Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsAntiBaryonElasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 //
 28 //
 29 // G4 Physics class: G4ChipsAntiBaryonElasticXS for pA elastic cross sections
 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
 31 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
 32 //
 33 //
 34 // -------------------------------------------------------------------------------
 35 // Short description: Interaction cross-sections for the elastic process. 
 36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
 37 // -------------------------------------------------------------------------------
 38 
 39 
 40 #include "G4ChipsAntiBaryonElasticXS.hh"
 41 #include "G4SystemOfUnits.hh"
 42 #include "G4DynamicParticle.hh"
 43 #include "G4ParticleDefinition.hh"
 44 #include "G4AntiProton.hh"
 45 #include "G4Nucleus.hh"
 46 #include "G4ParticleTable.hh"
 47 #include "G4NucleiProperties.hh"
 48 #include "G4IonTable.hh"
 49 #include "G4Log.hh"
 50 #include "G4Exp.hh"
 51 #include "G4Pow.hh"
 52 
 53 // factory
 54 #include "G4CrossSectionFactory.hh"
 55 //
 56 G4_DECLARE_XS_FACTORY(G4ChipsAntiBaryonElasticXS);
 57 
 58 G4ChipsAntiBaryonElasticXS::G4ChipsAntiBaryonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
 59 {
 60   lPMin=-8.;  //Min tabulatedLogarithmMomentum(D)
 61   lPMax= 8.;  //Max tabulatedLogarithmMomentum(D)
 62   dlnP=(lPMax-lPMin)/nLast;// LogStep inTable (D)
 63   onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)(L)
 64   lastSIG=0.; //Last calculated cross section (L)
 65   lastLP=-10.;//LastLog(mom_of IncidentHadron)(L)
 66   lastTM=0.;  //Last t_maximum                (L)
 67   theSS=0.;   //TheLastSqSlope of 1st difr.Max(L)
 68   theS1=0.;   //TheLastMantissa of 1st difrMax(L)
 69   theB1=0.;   //TheLastSlope of 1st difructMax(L)
 70   theS2=0.;   //TheLastMantissa of 2nd difrMax(L)
 71   theB2=0.;   //TheLastSlope of 2nd difructMax(L)
 72   theS3=0.;   //TheLastMantissa of 3d difr.Max(L)
 73   theB3=0.;   //TheLastSlope of 3d difruct.Max(L)
 74   theS4=0.;   //TheLastMantissa of 4th difrMax(L)
 75   theB4=0.;   //TheLastSlope of 4th difructMax(L)
 76   lastTZ=0;   // Last atomic number of the target
 77   lastTN=0;   // Last # of neutrons in the target
 78   lastPIN=0.; // Last initialized max momentum
 79   lastCST=0;  // Elastic cross-section table
 80   lastPAR=0;  // ParametersForFunctionCalculation
 81   lastSST=0;  // E-dep ofSqardSlope of 1st difMax
 82   lastS1T=0;  // E-dep of mantissa of 1st dif.Max
 83   lastB1T=0;  // E-dep of the slope of 1st difMax
 84   lastS2T=0;  // E-dep of mantissa of 2nd difrMax
 85   lastB2T=0;  // E-dep of the slope of 2nd difMax
 86   lastS3T=0;  // E-dep of mantissa of 3d difr.Max
 87   lastB3T=0;  // E-dep of the slope of 3d difrMax
 88   lastS4T=0;  // E-dep of mantissa of 4th difrMax
 89   lastB4T=0;  // E-dep of the slope of 4th difMax
 90   lastN=0;    // The last N of calculated nucleus
 91   lastZ=0;    // The last Z of calculated nucleus
 92   lastP=0.;   // LastUsed inCrossSection Momentum
 93   lastTH=0.;  // Last threshold momentum
 94   lastCS=0.;  // Last value of the Cross Section
 95   lastI=0;    // The last position in the DAMDB
 96 }
 97 
 98 G4ChipsAntiBaryonElasticXS::~G4ChipsAntiBaryonElasticXS()
 99 {
100   std::vector<G4double*>::iterator pos;
101   for (pos=CST.begin(); pos<CST.end(); pos++)
102   { delete [] *pos; }
103   CST.clear();
104   for (pos=PAR.begin(); pos<PAR.end(); pos++)
105   { delete [] *pos; }
106   PAR.clear();
107   for (pos=SST.begin(); pos<SST.end(); pos++)
108   { delete [] *pos; }
109   SST.clear();
110   for (pos=S1T.begin(); pos<S1T.end(); pos++)
111   { delete [] *pos; }
112   S1T.clear();
113   for (pos=B1T.begin(); pos<B1T.end(); pos++)
114   { delete [] *pos; }
115   B1T.clear();
116   for (pos=S2T.begin(); pos<S2T.end(); pos++)
117   { delete [] *pos; }
118   S2T.clear();
119   for (pos=B2T.begin(); pos<B2T.end(); pos++)
120   { delete [] *pos; }
121   B2T.clear();
122   for (pos=S3T.begin(); pos<S3T.end(); pos++)
123   { delete [] *pos; }
124   S3T.clear();
125   for (pos=B3T.begin(); pos<B3T.end(); pos++)
126   { delete [] *pos; }
127   B3T.clear();
128   for (pos=S4T.begin(); pos<S4T.end(); pos++)
129   { delete [] *pos; }
130   S4T.clear();
131   for (pos=B4T.begin(); pos<B4T.end(); pos++)
132   { delete [] *pos; }
133   B4T.clear();
134 }
135 
136 void
137 G4ChipsAntiBaryonElasticXS::CrossSectionDescription(std::ostream& outFile) const
138 {
139     outFile << "G4ChipsAntiBaryonElasticXS provides the elastic cross\n"
140             << "section for anti-baryon nucleus scattering as a function of incident\n"
141             << "momentum. The cross section is calculated using M. Kossov's\n"
142             << "CHIPS parameterization of cross section data.\n";
143 }
144 
145 G4bool G4ChipsAntiBaryonElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int,    
146          const G4Element*,
147          const G4Material*)
148 {
149 
150   /*
151   if(particle == G4AntiNeutron::AntiNeutron())
152   {
153     return true;
154   }
155   else if(particle == G4AntiProton::AntiProton())
156   {
157     return true;
158   }
159   else if(particle == G4AntiLambda::AntiLambda())
160   {
161     return true;
162   }
163   else if(particle == G4AntiSigmaPlus::AntiSigmaPlus())
164   {
165     return true;
166   }
167   else if(particle == G4AntiSigmaMinus::AntiSigmaMinus())
168   {
169     return true;
170   }
171   else if(particle == G4AntiSigmaZero::AntiSigmaZero())
172   {
173     return true;
174   }
175   else if(particle == G4AntiXiMinus::AntiXiMinus())
176   {
177     return true;
178   }
179   else if(particle == G4AntiXiZero::AntiXiZero())
180   {
181     return true;
182   }
183   else if(particle == G4AntiOmegaMinus::AntiOmegaMinus())
184   {
185     return true;
186   }
187   */
188   return true;
189 }
190 
191 // The main member function giving the collision cross section (P is in IU, CS is in mb)
192 // Make pMom in independent units ! (Now it is MeV)
193 G4double G4ChipsAntiBaryonElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
194               const G4Isotope*,
195               const G4Element*,
196               const G4Material*)
197 {
198   G4double pMom=Pt->GetTotalMomentum();
199   G4int tgN = A - tgZ;
200   G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
201   
202   return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
203 }
204 
205 G4double G4ChipsAntiBaryonElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int pPDG)
206 {
207   G4bool fCS = false;
208 
209   G4double pEn=pMom;
210   onlyCS=fCS;
211 
212   G4bool in=false;                   // By default the isotope must be found in the AMDB
213   lastP   = 0.;                      // New momentum history (nothing to compare with)
214   lastN   = tgN;                     // The last N of the calculated nucleus
215   lastZ   = tgZ;                     // The last Z of the calculated nucleus
216   lastI   = (G4int)colN.size();      // Size of the Associative Memory DB in the heap
217   if(lastI) for(G4int i=0; i<lastI; ++i) // Loop over proj/tgZ/tgN lines of DB
218   {                                  // The nucleus with projPDG is found in AMDB
219     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
220     {
221       lastI=i;
222       lastTH =colTH[i];              // Last THreshold (A-dependent)
223       if(pEn<=lastTH)
224       {
225         return 0.;                   // Energy is below the Threshold value
226       }
227       lastP  =colP [i];              // Last Momentum  (A-dependent)
228       lastCS =colCS[i];              // Last CrossSect (A-dependent)
229       //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
230       if(lastP == pMom)              // Do not recalculate
231       {
232         CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
233         return lastCS*millibarn;     // Use theLastCS
234       }
235       in = true;                       // This is the case when the isotop is found in DB
236       // Momentum pMom is in IU ! @@ Units
237       lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
238       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
239       {
240         lastTH=pEn;
241       }
242       break;                           // Go out of the LOOP with found lastI
243     }
244   } // End of attampt to find the nucleus in DB
245   if(!in)                            // This nucleus has not been calculated previously
246   {
247     //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
248     lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
249     if(lastCS<=0.)
250     {
251       lastTH = 0; // ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
252       if(pEn>lastTH)
253       {
254         lastTH=pEn;
255       }
256     }
257     colN.push_back(tgN);
258     colZ.push_back(tgZ);
259     colP.push_back(pMom);
260     colTH.push_back(lastTH);
261     colCS.push_back(lastCS);
262     return lastCS*millibarn;
263   } // End of creation of the new set of parameters
264   else
265   {
266     colP[lastI]=pMom;
267     colCS[lastI]=lastCS;
268   }
269   return lastCS*millibarn;
270 }
271 
272 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
273 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
274 G4double G4ChipsAntiBaryonElasticXS::CalculateCrossSection(G4bool CS,G4int F,G4int I,
275                                              G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
276 {
277   G4double pMom=pIU/GeV;                // All calculations are in GeV
278   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
279   lastLP=G4Log(pMom);                // Make a logarithm of the momentum for calculation
280   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
281   {
282     if(F<0)                             // the AMDB must be loded
283     {
284       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
285       lastPAR = PAR[I];                 // Pointer to the parameter set
286       lastCST = CST[I];                 // Pointer to the total sross-section table
287       lastSST = SST[I];                 // Pointer to the first squared slope
288       lastS1T = S1T[I];                 // Pointer to the first mantissa
289       lastB1T = B1T[I];                 // Pointer to the first slope
290       lastS2T = S2T[I];                 // Pointer to the second mantissa
291       lastB2T = B2T[I];                 // Pointer to the second slope
292       lastS3T = S3T[I];                 // Pointer to the third mantissa
293       lastB3T = B3T[I];                 // Pointer to the rhird slope
294       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
295       lastB4T = B4T[I];                 // Pointer to the 4-th slope
296     }
297     if(lastLP>lastPIN && lastLP<lPMax)
298     {
299       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
300       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
301     }
302   }
303   else                                  // This isotope wasn't initialized => CREATE
304   {
305     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
306     lastPAR[nLast]=0;                   // Initialization for VALGRIND
307     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
308     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
309     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
310     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
311     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
312     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
313     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
314     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
315     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
316     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
317     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
318     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
319     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
320     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
321     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
322     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
323     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
324     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
325     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
326     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
327     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
328     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
329     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
330   } // End of creation/update of the new set of parameters and tables
331   // =---------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
332   if(lastLP>lastPIN && lastLP<lPMax)
333   {
334     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
335   }
336   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
337   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
338   {
339     if(lastLP==lastPIN)
340     {
341       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
342       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
343       if(blast<0 || blast>=nLast) G4cout<<"G4QaBarElCS::CCS:b="<<blast<<","<<nLast<<G4endl;
344       lastSIG = lastCST[blast];
345       if(!onlyCS)                       // Skip the differential cross-section parameters
346       {
347         theSS  = lastSST[blast];
348         theS1  = lastS1T[blast];
349         theB1  = lastB1T[blast];
350         theS2  = lastS2T[blast];
351         theB2  = lastB2T[blast];
352         theS3  = lastS3T[blast];
353         theB3  = lastB3T[blast];
354         theS4  = lastS4T[blast];
355         theB4  = lastB4T[blast];
356       }
357     }
358     else
359     {
360       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
361       G4int    blast=static_cast<int>(shift);    // the lower bin number
362       if(blast<0)   blast=0;
363       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
364       shift-=blast;                              // step inside the unit bin
365       G4int lastL=blast+1;                       // the upper bin number
366       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
367       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
368       if(!onlyCS)                       // Skip the differential cross-section parameters
369       {
370         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
371         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
372         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
373         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
374         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
375         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
376         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
377         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
378         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
379         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
380         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
381         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
382         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
383         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
384         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
385         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
386         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
387         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
388       }
389     }
390   }
391   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
392   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
393   return lastSIG;
394 }
395 
396 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
397 G4double G4ChipsAntiBaryonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
398                                                   G4int tgZ, G4int tgN)
399 {
400   // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
401   static const G4double pwd=2727;
402   const G4int n_appel=30;                // #of parameters for app-elastic (<nPoints=128)
403   //                          -0- -1- -2- -3-  -4- -5- -6- -7- -8--9--10--11--12--13--14-
404   G4double app_el[n_appel]={1.25,3.5,80.,1.,.0557,6.72,5.,74.,3.,3.4,.2,.17,.001,8.,.055,
405                             3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,1.e10,8.5e8,
406                             1.e10,1.1,3.4e6,6.8e6,0.};
407   //                        -15-  -16-  -17-  -18- -19- -20-  -21-  -22-  -23- -24-
408   //                        -25-  -26- -27- -28- -29- 
409   //AR-24Jun2014  if(PDG>-3334 && PDG<-1111)
410   if(PDG>-3335 && PDG<-1111)
411   {
412     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
413     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
414     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
415     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
416     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
417     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
418     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
419     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
420     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
421     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
422     //
423     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
424     {
425       if ( tgZ == 1 && tgN == 0 )
426       {
427         for (G4int ip=0; ip<n_appel; ip++) lastPAR[ip]=app_el[ip]; // PiMinus+P
428       }
429       else
430       {
431         G4double a=tgZ+tgN;
432         G4double sa=std::sqrt(a);
433         G4double ssa=std::sqrt(sa);
434         G4double asa=a*sa;
435         G4double a2=a*a;
436         G4double a3=a2*a;
437         G4double a4=a3*a;
438         G4double a5=a4*a;
439         G4double a6=a4*a2;
440         G4double a7=a6*a;
441         G4double a8=a7*a;
442         G4double a9=a8*a;
443         G4double a10=a5*a5;
444         G4double a12=a6*a6;
445         G4double a14=a7*a7;
446         G4double a16=a8*a8;
447         G4double a17=a16*a;
448         //G4double a20=a16*a4;
449         G4double a32=a16*a16;
450         // Reaction cross-section parameters (pel=peh_fit.f)
451         lastPAR[0]=.23*asa/(1.+a*.15);                                       // p1
452         lastPAR[1]=2.8*asa/(1.+a*(.015+.05/ssa));                            // p2
453         lastPAR[2]=15.*a/(1.+.005*a2);                                       // p3
454         lastPAR[3]=.013*a2/(1.+a3*(.006+a*.00001));                          // p4
455         lastPAR[4]=5.;                                                       // p5
456         lastPAR[5]=0.;                                                       // p6 not used
457         lastPAR[6]=0.;                                                       // p7 not used
458         lastPAR[7]=0.;                                                       // p8 not used
459         lastPAR[8]=0.;                                                       // p9 not used
460         // @@ the differential cross-section is parameterized separately for A>6 & A<7
461         if(a<6.5)
462         {
463           G4double a28=a16*a12;
464           // The main pre-exponent      (pel_sg)
465           lastPAR[ 9]=4000*a;                                // p1
466           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
467           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
468           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
469           lastPAR[13]=.28*a;                                 // p5
470           lastPAR[14]=1.2*a2+2.3;                            // p6
471           lastPAR[15]=3.8/a;                                 // p7
472           // The main slope             (pel_sl)
473           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
474           lastPAR[17]=.2*a;                                  // p2
475           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
476           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
477           // The main quadratic         (pel_sh)
478           lastPAR[20]=2.25*a3;                               // p1
479           lastPAR[21]=18.;                                   // p2
480           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
481           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
482           // The 1st max pre-exponent   (pel_qq)
483           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
484           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
485           lastPAR[26]=.0006*a3;                              // p3
486           // The 1st max slope          (pel_qs)
487           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
488           lastPAR[28]=.114;                                  // p2
489           lastPAR[29]=.003;                                  // p3
490           lastPAR[30]=2.e-23;                                // p4
491           // The effective pre-exponent (pel_ss)
492           lastPAR[31]=1./(1.+.0001*a8);                      // p1
493           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
494           lastPAR[33]=.03;                                   // p3
495           // The effective slope        (pel_sb)
496           lastPAR[34]=a/2;                                   // p1
497           lastPAR[35]=2.e-7*a4;                              // p2
498           lastPAR[36]=4.;                                    // p3
499           lastPAR[37]=64./a3;                                // p4
500           // The gloria pre-exponent    (pel_us)
501           lastPAR[38]=1.e8*G4Exp(.32*asa);                // p1
502           lastPAR[39]=20.*G4Exp(.45*asa);                 // p2
503           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
504           lastPAR[41]=2.5e5*G4Exp(.085*a3);               // p4
505           lastPAR[42]=2.5*a;                                 // p5
506           // The gloria slope           (pel_ub)
507           lastPAR[43]=920.+.03*a8*a3;                        // p1
508           lastPAR[44]=93.+.0023*a12;                         // p2
509         }
510         else // A > Li6 (li7, ...)
511         {
512           G4double p1a10=2.2e-28*a10;
513           G4double r4a16=6.e14/a16;
514           G4double s4a16=r4a16*r4a16;
515           // a24
516           // a36
517           // The main pre-exponent      (peh_sg)
518           lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15);                  // p1
519           lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6);                    // p2
520           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
521           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
522           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
523           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
524           // The main slope             (peh_sl)
525           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
526           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
527           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
528           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
529           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
530           lastPAR[20]=9.+100./a;                             // p6
531           // The main quadratic         (peh_sh)
532           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
533           lastPAR[22]=7.e-15*a4*asa;                         // p2
534           lastPAR[23]=9000./a4;                              // p3
535           // The 1st max pre-exponent   (peh_qq)
536           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
537           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
538           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
539           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
540           // The 1st max slope          (peh_qs)
541           lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1
542           lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11);           // p2
543           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
544           lastPAR[31]=100./asa;                              // p4
545           // The 2nd max pre-exponent   (peh_ss)
546           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
547           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
548           lastPAR[34]=1.3+3.e5/a4;                           // p3
549           lastPAR[35]=500./(a2+50.)+3;                       // p4
550           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
551           // The 2nd max slope          (peh_sb)
552           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
553           lastPAR[38]=.0005*a5;                              // p2
554           lastPAR[39]=.002*a5;                               // p3
555           lastPAR[40]=10.;                                   // p4
556           // The effective pre-exponent (peh_us)
557           lastPAR[41]=.05+.005*a;                            // p1
558           lastPAR[42]=7.e-8/sa;                              // p2
559           lastPAR[43]=.8*sa;                                 // p3
560           lastPAR[44]=.02*sa;                                // p4
561           lastPAR[45]=1.e8/a3;                               // p5
562           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
563           // The effective slope        (peh_ub)
564           lastPAR[47]=24.;                                   // p1
565           lastPAR[48]=20./sa;                                // p2
566           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
567           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
568         }
569         // Parameter for lowEnergyNeutrons
570         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
571       }
572       lastPAR[nLast]=pwd;
573       // and initialize the zero element of the table
574       G4double lp=lPMin;                                      // ln(momentum)
575       G4bool memCS=onlyCS;                                    // ??
576       onlyCS=false;
577       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
578       onlyCS=memCS;
579       lastSST[0]=theSS;
580       lastS1T[0]=theS1;
581       lastB1T[0]=theB1;
582       lastS2T[0]=theS2;
583       lastB2T[0]=theB2;
584       lastS3T[0]=theS3;
585       lastB3T[0]=theB3;
586       lastS4T[0]=theS4;
587       lastB4T[0]=theB4;
588     }
589     if(LP>ILP)
590     {
591       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
592       if(ini<0) ini=0;
593       if(ini<nPoints)
594       {
595         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
596         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
597         if(fin>=ini)
598         {
599           G4double lp=0.;
600           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
601           {
602             lp=lPMin+ip*dlnP;                     // ln(momentum)
603             G4bool memCS=onlyCS;
604             onlyCS=false;
605             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
606             onlyCS=memCS;
607             lastSST[ip]=theSS;
608             lastS1T[ip]=theS1;
609             lastB1T[ip]=theB1;
610             lastS2T[ip]=theS2;
611             lastB2T[ip]=theB2;
612             lastS3T[ip]=theS3;
613             lastB3T[ip]=theB3;
614             lastS4T[ip]=theS4;
615             lastB4T[ip]=theB4;
616           }
617           return lp;
618         }
619         else G4cout<<"*Warning*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG
620                    <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
621                    <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
622       }
623       else G4cout<<"*Warning*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG
624                  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
625                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
626     }
627   }
628   else
629   {
630     // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
631     //       <<", N="<<tgN<<", while it is defined only for Anti Baryons"<<G4endl;
632     // throw G4QException("G4ChipsAntiBaryonElasticXS::GetPTables:onlyaBA implemented");
633     G4ExceptionDescription ed;
634     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
635        << ", while it is defined only for Anti Baryons" << G4endl;
636     G4Exception("G4ChipsAntiBaryonElasticXS::GetPTables()", "HAD_CHPS_0000",
637                 FatalException, ed);
638   }
639   return ILP;
640 }
641 
642 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
643 G4double G4ChipsAntiBaryonElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
644 {
645   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
646   static const G4double third=1./3.;
647   static const G4double fifth=1./5.;
648   static const G4double sevth=1./7.;
649 
650   if(PDG<-3334 || PDG>-1111)G4cout<<"*Warning*G4QAntiBaryonElCS::GetExT:PDG="<<PDG<<G4endl;
651   if(onlyCS)G4cout<<"WarningG4ChipsAntiBaryonElasticXS::GetExchanT:onlyCS=1"<<G4endl;
652   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
653   G4double q2=0.;
654   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
655   {
656     G4double E1=lastTM*theB1;
657     G4double R1=(1.-G4Exp(-E1));
658     G4double E2=lastTM*theB2;
659     G4double R2=(1.-G4Exp(-E2*E2*E2));
660     G4double E3=lastTM*theB3;
661     G4double R3=(1.-G4Exp(-E3));
662     G4double I1=R1*theS1/theB1;
663     G4double I2=R2*theS2;
664     G4double I3=R3*theS3;
665     G4double I12=I1+I2;
666     G4double rand=(I12+I3)*G4UniformRand();
667     if     (rand<I1 )
668     {
669       G4double ran=R1*G4UniformRand();
670       if(ran>1.) ran=1.;
671       q2=-G4Log(1.-ran)/theB1;
672     }
673     else if(rand<I12)
674     {
675       G4double ran=R2*G4UniformRand();
676       if(ran>1.) ran=1.;
677       q2=-G4Log(1.-ran);
678       if(q2<0.) q2=0.;
679       q2=G4Pow::GetInstance()->powA(q2,third)/theB2;
680     }
681     else
682     {
683       G4double ran=R3*G4UniformRand();
684       if(ran>1.) ran=1.;
685       q2=-G4Log(1.-ran)/theB3;
686     }
687   }
688   else
689   {
690     G4double a=tgZ+tgN;
691     G4double E1=lastTM*(theB1+lastTM*theSS);
692     G4double R1=(1.-G4Exp(-E1));
693     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
694     G4double tm2=lastTM*lastTM;
695     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
696     if(a>6.5)E2*=tm2;                               // for heavy nuclei
697     G4double R2=(1.-G4Exp(-E2));
698     G4double E3=lastTM*theB3;
699     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
700     G4double R3=(1.-G4Exp(-E3));
701     G4double E4=lastTM*theB4;
702     G4double R4=(1.-G4Exp(-E4));
703     G4double I1=R1*theS1;
704     G4double I2=R2*theS2;
705     G4double I3=R3*theS3;
706     G4double I4=R4*theS4;
707     G4double I12=I1+I2;
708     G4double I13=I12+I3;
709     G4double rand=(I13+I4)*G4UniformRand();
710     if(rand<I1)
711     {
712       G4double ran=R1*G4UniformRand();
713       if(ran>1.) ran=1.;
714       q2=-G4Log(1.-ran)/theB1;
715       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
716     }
717     else if(rand<I12)
718     {
719       G4double ran=R2*G4UniformRand();
720       if(ran>1.) ran=1.;
721       q2=-G4Log(1.-ran)/theB2;
722       if(q2<0.) q2=0.;
723       if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third);
724       else      q2=G4Pow::GetInstance()->powA(q2,fifth);
725     }
726     else if(rand<I13)
727     {
728       G4double ran=R3*G4UniformRand();
729       if(ran>1.) ran=1.;
730       q2=-G4Log(1.-ran)/theB3;
731       if(q2<0.) q2=0.;
732       if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth);
733     }
734     else
735     {
736       G4double ran=R4*G4UniformRand();
737       if(ran>1.) ran=1.;
738       q2=-G4Log(1.-ran)/theB4;
739       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
740     }
741   }
742   if(q2<0.) q2=0.;
743   if(!(q2>=-1.||q2<=1.))G4cout<<"*NAN*G4QaBElasticCrossSect::GetExchangeT:-t="<<q2<<G4endl;
744   if(q2>lastTM)
745   {
746     q2=lastTM;
747   }
748   return q2*GeVSQ;
749 }
750 
751 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
752 G4double G4ChipsAntiBaryonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
753 {
754   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
755   if(onlyCS)G4cout<<"WarningG4ChipsAntiBaryonElasticXS::GetSlope:onlCS=true"<<G4endl;
756   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
757   if(PDG<-3334 || PDG>-1111)
758   {
759     // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
760     //       <<", N="<<tgN<<", while it is defined only for Anti Baryons"<<G4endl;
761     // throw G4QException("G4ChipsAntiBaryonElasticXS::GetSlope: AnBa are implemented");
762     G4ExceptionDescription ed;
763     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
764        << ", while it is defined only for Anti Baryons" << G4endl;
765     G4Exception("G4ChipsAntiBaryonElasticXS::GetSlope()", "HAD_CHPS_0000",
766                 FatalException, ed);
767   }
768   if(theB1<0.) theB1=0.;
769   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QaBaElasticCrossS::Getslope:"<<theB1<<G4endl;
770   return theB1/GeVSQ;
771 }
772 
773 // Returns half max(Q2=-t) in independent units (MeV^2)
774 G4double G4ChipsAntiBaryonElasticXS::GetHMaxT()
775 {
776   static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
777   return lastTM*HGeVSQ;
778 }
779 
780 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
781 G4double G4ChipsAntiBaryonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
782                                                     G4int tgN)
783 {
784   if(PDG<-3334 || PDG>-1111) G4cout<<"*Warning*G4QAntiBaryElCS::GetTabV:PDG="<<PDG<<G4endl;
785 
786   //AR-24Apr2018 Switch to allow transuranic elements
787   const G4bool isHeavyElementAllowed = true;
788   if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
789   {
790     G4cout<<"*Warning*G4QAntiBaryonElCS::GetTabValue:(1-92) NoIsotopesFor Z="<<tgZ<<G4endl;
791     return 0.;
792   }
793   G4int iZ=tgZ-1; // Z index
794   if(iZ<0)
795   {
796     iZ=0;         // conversion of the neutron target to the proton target
797     tgZ=1;
798     tgN=0;
799   }
800   G4double p=G4Exp(lp);              // momentum
801   G4double sp=std::sqrt(p);             // sqrt(p)
802   G4double p2=p*p;            
803   G4double p3=p2*p;
804   G4double p4=p3*p;
805   if ( tgZ == 1 && tgN == 0 ) // PiMin+P
806   {
807     G4double dl2=lp-lastPAR[6]; // ld ?
808     theSS=lastPAR[29];
809     theS1=(lastPAR[7]+lastPAR[8]*dl2*dl2)/(1.+lastPAR[9]/p4/p)+
810           (lastPAR[10]/p2+lastPAR[11]*p)/(p4+lastPAR[12]*sp);
811     theB1=lastPAR[13]*G4Pow::GetInstance()->powA(p,lastPAR[14])/(1.+lastPAR[15]/p3);
812     theS2=lastPAR[16]+lastPAR[17]/(p4+lastPAR[18]*p);
813     theB2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]/sp); 
814     theS3=lastPAR[22]+lastPAR[23]/(p4*p4+lastPAR[24]*p2+lastPAR[25]);
815     theB3=lastPAR[26]+lastPAR[27]/(p4+lastPAR[28]); 
816     theS4=0.;
817     theB4=0.; 
818     // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
819     G4double ye=G4Exp(lp*lastPAR[0]);
820     G4double dp=lp-lastPAR[1];
821     return lastPAR[2]/(ye+lastPAR[3])+lastPAR[4]*dp*dp+lastPAR[5];
822   }
823   else
824   {
825     G4double p5=p4*p;
826     G4double p6=p5*p;
827     G4double p8=p6*p2;
828     G4double p10=p8*p2;
829     G4double p12=p10*p2;
830     G4double p16=p8*p8;
831     //G4double p24=p16*p8;
832     G4double dl=lp-5.;
833     G4double a=tgZ+tgN;
834     G4double pah=G4Pow::GetInstance()->powA(p,a/2);
835     G4double pa=pah*pah;
836     G4double pa2=pa*pa;
837     if(a<6.5)
838     {
839       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
840             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
841       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
842       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
843       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
844       theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
845       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
846       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
847       theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+
848                 lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42])));
849       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
850     }
851     else
852     {
853       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
854             lastPAR[13]/(p5+lastPAR[14]/p16);
855       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+
856             lastPAR[17]/(1.+lastPAR[18]/p4);
857       theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4);
858       theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
859       theB2=lastPAR[28]/G4Pow::GetInstance()->powA(p,lastPAR[29])+lastPAR[30]/G4Pow::GetInstance()->powA(p,lastPAR[31]);
860       theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
861             lastPAR[33]/(1.+lastPAR[34]/p6);
862       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
863       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
864             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
865       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
866     }
867     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
868     G4double dlp=lp-lastPAR[4]; // ax
869     //         p1               p2          p3                 p4
870     return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p)/(1.+lastPAR[3]/p);
871   }
872   return 0.;
873 } // End of GetTableValues
874 
875 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
876 G4double G4ChipsAntiBaryonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
877                                                     G4double pP)
878 {
879   static const G4double mNeut= G4Neutron::Neutron()->GetPDGMass()*.001; // MeV to GeV
880   static const G4double mProt= G4Proton::Proton()->GetPDGMass()*.001; // MeV to GeV
881   static const G4double mNuc2= sqr((mProt+mNeut)/2);
882   G4double pP2=pP*pP;                                 // squared momentum of the projectile
883   if(tgZ || tgN>-1)                                   // ---> pipA
884   {
885     G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
886     G4double dmt=mt+mt;
887     G4double mds=dmt*std::sqrt(pP2+mNuc2)+mNuc2+mt*mt;    // Mondelstam mds (@@ other AntiBar?)
888     return dmt*dmt*pP2/mds;
889   }
890   else
891   {
892     // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetQ2ma:PDG="<<PDG<<",Z="<<tgZ<<",N="
893     //       <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
894     // throw G4QException("G4ChipsAntiBaryonElasticXS::GetQ2max: only aBA implemented");
895     G4ExceptionDescription ed;
896     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
897        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
898     G4Exception("G4ChipsAntiBaryonElasticXS::GetQ2max()", "HAD_CHPS_0000",
899                 FatalException, ed);
900     return 0;
901   }
902 }
903