lastPAR=0;  // ParametersForFunctionCalculation
 86   lastSST=0;  // E-dep ofSqardSlope of 1st difMax
 87   lastS1T=0;  // E-dep of mantissa of 1st dif.Max
 88   lastB1T=0;  // E-dep of the slope of 1st difMax
 89   lastS2T=0;  // E-dep of mantissa of 2nd difrMax
 90   lastB2T=0;  // E-dep of the slope of 2nd difMax
 91   lastS3T=0;  // E-dep of mantissa of 3d difr.Max
 92   lastB3T=0;  // E-dep of the slope of 3d difrMax
 93   lastS4T=0;  // E-dep of mantissa of 4th difrMax
 94   lastB4T=0;  // E-dep of the slope of 4th difMax
 95   lastN=0;    // The last N of calculated nucleus
 96   lastZ=0;    // The last Z of calculated nucleus
 97   lastP=0.;   // LastUsed inCrossSection Momentum
 98   lastTH=0.;  // Last threshold momentum
 99   lastCS=0.;  // Last value of the Cross Section
100   lastI=0;    // The last position in the DAMDB
101 }
102 
103 G4ChipsHyperonElasticXS::~G4ChipsHyperonElasticXS()
104 {
105   std::vector<G4double*>::iterator pos;
106   for (pos=CST.begin(); pos<CST.end(); pos++)
107   { delete [] *pos; }
108   CST.clear();
109   for (pos=PAR.begin(); pos<PAR.end(); pos++)
110   { delete [] *pos; }
111   PAR.clear();
112   for (pos=SST.begin(); pos<SST.end(); pos++)
113   { delete [] *pos; }
114   SST.clear();
115   for (pos=S1T.begin(); pos<S1T.end(); pos++)
116   { delete [] *pos; }
117   S1T.clear();
118   for (pos=B1T.begin(); pos<B1T.end(); pos++)
119   { delete [] *pos; }
120   B1T.clear();
121   for (pos=S2T.begin(); pos<S2T.end(); pos++)
122   { delete [] *pos; }
123   S2T.clear();
124   for (pos=B2T.begin(); pos<B2T.end(); pos++)
125   { delete [] *pos; }
126   B2T.clear();
127   for (pos=S3T.begin(); pos<S3T.end(); pos++)
128   { delete [] *pos; }
129   S3T.clear();
130   for (pos=B3T.begin(); pos<B3T.end(); pos++)
131   { delete [] *pos; }
132   B3T.clear();
133   for (pos=S4T.begin(); pos<S4T.end(); pos++)
134   { delete [] *pos; }
135   S4T.clear();
136   for (pos=B4T.begin(); pos<B4T.end(); pos++)
137   { delete [] *pos; }
138   B4T.clear();
139 }
140 
141 void
142 G4ChipsHyperonElasticXS::CrossSectionDescription(std::ostream& outFile) const
143 {
144     outFile << "G4ChipsHyperonElasticXS provides the elastic cross\n"
145             << "section for hyperon nucleus scattering as a function of incident\n"
146             << "momentum. The cross section is calculated using M. Kossov's\n"
147             << "CHIPS parameterization of cross section data.\n";
148 }
149 
150 G4bool G4ChipsHyperonElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int,    
151          const G4Element*,
152          const G4Material*)
153 {
154   return true;
155 }
156 
157 // The main member function giving the collision cross section (P is in IU, CS is in mb)
158 // Make pMom in independent units ! (Now it is MeV)
159 G4double G4ChipsHyperonElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
160                const G4Isotope*,
161                const G4Element*,
162                const G4Material*)
163 {
164   G4double pMom=Pt->GetTotalMomentum();
165   G4int tgN = A - tgZ;
166   G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
167   
168   return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
169 }
170 
171 G4double G4ChipsHyperonElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int pPDG)
172 {
173 
174   G4bool fCS = false;
175   G4double pEn=pMom;
176 
177   onlyCS=fCS;
178 
179   G4bool in=false;                   // By default the isotope must be found in the AMDB
180   lastP   = 0.;                      // New momentum history (nothing to compare with)
181   lastN   = tgN;                     // The last N of the calculated nucleus
182   lastZ   = tgZ;                     // The last Z of the calculated nucleus
183   lastI   = (G4int)colN.size();      // Size of the Associative Memory DB in the heap
184   if(lastI) for(G4int i=0; i<lastI; ++i) // Loop over proj/tgZ/tgN lines of DB
185   {                                  // The nucleus with projPDG is found in AMDB
186     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
187     {
188       lastI=i;
189       lastTH =colTH[i];              // Last THreshold (A-dependent)
190       if(pEn<=lastTH)
191       {
192         return 0.;                   // Energy is below the Threshold value
193       }
194       lastP  =colP [i];              // Last Momentum  (A-dependent)
195       lastCS =colCS[i];              // Last CrossSect (A-dependent)
196       //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
197       if(lastP == pMom)              // Do not recalculate
198       {
199         CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
200         return lastCS*millibarn;     // Use theLastCS
201       }
202       in = true;                       // This is the case when the isotop is found in DB
203       // Momentum pMom is in IU ! @@ Units
204       lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
205       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
206       {
207         lastTH=pEn;
208       }
209       break;                           // Go out of the LOOP with found lastI
210     }
211   } // End of attampt to find the nucleus in DB
212   if(!in)                            // This nucleus has not been calculated previously
213   {
214     //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
215     lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
216     if(lastCS<=0.)
217     {
218       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
219       if(pEn>lastTH)
220       {
221         lastTH=pEn;
222       }
223     }
224     colN.push_back(tgN);
225     colZ.push_back(tgZ);
226     colP.push_back(pMom);
227     colTH.push_back(lastTH);
228     colCS.push_back(lastCS);
229     return lastCS*millibarn;
230   } // End of creation of the new set of parameters
231   else
232   {
233     colP[lastI]=pMom;
234     colCS[lastI]=lastCS;
235   }
236   return lastCS*millibarn;
237 }
238 
239 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
240 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
241 G4double G4ChipsHyperonElasticXS::CalculateCrossSection(G4bool CS,G4int F,G4int I,
242                                              G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
243 {
244   G4double pMom=pIU/GeV;                // All calculations are in GeV
245   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
246   lastLP=G4Log(pMom);                // Make a logarithm of the momentum for calculation
247   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
248   {
249     if(F<0)                             // the AMDB must be loded
250     {
251       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
252       lastPAR = PAR[I];                 // Pointer to the parameter set
253 
254       lastCST = CST[I];                 // Pointer to the total sross-section table
255       lastSST = SST[I];                 // Pointer to the first squared slope
256       lastS1T = S1T[I];                 // Pointer to the first mantissa
257       lastB1T = B1T[I];                 // Pointer to the first slope
258       lastS2T = S2T[I];                 // Pointer to the second mantissa
259       lastB2T = B2T[I];                 // Pointer to the second slope
260       lastS3T = S3T[I];                 // Pointer to the third mantissa
261       lastB3T = B3T[I];                 // Pointer to the rhird slope
262       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
263       lastB4T = B4T[I];                 // Pointer to the 4-th slope
264     }
265     if(lastLP>lastPIN && lastLP<lPMax)
266     {
267       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
268       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
269     }
270   }
271   else                                  // This isotope wasn't initialized => CREATE
272   {
273     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
274     lastPAR[nLast]=0;                   // Initialization for VALGRIND
275     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
276     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
277     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
278     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
279     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
280     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
281     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
282     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
283     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
284     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
285     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
286     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
287     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
288     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
289     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
290     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
291     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
292     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
293     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
294     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
295     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
296     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
297     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
298   } // End of creation/update of the new set of parameters and tables
299   // =-----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
300   if(lastLP>lastPIN && lastLP<lPMax)
301   {
302     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
303   }
304   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
305   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
306   {
307     if(lastLP==lastPIN)
308     {
309       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
310       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
311       if(blast<0 || blast>=nLast)G4cout<<"G4QHyperElCS::CCS:b="<<blast<<","<<nLast<<G4endl;
312       lastSIG = lastCST[blast];
313       if(!onlyCS)                       // Skip the differential cross-section parameters
314       {
315         theSS  = lastSST[blast];
316         theS1  = lastS1T[blast];
317         theB1  = lastB1T[blast];
318         theS2  = lastS2T[blast];
319         theB2  = lastB2T[blast];
320         theS3  = lastS3T[blast];
321         theB3  = lastB3T[blast];
322         theS4  = lastS4T[blast];
323         theB4  = lastB4T[blast];
324       }
325     }
326     else
327     {
328       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
329       G4int    blast=static_cast<int>(shift);    // the lower bin number
330       if(blast<0)   blast=0;
331       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
332       shift-=blast;                              // step inside the unit bin
333       G4int lastL=blast+1;                       // the upper bin number
334       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
335       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
336       if(!onlyCS)                       // Skip the differential cross-section parameters
337       {
338         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
339         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
340         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
341         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
342         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
343         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
344         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
345         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
346         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
347         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
348         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
349         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
350         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
351         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
352         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
353         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
354         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
355         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
356       }
357     }
358   }
359   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
360   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
361   return lastSIG;
362 }
363 
364 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
365 G4double G4ChipsHyperonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
366                                                   G4int tgZ, G4int tgN)
367 {
368   // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
369   static const G4double pwd=2727;
370   const G4int n_hypel=33;                // #of parameters for pp-elastic (<nPoints=128)
371   //                        -0- -1- -2-  -3-  -4- -5-  -6--7--8--9--10--11--12-13--14-
372   G4double hyp_el[n_hypel]={1.,.002,.12,.0557,3.5,6.72,99.,2.,3.,5.,74.,3.,3.4,.2,.17,
373                             .001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,
374                             1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
375   //                        -15--16- -17- -18- -19-  -20- -21- -22- -23-  -24-   -25-
376   //                         -26-  -27- -28-  -29- -30- -31- -32-
377   //AR-04Jun2014  if(PDG!=3222 && PDG>3000 && PDG<3335)
378   if(PDG>3000 && PDG<3335)
379   {
380     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
381     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
382     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
383     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
384     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
385     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
386     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
387     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
388     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
389     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
390     //
391     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
392     {
393       if ( tgZ == 1 && tgN == 0 )
394       {
395         for (G4int ip=0; ip<n_hypel; ip++) lastPAR[ip]=hyp_el[ip]; // Hyperon+P
396       }
397       else
398       {
399         G4double a=tgZ+tgN;
400         G4double sa=std::sqrt(a);
401         G4double ssa=std::sqrt(sa);
402         G4double asa=a*sa;
403         G4double a2=a*a;
404         G4double a3=a2*a;
405         G4double a4=a3*a;
406         G4double a5=a4*a;
407         G4double a6=a4*a2;
408         G4double a7=a6*a;
409         G4double a8=a7*a;
410         G4double a9=a8*a;
411         G4double a10=a5*a5;
412         G4double a12=a6*a6;
413         G4double a14=a7*a7;
414         G4double a16=a8*a8;
415         G4double a17=a16*a;
416         //G4double a20=a16*a4;
417         G4double a32=a16*a16;
418         // Reaction cross-section parameters (pel=peh_fit.f)
419         lastPAR[0]=4./(1.+22/asa);                                           // p1
420         lastPAR[1]=2.36*asa/(1.+a*.055/ssa);                                 // p2
421         lastPAR[2]=(1.+.00007*a3/ssa)/(1.+.0026*a2);                         // p3
422         lastPAR[3]=1.76*a/ssa+.00003*a3;                                     // p4
423         lastPAR[4]=(.03+200./a3)/(1.+1.E5/a3/sa);                            // p5
424         lastPAR[5]=5.;                                                       // p6
425         lastPAR[6]=0.;                                                       // p7 not used
426         lastPAR[7]=0.;                                                       // p8 not used
427         lastPAR[8]=0.;                                                       // p9 not used
428         // @@ the differential cross-section is parameterized separately for A>6 & A<7
429         if(a<6.5)
430         {
431           G4double a28=a16*a12;
432           // The main pre-exponent      (pel_sg)
433           lastPAR[ 9]=4000*a;                                // p1
434           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
435           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
436           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
437           lastPAR[13]=.28*a;                                 // p5
438           lastPAR[14]=1.2*a2+2.3;                            // p6
439           lastPAR[15]=3.8/a;                                 // p7
440           // The main slope             (pel_sl)
441           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
442           lastPAR[17]=.2*a;                                  // p2
443           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
444           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
445           // The main quadratic         (pel_sh)
446           lastPAR[20]=2.25*a3;                               // p1
447           lastPAR[21]=18.;                                   // p2
448           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
449           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
450           // The 1st max pre-exponent   (pel_qq)
451           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
452           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
453           lastPAR[26]=.0006*a3;                              // p3
454           // The 1st max slope          (pel_qs)
455           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
456           lastPAR[28]=.114;                                  // p2
457           lastPAR[29]=.003;                                  // p3
458           lastPAR[30]=2.e-23;                                // p4
459           // The effective pre-exponent (pel_ss)
460           lastPAR[31]=1./(1.+.0001*a8);                      // p1
461           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
462           lastPAR[33]=.03;                                   // p3
463           // The effective slope        (pel_sb)
464           lastPAR[34]=a/2;                                   // p1
465           lastPAR[35]=2.e-7*a4;                              // p2
466           lastPAR[36]=4.;                                    // p3
467           lastPAR[37]=64./a3;                                // p4
468           // The gloria pre-exponent    (pel_us)
469           lastPAR[38]=1.e8*G4Exp(.32*asa);                // p1
470           lastPAR[39]=20.*G4Exp(.45*asa);                 // p2
471           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
472           lastPAR[41]=2.5e5*G4Exp(.085*a3);               // p4
473           lastPAR[42]=2.5*a;                                 // p5
474           // The gloria slope           (pel_ub)
475           lastPAR[43]=920.+.03*a8*a3;                        // p1
476           lastPAR[44]=93.+.0023*a12;                         // p2
477         }
478         else
479         {
480           G4double p1a10=2.2e-28*a10;
481           G4double r4a16=6.e14/a16;
482           G4double s4a16=r4a16*r4a16;
483           // a24
484           // a36
485           // The main pre-exponent      (peh_sg)
486           lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15);                  // p1
487           lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6);                    // p2
488           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
489           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
490           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
491           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
492           // The main slope             (peh_sl)
493           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
494           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
495           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
496           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
497           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
498           lastPAR[20]=9.+100./a;                             // p6
499           // The main quadratic         (peh_sh)
500           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
501           lastPAR[22]=7.e-15*a4*asa;                         // p2
502           lastPAR[23]=9000./a4;                              // p3
503           // The 1st max pre-exponent   (peh_qq)
504           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
505           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
506           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
507           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
508           // The 1st max slope          (peh_qs)
509           lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1
510           lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11);           // p2
511           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
512           lastPAR[31]=100./asa;                              // p4
513           // The 2nd max pre-exponent   (peh_ss)
514           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
515           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
516           lastPAR[34]=1.3+3.e5/a4;                           // p3
517           lastPAR[35]=500./(a2+50.)+3;                       // p4
518           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
519           // The 2nd max slope          (peh_sb)
520           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
521           lastPAR[38]=.0005*a5;                              // p2
522           lastPAR[39]=.002*a5;                               // p3
523           lastPAR[40]=10.;                                   // p4
524           // The effective pre-exponent (peh_us)
525           lastPAR[41]=.05+.005*a;                            // p1
526           lastPAR[42]=7.e-8/sa;                              // p2
527           lastPAR[43]=.8*sa;                                 // p3
528           lastPAR[44]=.02*sa;                                // p4
529           lastPAR[45]=1.e8/a3;                               // p5
530           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
531           // The effective slope        (peh_ub)
532           lastPAR[47]=24.;                                   // p1
533           lastPAR[48]=20./sa;                                // p2
534           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
535           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
536         }
537         // Parameter for lowEnergyNeutrons
538         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
539       }
540       lastPAR[nLast]=pwd;
541       // and initialize the zero element of the table
542       G4double lp=lPMin;                                      // ln(momentum)
543       G4bool memCS=onlyCS;                                    // ??
544       onlyCS=false;
545       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
546       onlyCS=memCS;
547       lastSST[0]=theSS;
548       lastS1T[0]=theS1;
549       lastB1T[0]=theB1;
550       lastS2T[0]=theS2;
551       lastB2T[0]=theB2;
552       lastS3T[0]=theS3;
553       lastB3T[0]=theB3;
554       lastS4T[0]=theS4;
555       lastB4T[0]=theB4;
556     }
557     if(LP>ILP)
558     {
559       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
560       if(ini<0) ini=0;
561       if(ini<nPoints)
562       {
563         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
564         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
565         if(fin>=ini)
566         {
567           G4double lp=0.;
568           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
569           {
570             lp=lPMin+ip*dlnP;                     // ln(momentum)
571             G4bool memCS=onlyCS;
572             onlyCS=false;
573             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
574             onlyCS=memCS;
575             lastSST[ip]=theSS;
576             lastS1T[ip]=theS1;
577             lastB1T[ip]=theB1;
578             lastS2T[ip]=theS2;
579             lastB2T[ip]=theB2;
580             lastS3T[ip]=theS3;
581             lastB3T[ip]=theB3;
582             lastS4T[ip]=theS4;
583             lastB4T[ip]=theB4;
584           }
585           return lp;
586         }
587         else G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG
588                    <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
589                    <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
590       }
591       else G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG
592                  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
593                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
594     }
595   } else {
596     // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
597     //       <<", N="<<tgN<<", while it is defined only for Hyperons"<<G4endl;
598     // throw G4QException("G4ChipsHyperonElasticXS::GetPTables:onlyaBA implemented");
599     G4ExceptionDescription ed;
600     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
601        << ", while it is defined only for Hyperons" << G4endl;
602     G4Exception("G4ChipsHyperonElasticXS::GetPTables()", "HAD_CHPS_0000",
603                 FatalException, ed);
604   }
605   return ILP;
606 }
607 
608 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
609 G4double G4ChipsHyperonElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
610 {
611   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
612   static const G4double third=1./3.;
613   static const G4double fifth=1./5.;
614   static const G4double sevth=1./7.;  
615   //AR-04Jun2014  if(PDG==3222 || PDG<3000 || PDG>3334)G4cout<<"*Warning*G4QHyElCS::GET:PDG="<<PDG<<G4endl;
616   if(PDG<3000 || PDG>3334)G4cout<<"*Warning*G4QHyElCS::GET:PDG="<<PDG<<G4endl;
617   if(onlyCS)G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetExchanT: onlyCS=1"<<G4endl;
618   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
619   G4double q2=0.;
620   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
621   {
622     G4double E1=lastTM*theB1;
623     G4double R1=(1.-G4Exp(-E1));
624     G4double E2=lastTM*theB2;
625     G4double R2=(1.-G4Exp(-E2*E2*E2));
626     G4double E3=lastTM*theB3;
627     G4double R3=(1.-G4Exp(-E3));
628     G4double I1=R1*theS1/theB1;
629     G4double I2=R2*theS2;
630     G4double I3=R3*theS3;
631     G4double I12=I1+I2;
632     G4double rand=(I12+I3)*G4UniformRand();
633     if     (rand<I1 )
634     {
635       G4double ran=R1*G4UniformRand();
636       if(ran>1.) ran=1.;
637       q2=-G4Log(1.-ran)/theB1;
638     }
639     else if(rand<I12)
640     {
641       G4double ran=R2*G4UniformRand();
642       if(ran>1.) ran=1.;
643       q2=-G4Log(1.-ran);
644       if(q2<0.) q2=0.;
645       q2=G4Pow::GetInstance()->powA(q2,third)/theB2;
646     }
647     else
648     {
649       G4double ran=R3*G4UniformRand();
650       if(ran>1.) ran=1.;
651       q2=-G4Log(1.-ran)/theB3;
652     }
653   }
654   else
655   {
656     G4double a=tgZ+tgN;
657     G4double E1=lastTM*(theB1+lastTM*theSS);
658     G4double R1=(1.-G4Exp(-E1));
659     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
660     G4double tm2=lastTM*lastTM;
661     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
662     if(a>6.5)E2*=tm2;                               // for heavy nuclei
663     G4double R2=(1.-G4Exp(-E2));
664     G4double E3=lastTM*theB3;
665     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
666     G4double R3=(1.-G4Exp(-E3));
667     G4double E4=lastTM*theB4;
668     G4double R4=(1.-G4Exp(-E4));
669     G4double I1=R1*theS1;
670     G4double I2=R2*theS2;
671     G4double I3=R3*theS3;
672     G4double I4=R4*theS4;
673     G4double I12=I1+I2;
674     G4double I13=I12+I3;
675     G4double rand=(I13+I4)*G4UniformRand();
676     if(rand<I1)
677     {
678       G4double ran=R1*G4UniformRand();
679       if(ran>1.) ran=1.;
680       q2=-G4Log(1.-ran)/theB1;
681       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
682     }
683     else if(rand<I12)
684     {
685       G4double ran=R2*G4UniformRand();
686       if(ran>1.) ran=1.;
687       q2=-G4Log(1.-ran)/theB2;
688       if(q2<0.) q2=0.;
689       if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third);
690       else      q2=G4Pow::GetInstance()->powA(q2,fifth);
691     }
692     else if(rand<I13)
693     {
694       G4double ran=R3*G4UniformRand();
695       if(ran>1.) ran=1.;
696       q2=-G4Log(1.-ran)/theB3;
697       if(q2<0.) q2=0.;
698       if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth);
699     }
700     else
701     {
702       G4double ran=R4*G4UniformRand();
703       if(ran>1.) ran=1.;
704       q2=-G4Log(1.-ran)/theB4;
705       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
706     }
707   }
708   if(q2<0.) q2=0.;
709   if(!(q2>=-1.||q2<=1.))G4cout<<"*NAN*G4QHyElasticCrossSect::GetExchangeT:-t="<<q2<<G4endl;
710   if(q2>lastTM)
711   {
712     q2=lastTM;
713   }
714   return q2*GeVSQ;
715 }
716 
717 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
718 G4double G4ChipsHyperonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
719 {
720   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
721   if(onlyCS)G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetSlope: onlCS=true"<<G4endl;
722   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
723   //AR-04Jun2014  if(PDG==3222 || PDG<3000 || PDG>3334)
724   if(PDG<3000 || PDG>3334)
725   {
726     // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
727     //       <<", N="<<tgN<<", while it is defined only for Hyperons"<<G4endl;
728     // throw G4QException("G4ChipsHyperonElasticXS::GetSlope: HypA are implemented");
729     G4ExceptionDescription ed;
730     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
731        << ", while it is defined only for Hyperons" << G4endl;
732     G4Exception("G4ChipsHyperonElasticXS::GetSlope()", "HAD_CHPS_0000",
733                 FatalException, ed);
734   }
735   if(theB1<0.) theB1=0.;
736   if(!(theB1>=-1.||theB1<=1.)) G4cout<<"*NAN*G4QHyElasticCrossS::Getslope:"<<theB1<<G4endl;
737   return theB1/GeVSQ;
738 }
739 
740 // Returns half max(Q2=-t) in independent units (MeV^2)
741 G4double G4ChipsHyperonElasticXS::GetHMaxT()
742 {
743   static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
744   return lastTM*HGeVSQ;
745 }
746 
747 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
748 G4double G4ChipsHyperonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
749                                                     G4int tgN)
750 {
751   //AR-04Jun2014  if(PDG==3222 || PDG<3000 || PDG>3334) G4cout<<"*Warning*G4QHypElCS::GTV:P="<<PDG<<G4endl;
752   if(PDG<3000 || PDG>3334) G4cout<<"*Warning*G4QHypElCS::GTV:P="<<PDG<<G4endl;
753 
754 
755   //AR-24Apr2018 Switch to allow transuranic elements
756   const G4bool isHeavyElementAllowed = true;
757   if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
758   {
759     G4cout<<"*Warning*G4QHyperonElastCS::GetTabValue:(1-92) NoIsotopesFor Z="<<tgZ<<G4endl;
760     return 0.;
761   }
762   G4int iZ=tgZ-1; // Z index
763   if(iZ<0)
764   {
765     iZ=0;         // conversion of the neutron target to the proton target
766     tgZ=1;
767     tgN=0;
768   }
769   G4double p=G4Exp(lp);              // momentum
770   G4double sp=std::sqrt(p);             // sqrt(p)
771   G4double p2=p*p;            
772   G4double p3=p2*p;
773   G4double p4=p3*p;
774   if ( tgZ == 1 && tgN == 0 ) // Hyperon+P
775   {
776     G4double dl2=lp-lastPAR[9];
777     theSS=lastPAR[32];
778     theS1=(lastPAR[10]+lastPAR[11]*dl2*dl2)/(1.+lastPAR[12]/p4/p)+
779           (lastPAR[13]/p2+lastPAR[14]*p)/(p4+lastPAR[15]*sp);
780     theB1=lastPAR[16]*G4Pow::GetInstance()->powA(p,lastPAR[17])/(1.+lastPAR[18]/p3);
781     theS2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]*p);
782     theB2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]/sp); 
783     theS3=lastPAR[25]+lastPAR[26]/(p4*p4+lastPAR[27]*p2+lastPAR[28]);
784     theB3=lastPAR[29]+lastPAR[30]/(p4+lastPAR[31]); 
785     theS4=0.;
786     theB4=0.; 
787     // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
788     G4double dp=lp-lastPAR[4];
789     return lastPAR[0]/(lastPAR[1]+p2*(lastPAR[2]+p2))+(lastPAR[3]*dp*dp+lastPAR[5]+
790            lastPAR[6]/p2)/(1.+lastPAR[7]/sp+lastPAR[8]/p4);
791   }
792   else
793   {
794     G4double p5=p4*p;
795     G4double p6=p5*p;
796     G4double p8=p6*p2;
797     G4double p10=p8*p2;
798     G4double p12=p10*p2;
799     G4double p16=p8*p8;
800     //G4double p24=p16*p8;
801     G4double dl=lp-5.;
802     G4double a=tgZ+tgN;
803     G4double pah=G4Pow::GetInstance()->powA(p,a/2);
804     G4double pa=pah*pah;
805     G4double pa2=pa*pa;
806     if(a<6.5)
807     {
808       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
809             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
810       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
811       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
812       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
813       theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
814       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
815       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
816       theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+
817                 lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42])));
818       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
819     }
820     else
821     {
822       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
823             lastPAR[13]/(p5+lastPAR[14]/p16);
824       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+
825             lastPAR[17]/(1.+lastPAR[18]/p4);
826       theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4);
827       theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
828       theB2=lastPAR[28]/G4Pow::GetInstance()->powA(p,lastPAR[29])+lastPAR[30]/G4Pow::GetInstance()->powA(p,lastPAR[31]);
829       theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
830             lastPAR[33]/(1.+lastPAR[34]/p6);
831       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
832       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
833             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
834       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
835     }
836     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
837     G4double dlp=lp-lastPAR[5]; // ax
838     //         p1               p2          p3                 p4               p5
839     return (lastPAR[0]*dlp*dlp+lastPAR[1])/(1.+lastPAR[2]/p)+lastPAR[3]/(p3+lastPAR[4]);
840   }
841   return 0.;
842 } // End of GetTableValues
843 
844 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
845 G4double G4ChipsHyperonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
846                                                     G4double pP)
847 {
848   static const G4double mLamb= G4Lambda::Lambda()->GetPDGMass()*.001; // MeV to GeV
849   static const G4double mLa2= mLamb*mLamb;
850   G4double pP2=pP*pP;                                 // squared momentum of the projectile
851   if(tgZ || tgN>-1)                                   // --> Hyperon-A
852   {
853     G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
854 
855     G4double dmt=mt+mt;
856     G4double mds=dmt*std::sqrt(pP2+mLa2)+mLa2+mt*mt;    // Mondelstam mds (@@ other hyperons?)
857     return dmt*dmt*pP2/mds;
858   }
859   else
860   {
861     // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetQ2ma:PDG="<<PDG<<",Z="<<tgZ<<",N="
862     //       <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
863     // throw G4QException("G4ChipsHyperonElasticXS::GetQ2max: only HyperA implemented");
864     G4ExceptionDescription ed;
865     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
866        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
867     G4Exception("G4ChipsHyperonElasticXS::GetQ2max()", "HAD_CHPS_0000",
868                 FatalException, ed);
869     return 0;
870   }
871 }
872