Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // 28 // 29 // G4 Physics class: G4ChipsAntiBaryonElasticXS for pA elastic cross sections 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010 31 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010 32 // 33 // 34 // ------------------------------------------------------------------------------- 35 // Short description: Interaction cross-sections for the elastic process. 36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski 37 // ------------------------------------------------------------------------------- 38 39 40 #include "G4ChipsAntiBaryonElasticXS.hh" 41 #include "G4SystemOfUnits.hh" 42 #include "G4DynamicParticle.hh" 43 #include "G4ParticleDefinition.hh" 44 #include "G4AntiProton.hh" 45 #include "G4Nucleus.hh" 46 #include "G4ParticleTable.hh" 47 #include "G4NucleiProperties.hh" 48 #include "G4IonTable.hh" 49 #include "G4Log.hh" 50 #include "G4Exp.hh" 51 #include "G4Pow.hh" 52 53 // factory 54 #include "G4CrossSectionFactory.hh" 55 // 56 G4_DECLARE_XS_FACTORY(G4ChipsAntiBaryonElasticXS); 57 58 G4ChipsAntiBaryonElasticXS::G4ChipsAntiBaryonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1) 59 { 60 lPMin=-8.; //Min tabulatedLogarithmMomentum(D) 61 lPMax= 8.; //Max tabulatedLogarithmMomentum(D) 62 dlnP=(lPMax-lPMin)/nLast;// LogStep inTable (D) 63 onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)(L) 64 lastSIG=0.; //Last calculated cross section (L) 65 lastLP=-10.;//LastLog(mom_of IncidentHadron)(L) 66 lastTM=0.; //Last t_maximum (L) 67 theSS=0.; //TheLastSqSlope of 1st difr.Max(L) 68 theS1=0.; //TheLastMantissa of 1st difrMax(L) 69 theB1=0.; //TheLastSlope of 1st difructMax(L) 70 theS2=0.; //TheLastMantissa of 2nd difrMax(L) 71 theB2=0.; //TheLastSlope of 2nd difructMax(L) 72 theS3=0.; //TheLastMantissa of 3d difr.Max(L) 73 theB3=0.; //TheLastSlope of 3d difruct.Max(L) 74 theS4=0.; //TheLastMantissa of 4th difrMax(L) 75 theB4=0.; //TheLastSlope of 4th difructMax(L) 76 lastTZ=0; // Last atomic number of the target 77 lastTN=0; // Last # of neutrons in the target 78 lastPIN=0.; // Last initialized max momentum 79 lastCST=0; // Elastic cross-section table 80 lastPAR=0; // ParametersForFunctionCalculation 81 lastSST=0; // E-dep ofSqardSlope of 1st difMax 82 lastS1T=0; // E-dep of mantissa of 1st dif.Max 83 lastB1T=0; // E-dep of the slope of 1st difMax 84 lastS2T=0; // E-dep of mantissa of 2nd difrMax 85 lastB2T=0; // E-dep of the slope of 2nd difMax 86 lastS3T=0; // E-dep of mantissa of 3d difr.Max 87 lastB3T=0; // E-dep of the slope of 3d difrMax 88 lastS4T=0; // E-dep of mantissa of 4th difrMax 89 lastB4T=0; // E-dep of the slope of 4th difMax 90 lastN=0; // The last N of calculated nucleus 91 lastZ=0; // The last Z of calculated nucleus 92 lastP=0.; // LastUsed inCrossSection Momentum 93 lastTH=0.; // Last threshold momentum 94 lastCS=0.; // Last value of the Cross Section 95 lastI=0; // The last position in the DAMDB 96 } 97 98 G4ChipsAntiBaryonElasticXS::~G4ChipsAntiBaryonElasticXS() 99 { 100 std::vector<G4double*>::iterator pos; 101 for (pos=CST.begin(); pos<CST.end(); pos++) 102 { delete [] *pos; } 103 CST.clear(); 104 for (pos=PAR.begin(); pos<PAR.end(); pos++) 105 { delete [] *pos; } 106 PAR.clear(); 107 for (pos=SST.begin(); pos<SST.end(); pos++) 108 { delete [] *pos; } 109 SST.clear(); 110 for (pos=S1T.begin(); pos<S1T.end(); pos++) 111 { delete [] *pos; } 112 S1T.clear(); 113 for (pos=B1T.begin(); pos<B1T.end(); pos++) 114 { delete [] *pos; } 115 B1T.clear(); 116 for (pos=S2T.begin(); pos<S2T.end(); pos++) 117 { delete [] *pos; } 118 S2T.clear(); 119 for (pos=B2T.begin(); pos<B2T.end(); pos++) 120 { delete [] *pos; } 121 B2T.clear(); 122 for (pos=S3T.begin(); pos<S3T.end(); pos++) 123 { delete [] *pos; } 124 S3T.clear(); 125 for (pos=B3T.begin(); pos<B3T.end(); pos++) 126 { delete [] *pos; } 127 B3T.clear(); 128 for (pos=S4T.begin(); pos<S4T.end(); pos++) 129 { delete [] *pos; } 130 S4T.clear(); 131 for (pos=B4T.begin(); pos<B4T.end(); pos++) 132 { delete [] *pos; } 133 B4T.clear(); 134 } 135 136 void 137 G4ChipsAntiBaryonElasticXS::CrossSectionDescription(std::ostream& outFile) const 138 { 139 outFile << "G4ChipsAntiBaryonElasticXS provides the elastic cross\n" 140 << "section for anti-baryon nucleus scattering as a function of incident\n" 141 << "momentum. The cross section is calculated using M. Kossov's\n" 142 << "CHIPS parameterization of cross section data.\n"; 143 } 144 145 G4bool G4ChipsAntiBaryonElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int, 146 const G4Element*, 147 const G4Material*) 148 { 149 150 /* 151 if(particle == G4AntiNeutron::AntiNeutron()) 152 { 153 return true; 154 } 155 else if(particle == G4AntiProton::AntiProton()) 156 { 157 return true; 158 } 159 else if(particle == G4AntiLambda::AntiLambda()) 160 { 161 return true; 162 } 163 else if(particle == G4AntiSigmaPlus::AntiSigmaPlus()) 164 { 165 return true; 166 } 167 else if(particle == G4AntiSigmaMinus::AntiSigmaMinus()) 168 { 169 return true; 170 } 171 else if(particle == G4AntiSigmaZero::AntiSigmaZero()) 172 { 173 return true; 174 } 175 else if(particle == G4AntiXiMinus::AntiXiMinus()) 176 { 177 return true; 178 } 179 else if(particle == G4AntiXiZero::AntiXiZero()) 180 { 181 return true; 182 } 183 else if(particle == G4AntiOmegaMinus::AntiOmegaMinus()) 184 { 185 return true; 186 } 187 */ 188 return true; 189 } 190 191 // The main member function giving the collision cross section (P is in IU, CS is in mb) 192 // Make pMom in independent units ! (Now it is MeV) 193 G4double G4ChipsAntiBaryonElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A, 194 const G4Isotope*, 195 const G4Element*, 196 const G4Material*) 197 { 198 G4double pMom=Pt->GetTotalMomentum(); 199 G4int tgN = A - tgZ; 200 G4int pdg = Pt->GetDefinition()->GetPDGEncoding(); 201 202 return GetChipsCrossSection(pMom, tgZ, tgN, pdg); 203 } 204 205 G4double G4ChipsAntiBaryonElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int pPDG) 206 { 207 G4bool fCS = false; 208 209 G4double pEn=pMom; 210 onlyCS=fCS; 211 212 G4bool in=false; // By default the isotope must be found in the AMDB 213 lastP = 0.; // New momentum history (nothing to compare with) 214 lastN = tgN; // The last N of the calculated nucleus 215 lastZ = tgZ; // The last Z of the calculated nucleus 216 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap 217 if(lastI) for(G4int i=0; i<lastI; ++i) // Loop over proj/tgZ/tgN lines of DB 218 { // The nucleus with projPDG is found in AMDB 219 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB 220 { 221 lastI=i; 222 lastTH =colTH[i]; // Last THreshold (A-dependent) 223 if(pEn<=lastTH) 224 { 225 return 0.; // Energy is below the Threshold value 226 } 227 lastP =colP [i]; // Last Momentum (A-dependent) 228 lastCS =colCS[i]; // Last CrossSect (A-dependent) 229 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance) 230 if(lastP == pMom) // Do not recalculate 231 { 232 CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only 233 return lastCS*millibarn; // Use theLastCS 234 } 235 in = true; // This is the case when the isotop is found in DB 236 // Momentum pMom is in IU ! @@ Units 237 lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update 238 if(lastCS<=0. && pEn>lastTH) // Correct the threshold 239 { 240 lastTH=pEn; 241 } 242 break; // Go out of the LOOP with found lastI 243 } 244 } // End of attampt to find the nucleus in DB 245 if(!in) // This nucleus has not been calculated previously 246 { 247 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU) 248 lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create 249 if(lastCS<=0.) 250 { 251 lastTH = 0; // ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last 252 if(pEn>lastTH) 253 { 254 lastTH=pEn; 255 } 256 } 257 colN.push_back(tgN); 258 colZ.push_back(tgZ); 259 colP.push_back(pMom); 260 colTH.push_back(lastTH); 261 colCS.push_back(lastCS); 262 return lastCS*millibarn; 263 } // End of creation of the new set of parameters 264 else 265 { 266 colP[lastI]=pMom; 267 colCS[lastI]=lastCS; 268 } 269 return lastCS*millibarn; 270 } 271 272 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?) 273 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB) 274 G4double G4ChipsAntiBaryonElasticXS::CalculateCrossSection(G4bool CS,G4int F,G4int I, 275 G4int PDG, G4int tgZ, G4int tgN, G4double pIU) 276 { 277 G4double pMom=pIU/GeV; // All calculations are in GeV 278 onlyCS=CS; // Flag to calculate only CS (not Si/Bi) 279 lastLP=G4Log(pMom); // Make a logarithm of the momentum for calculation 280 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE 281 { 282 if(F<0) // the AMDB must be loded 283 { 284 lastPIN = PIN[I]; // Max log(P) initialised for this table set 285 lastPAR = PAR[I]; // Pointer to the parameter set 286 lastCST = CST[I]; // Pointer to the total sross-section table 287 lastSST = SST[I]; // Pointer to the first squared slope 288 lastS1T = S1T[I]; // Pointer to the first mantissa 289 lastB1T = B1T[I]; // Pointer to the first slope 290 lastS2T = S2T[I]; // Pointer to the second mantissa 291 lastB2T = B2T[I]; // Pointer to the second slope 292 lastS3T = S3T[I]; // Pointer to the third mantissa 293 lastB3T = B3T[I]; // Pointer to the rhird slope 294 lastS4T = S4T[I]; // Pointer to the 4-th mantissa 295 lastB4T = B4T[I]; // Pointer to the 4-th slope 296 } 297 if(lastLP>lastPIN && lastLP<lPMax) 298 { 299 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs 300 PIN[I]=lastPIN; // Remember the new P-Limit of the tables 301 } 302 } 303 else // This isotope wasn't initialized => CREATE 304 { 305 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function 306 lastPAR[nLast]=0; // Initialization for VALGRIND 307 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function 308 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope 309 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa 310 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope 311 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa 312 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope 313 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa 314 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope 315 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa 316 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope 317 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables 318 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB 319 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB 320 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB 321 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB 322 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB 323 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB 324 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB 325 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB 326 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB 327 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB 328 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB 329 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB 330 } // End of creation/update of the new set of parameters and tables 331 // =---------= NOW Update (if necessary) and Calculate the Cross Section =-----------= 332 if(lastLP>lastPIN && lastLP<lPMax) 333 { 334 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN); 335 } 336 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2) 337 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables 338 { 339 if(lastLP==lastPIN) 340 { 341 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin 342 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0) 343 if(blast<0 || blast>=nLast) G4cout<<"G4QaBarElCS::CCS:b="<<blast<<","<<nLast<<G4endl; 344 lastSIG = lastCST[blast]; 345 if(!onlyCS) // Skip the differential cross-section parameters 346 { 347 theSS = lastSST[blast]; 348 theS1 = lastS1T[blast]; 349 theB1 = lastB1T[blast]; 350 theS2 = lastS2T[blast]; 351 theB2 = lastB2T[blast]; 352 theS3 = lastS3T[blast]; 353 theB3 = lastB3T[blast]; 354 theS4 = lastS4T[blast]; 355 theB4 = lastB4T[blast]; 356 } 357 } 358 else 359 { 360 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table 361 G4int blast=static_cast<int>(shift); // the lower bin number 362 if(blast<0) blast=0; 363 if(blast>=nLast) blast=nLast-1; // low edge of the last bin 364 shift-=blast; // step inside the unit bin 365 G4int lastL=blast+1; // the upper bin number 366 G4double SIGL=lastCST[blast]; // the basic value of the cross-section 367 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section 368 if(!onlyCS) // Skip the differential cross-section parameters 369 { 370 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope 371 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope 372 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa 373 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa 374 G4double B1TL=lastB1T[blast]; // the low bin of the first slope 375 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope 376 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa 377 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa 378 G4double B2TL=lastB2T[blast]; // the low bin of the second slope 379 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope 380 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa 381 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa 382 G4double B3TL=lastB3T[blast]; // the low bin of the third slope 383 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope 384 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa 385 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa 386 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope 387 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope 388 } 389 } 390 } 391 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table 392 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added 393 return lastSIG; 394 } 395 396 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated 397 G4double G4ChipsAntiBaryonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG, 398 G4int tgZ, G4int tgN) 399 { 400 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters 401 static const G4double pwd=2727; 402 const G4int n_appel=30; // #of parameters for app-elastic (<nPoints=128) 403 // -0- -1- -2- -3- -4- -5- -6- -7- -8--9--10--11--12--13--14- 404 G4double app_el[n_appel]={1.25,3.5,80.,1.,.0557,6.72,5.,74.,3.,3.4,.2,.17,.001,8.,.055, 405 3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,1.e10,8.5e8, 406 1.e10,1.1,3.4e6,6.8e6,0.}; 407 // -15- -16- -17- -18- -19- -20- -21- -22- -23- -24- 408 // -25- -26- -27- -28- -29- 409 //AR-24Jun2014 if(PDG>-3334 && PDG<-1111) 410 if(PDG>-3335 && PDG<-1111) 411 { 412 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) -- 413 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom| 414 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4); 415 // par(0) par(7) par(1) par(2) par(4) par(5) par(6) 416 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp), 417 // par(8) par(9) par(10) par(11) par(12)par(13) par(14) 418 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp); 419 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23) 420 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0. 421 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31) 422 // 423 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition 424 { 425 if ( tgZ == 1 && tgN == 0 ) 426 { 427 for (G4int ip=0; ip<n_appel; ip++) lastPAR[ip]=app_el[ip]; // PiMinus+P 428 } 429 else 430 { 431 G4double a=tgZ+tgN; 432 G4double sa=std::sqrt(a); 433 G4double ssa=std::sqrt(sa); 434 G4double asa=a*sa; 435 G4double a2=a*a; 436 G4double a3=a2*a; 437 G4double a4=a3*a; 438 G4double a5=a4*a; 439 G4double a6=a4*a2; 440 G4double a7=a6*a; 441 G4double a8=a7*a; 442 G4double a9=a8*a; 443 G4double a10=a5*a5; 444 G4double a12=a6*a6; 445 G4double a14=a7*a7; 446 G4double a16=a8*a8; 447 G4double a17=a16*a; 448 //G4double a20=a16*a4; 449 G4double a32=a16*a16; 450 // Reaction cross-section parameters (pel=peh_fit.f) 451 lastPAR[0]=.23*asa/(1.+a*.15); // p1 452 lastPAR[1]=2.8*asa/(1.+a*(.015+.05/ssa)); // p2 453 lastPAR[2]=15.*a/(1.+.005*a2); // p3 454 lastPAR[3]=.013*a2/(1.+a3*(.006+a*.00001)); // p4 455 lastPAR[4]=5.; // p5 456 lastPAR[5]=0.; // p6 not used 457 lastPAR[6]=0.; // p7 not used 458 lastPAR[7]=0.; // p8 not used 459 lastPAR[8]=0.; // p9 not used 460 // @@ the differential cross-section is parameterized separately for A>6 & A<7 461 if(a<6.5) 462 { 463 G4double a28=a16*a12; 464 // The main pre-exponent (pel_sg) 465 lastPAR[ 9]=4000*a; // p1 466 lastPAR[10]=1.2e7*a8+380*a17; // p2 467 lastPAR[11]=.7/(1.+4.e-12*a16); // p3 468 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4 469 lastPAR[13]=.28*a; // p5 470 lastPAR[14]=1.2*a2+2.3; // p6 471 lastPAR[15]=3.8/a; // p7 472 // The main slope (pel_sl) 473 lastPAR[16]=.01/(1.+.0024*a5); // p1 474 lastPAR[17]=.2*a; // p2 475 lastPAR[18]=9.e-7/(1.+.035*a5); // p3 476 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4 477 // The main quadratic (pel_sh) 478 lastPAR[20]=2.25*a3; // p1 479 lastPAR[21]=18.; // p2 480 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3 481 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4 482 // The 1st max pre-exponent (pel_qq) 483 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1 484 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2 485 lastPAR[26]=.0006*a3; // p3 486 // The 1st max slope (pel_qs) 487 lastPAR[27]=10.+4.e-8*a12*a; // p1 488 lastPAR[28]=.114; // p2 489 lastPAR[29]=.003; // p3 490 lastPAR[30]=2.e-23; // p4 491 // The effective pre-exponent (pel_ss) 492 lastPAR[31]=1./(1.+.0001*a8); // p1 493 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2 494 lastPAR[33]=.03; // p3 495 // The effective slope (pel_sb) 496 lastPAR[34]=a/2; // p1 497 lastPAR[35]=2.e-7*a4; // p2 498 lastPAR[36]=4.; // p3 499 lastPAR[37]=64./a3; // p4 500 // The gloria pre-exponent (pel_us) 501 lastPAR[38]=1.e8*G4Exp(.32*asa); // p1 502 lastPAR[39]=20.*G4Exp(.45*asa); // p2 503 lastPAR[40]=7.e3+2.4e6/a5; // p3 504 lastPAR[41]=2.5e5*G4Exp(.085*a3); // p4 505 lastPAR[42]=2.5*a; // p5 506 // The gloria slope (pel_ub) 507 lastPAR[43]=920.+.03*a8*a3; // p1 508 lastPAR[44]=93.+.0023*a12; // p2 509 } 510 else // A > Li6 (li7, ...) 511 { 512 G4double p1a10=2.2e-28*a10; 513 G4double r4a16=6.e14/a16; 514 G4double s4a16=r4a16*r4a16; 515 // a24 516 // a36 517 // The main pre-exponent (peh_sg) 518 lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15); // p1 519 lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6); // p2 520 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3 521 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4 522 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5 523 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6 524 // The main slope (peh_sl) 525 lastPAR[15]=400./a12+2.e-22*a9; // p1 526 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2 527 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3 528 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4 529 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5 530 lastPAR[20]=9.+100./a; // p6 531 // The main quadratic (peh_sh) 532 lastPAR[21]=.002*a3+3.e7/a6; // p1 533 lastPAR[22]=7.e-15*a4*asa; // p2 534 lastPAR[23]=9000./a4; // p3 535 // The 1st max pre-exponent (peh_qq) 536 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1 537 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2 538 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3 539 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4 540 // The 1st max slope (peh_qs) 541 lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1 542 lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11); // p2 543 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3 544 lastPAR[31]=100./asa; // p4 545 // The 2nd max pre-exponent (peh_ss) 546 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1 547 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2 548 lastPAR[34]=1.3+3.e5/a4; // p3 549 lastPAR[35]=500./(a2+50.)+3; // p4 550 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5 551 // The 2nd max slope (peh_sb) 552 lastPAR[37]=.4*asa+3.e-9*a6; // p1 553 lastPAR[38]=.0005*a5; // p2 554 lastPAR[39]=.002*a5; // p3 555 lastPAR[40]=10.; // p4 556 // The effective pre-exponent (peh_us) 557 lastPAR[41]=.05+.005*a; // p1 558 lastPAR[42]=7.e-8/sa; // p2 559 lastPAR[43]=.8*sa; // p3 560 lastPAR[44]=.02*sa; // p4 561 lastPAR[45]=1.e8/a3; // p5 562 lastPAR[46]=3.e32/(a32+1.e32); // p6 563 // The effective slope (peh_ub) 564 lastPAR[47]=24.; // p1 565 lastPAR[48]=20./sa; // p2 566 lastPAR[49]=7.e3*a/(sa+1.); // p3 567 lastPAR[50]=900.*sa/(1.+500./a3); // p4 568 } 569 // Parameter for lowEnergyNeutrons 570 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16); 571 } 572 lastPAR[nLast]=pwd; 573 // and initialize the zero element of the table 574 G4double lp=lPMin; // ln(momentum) 575 G4bool memCS=onlyCS; // ?? 576 onlyCS=false; 577 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables 578 onlyCS=memCS; 579 lastSST[0]=theSS; 580 lastS1T[0]=theS1; 581 lastB1T[0]=theB1; 582 lastS2T[0]=theS2; 583 lastB2T[0]=theB2; 584 lastS3T[0]=theS3; 585 lastB3T[0]=theB3; 586 lastS4T[0]=theS4; 587 lastB4T[0]=theB4; 588 } 589 if(LP>ILP) 590 { 591 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this 592 if(ini<0) ini=0; 593 if(ini<nPoints) 594 { 595 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization 596 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization 597 if(fin>=ini) 598 { 599 G4double lp=0.; 600 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3 601 { 602 lp=lPMin+ip*dlnP; // ln(momentum) 603 G4bool memCS=onlyCS; 604 onlyCS=false; 605 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS) 606 onlyCS=memCS; 607 lastSST[ip]=theSS; 608 lastS1T[ip]=theS1; 609 lastB1T[ip]=theB1; 610 lastS2T[ip]=theS2; 611 lastB2T[ip]=theB2; 612 lastS3T[ip]=theS3; 613 lastB3T[ip]=theB3; 614 lastS4T[ip]=theS4; 615 lastB4T[ip]=theB4; 616 } 617 return lp; 618 } 619 else G4cout<<"*Warning*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG 620 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP 621 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl; 622 } 623 else G4cout<<"*Warning*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG 624 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP 625 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl; 626 } 627 } 628 else 629 { 630 // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ 631 // <<", N="<<tgN<<", while it is defined only for Anti Baryons"<<G4endl; 632 // throw G4QException("G4ChipsAntiBaryonElasticXS::GetPTables:onlyaBA implemented"); 633 G4ExceptionDescription ed; 634 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 635 << ", while it is defined only for Anti Baryons" << G4endl; 636 G4Exception("G4ChipsAntiBaryonElasticXS::GetPTables()", "HAD_CHPS_0000", 637 FatalException, ed); 638 } 639 return ILP; 640 } 641 642 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV) 643 G4double G4ChipsAntiBaryonElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG) 644 { 645 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt; 646 static const G4double third=1./3.; 647 static const G4double fifth=1./5.; 648 static const G4double sevth=1./7.; 649 650 if(PDG<-3334 || PDG>-1111)G4cout<<"*Warning*G4QAntiBaryonElCS::GetExT:PDG="<<PDG<<G4endl; 651 if(onlyCS)G4cout<<"WarningG4ChipsAntiBaryonElasticXS::GetExchanT:onlyCS=1"<<G4endl; 652 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV) 653 G4double q2=0.; 654 if(tgZ==1 && tgN==0) // ===> p+p=p+p 655 { 656 G4double E1=lastTM*theB1; 657 G4double R1=(1.-G4Exp(-E1)); 658 G4double E2=lastTM*theB2; 659 G4double R2=(1.-G4Exp(-E2*E2*E2)); 660 G4double E3=lastTM*theB3; 661 G4double R3=(1.-G4Exp(-E3)); 662 G4double I1=R1*theS1/theB1; 663 G4double I2=R2*theS2; 664 G4double I3=R3*theS3; 665 G4double I12=I1+I2; 666 G4double rand=(I12+I3)*G4UniformRand(); 667 if (rand<I1 ) 668 { 669 G4double ran=R1*G4UniformRand(); 670 if(ran>1.) ran=1.; 671 q2=-G4Log(1.-ran)/theB1; 672 } 673 else if(rand<I12) 674 { 675 G4double ran=R2*G4UniformRand(); 676 if(ran>1.) ran=1.; 677 q2=-G4Log(1.-ran); 678 if(q2<0.) q2=0.; 679 q2=G4Pow::GetInstance()->powA(q2,third)/theB2; 680 } 681 else 682 { 683 G4double ran=R3*G4UniformRand(); 684 if(ran>1.) ran=1.; 685 q2=-G4Log(1.-ran)/theB3; 686 } 687 } 688 else 689 { 690 G4double a=tgZ+tgN; 691 G4double E1=lastTM*(theB1+lastTM*theSS); 692 G4double R1=(1.-G4Exp(-E1)); 693 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check) 694 G4double tm2=lastTM*lastTM; 695 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st) 696 if(a>6.5)E2*=tm2; // for heavy nuclei 697 G4double R2=(1.-G4Exp(-E2)); 698 G4double E3=lastTM*theB3; 699 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA 700 G4double R3=(1.-G4Exp(-E3)); 701 G4double E4=lastTM*theB4; 702 G4double R4=(1.-G4Exp(-E4)); 703 G4double I1=R1*theS1; 704 G4double I2=R2*theS2; 705 G4double I3=R3*theS3; 706 G4double I4=R4*theS4; 707 G4double I12=I1+I2; 708 G4double I13=I12+I3; 709 G4double rand=(I13+I4)*G4UniformRand(); 710 if(rand<I1) 711 { 712 G4double ran=R1*G4UniformRand(); 713 if(ran>1.) ran=1.; 714 q2=-G4Log(1.-ran)/theB1; 715 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss; 716 } 717 else if(rand<I12) 718 { 719 G4double ran=R2*G4UniformRand(); 720 if(ran>1.) ran=1.; 721 q2=-G4Log(1.-ran)/theB2; 722 if(q2<0.) q2=0.; 723 if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third); 724 else q2=G4Pow::GetInstance()->powA(q2,fifth); 725 } 726 else if(rand<I13) 727 { 728 G4double ran=R3*G4UniformRand(); 729 if(ran>1.) ran=1.; 730 q2=-G4Log(1.-ran)/theB3; 731 if(q2<0.) q2=0.; 732 if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth); 733 } 734 else 735 { 736 G4double ran=R4*G4UniformRand(); 737 if(ran>1.) ran=1.; 738 q2=-G4Log(1.-ran)/theB4; 739 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0) 740 } 741 } 742 if(q2<0.) q2=0.; 743 if(!(q2>=-1.||q2<=1.))G4cout<<"*NAN*G4QaBElasticCrossSect::GetExchangeT:-t="<<q2<<G4endl; 744 if(q2>lastTM) 745 { 746 q2=lastTM; 747 } 748 return q2*GeVSQ; 749 } 750 751 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT 752 G4double G4ChipsAntiBaryonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG) 753 { 754 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt; 755 if(onlyCS)G4cout<<"WarningG4ChipsAntiBaryonElasticXS::GetSlope:onlCS=true"<<G4endl; 756 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV) 757 if(PDG<-3334 || PDG>-1111) 758 { 759 // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ 760 // <<", N="<<tgN<<", while it is defined only for Anti Baryons"<<G4endl; 761 // throw G4QException("G4ChipsAntiBaryonElasticXS::GetSlope: AnBa are implemented"); 762 G4ExceptionDescription ed; 763 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 764 << ", while it is defined only for Anti Baryons" << G4endl; 765 G4Exception("G4ChipsAntiBaryonElasticXS::GetSlope()", "HAD_CHPS_0000", 766 FatalException, ed); 767 } 768 if(theB1<0.) theB1=0.; 769 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QaBaElasticCrossS::Getslope:"<<theB1<<G4endl; 770 return theB1/GeVSQ; 771 } 772 773 // Returns half max(Q2=-t) in independent units (MeV^2) 774 G4double G4ChipsAntiBaryonElasticXS::GetHMaxT() 775 { 776 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.; 777 return lastTM*HGeVSQ; 778 } 779 780 // lastLP is used, so calculating tables, one need to remember and then recover lastLP 781 G4double G4ChipsAntiBaryonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ, 782 G4int tgN) 783 { 784 if(PDG<-3334 || PDG>-1111) G4cout<<"*Warning*G4QAntiBaryElCS::GetTabV:PDG="<<PDG<<G4endl; 785 786 //AR-24Apr2018 Switch to allow transuranic elements 787 const G4bool isHeavyElementAllowed = true; 788 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92)) 789 { 790 G4cout<<"*Warning*G4QAntiBaryonElCS::GetTabValue:(1-92) NoIsotopesFor Z="<<tgZ<<G4endl; 791 return 0.; 792 } 793 G4int iZ=tgZ-1; // Z index 794 if(iZ<0) 795 { 796 iZ=0; // conversion of the neutron target to the proton target 797 tgZ=1; 798 tgN=0; 799 } 800 G4double p=G4Exp(lp); // momentum 801 G4double sp=std::sqrt(p); // sqrt(p) 802 G4double p2=p*p; 803 G4double p3=p2*p; 804 G4double p4=p3*p; 805 if ( tgZ == 1 && tgN == 0 ) // PiMin+P 806 { 807 G4double dl2=lp-lastPAR[6]; // ld ? 808 theSS=lastPAR[29]; 809 theS1=(lastPAR[7]+lastPAR[8]*dl2*dl2)/(1.+lastPAR[9]/p4/p)+ 810 (lastPAR[10]/p2+lastPAR[11]*p)/(p4+lastPAR[12]*sp); 811 theB1=lastPAR[13]*G4Pow::GetInstance()->powA(p,lastPAR[14])/(1.+lastPAR[15]/p3); 812 theS2=lastPAR[16]+lastPAR[17]/(p4+lastPAR[18]*p); 813 theB2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]/sp); 814 theS3=lastPAR[22]+lastPAR[23]/(p4*p4+lastPAR[24]*p2+lastPAR[25]); 815 theB3=lastPAR[26]+lastPAR[27]/(p4+lastPAR[28]); 816 theS4=0.; 817 theB4=0.; 818 // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG) 819 G4double ye=G4Exp(lp*lastPAR[0]); 820 G4double dp=lp-lastPAR[1]; 821 return lastPAR[2]/(ye+lastPAR[3])+lastPAR[4]*dp*dp+lastPAR[5]; 822 } 823 else 824 { 825 G4double p5=p4*p; 826 G4double p6=p5*p; 827 G4double p8=p6*p2; 828 G4double p10=p8*p2; 829 G4double p12=p10*p2; 830 G4double p16=p8*p8; 831 //G4double p24=p16*p8; 832 G4double dl=lp-5.; 833 G4double a=tgZ+tgN; 834 G4double pah=G4Pow::GetInstance()->powA(p,a/2); 835 G4double pa=pah*pah; 836 G4double pa2=pa*pa; 837 if(a<6.5) 838 { 839 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+ 840 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2); 841 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19]; 842 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16); 843 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26]; 844 theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16); 845 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33]; 846 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2); 847 theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+ 848 lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42]))); 849 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]); 850 } 851 else 852 { 853 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+ 854 lastPAR[13]/(p5+lastPAR[14]/p16); 855 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+ 856 lastPAR[17]/(1.+lastPAR[18]/p4); 857 theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4); 858 theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27]; 859 theB2=lastPAR[28]/G4Pow::GetInstance()->powA(p,lastPAR[29])+lastPAR[30]/G4Pow::GetInstance()->powA(p,lastPAR[31]); 860 theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+ 861 lastPAR[33]/(1.+lastPAR[34]/p6); 862 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8); 863 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+ 864 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12); 865 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5); 866 } 867 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG) 868 G4double dlp=lp-lastPAR[4]; // ax 869 // p1 p2 p3 p4 870 return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p)/(1.+lastPAR[3]/p); 871 } 872 return 0.; 873 } // End of GetTableValues 874 875 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ) 876 G4double G4ChipsAntiBaryonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN, 877 G4double pP) 878 { 879 static const G4double mNeut= G4Neutron::Neutron()->GetPDGMass()*.001; // MeV to GeV 880 static const G4double mProt= G4Proton::Proton()->GetPDGMass()*.001; // MeV to GeV 881 static const G4double mNuc2= sqr((mProt+mNeut)/2); 882 G4double pP2=pP*pP; // squared momentum of the projectile 883 if(tgZ || tgN>-1) // ---> pipA 884 { 885 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV 886 G4double dmt=mt+mt; 887 G4double mds=dmt*std::sqrt(pP2+mNuc2)+mNuc2+mt*mt; // Mondelstam mds (@@ other AntiBar?) 888 return dmt*dmt*pP2/mds; 889 } 890 else 891 { 892 // G4cout<<"*Error*G4ChipsAntiBaryonElasticXS::GetQ2ma:PDG="<<PDG<<",Z="<<tgZ<<",N=" 893 // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl; 894 // throw G4QException("G4ChipsAntiBaryonElasticXS::GetQ2max: only aBA implemented"); 895 G4ExceptionDescription ed; 896 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 897 << ", while it is defined only for p projectiles & Z_target>0" << G4endl; 898 G4Exception("G4ChipsAntiBaryonElasticXS::GetQ2max()", "HAD_CHPS_0000", 899 FatalException, ed); 900 return 0; 901 } 902 } 903