Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // -------------------------------------------------------------- 27 // GEANT 4 class implementation file 28 // 29 // History: first implementation, 30 // 21-5-98 V.Grichine 31 // 28-05-01, V.Ivanchenko minor changes to provide ANSI -wall compilation 32 // 04.03.05, V.Grichine: get local field interface 33 // 18-05-06 H. Burkhardt: Energy spectrum from function rather than table 34 // 35 /////////////////////////////////////////////////////////////////////////// 36 37 #include "G4SynchrotronRadiation.hh" 38 39 #include "G4DipBustGenerator.hh" 40 #include "G4Electron.hh" 41 #include "G4EmProcessSubType.hh" 42 #include "G4Log.hh" 43 #include "G4LossTableManager.hh" 44 #include "G4Gamma.hh" 45 #include "G4PhysicalConstants.hh" 46 #include "G4PropagatorInField.hh" 47 #include "G4SystemOfUnits.hh" 48 #include "G4TransportationManager.hh" 49 #include "G4UnitsTable.hh" 50 #include "G4PhysicsModelCatalog.hh" 51 52 /////////////////////////////////////////////////////////////////////// 53 // Constructor 54 G4SynchrotronRadiation::G4SynchrotronRadiation(const G4String& processName, 55 G4ProcessType type) 56 : G4VDiscreteProcess(processName, type) 57 , theGamma(G4Gamma::Gamma()) 58 { 59 G4TransportationManager* transportMgr = 60 G4TransportationManager::GetTransportationManager(); 61 62 fFieldPropagator = transportMgr->GetPropagatorInField(); 63 64 secID = G4PhysicsModelCatalog::GetModelID("model_SynRad"); 65 SetProcessSubType(fSynchrotronRadiation); 66 verboseLevel = 1; 67 FirstTime = true; 68 FirstTime1 = true; 69 genAngle = nullptr; 70 SetAngularGenerator(new G4DipBustGenerator()); 71 theManager = G4LossTableManager::Instance(); 72 theManager->Register(this); 73 } 74 75 ///////////////////////////////////////////////////////////////////////// 76 // Destructor 77 G4SynchrotronRadiation::~G4SynchrotronRadiation() 78 { 79 delete genAngle; 80 theManager->DeRegister(this); 81 } 82 83 /////////////////////////////// METHODS ///////////////////////////////// 84 85 void G4SynchrotronRadiation::SetAngularGenerator(G4VEmAngularDistribution* p) 86 { 87 if(p != genAngle) 88 { 89 delete genAngle; 90 genAngle = p; 91 } 92 } 93 94 G4bool G4SynchrotronRadiation::IsApplicable( 95 const G4ParticleDefinition& particle) 96 { 97 return (particle.GetPDGCharge() != 0.0 && !particle.IsShortLived()); 98 } 99 100 ///////////////////////////////////////////////////////////////////////// 101 // Production of synchrotron X-ray photon 102 // Geant4 internal units. 103 G4double G4SynchrotronRadiation::GetMeanFreePath(const G4Track& trackData, 104 G4double, 105 G4ForceCondition* condition) 106 { 107 // gives the MeanFreePath in Geant4 internal units 108 G4double MeanFreePath = DBL_MAX; 109 110 const G4DynamicParticle* aDynamicParticle = trackData.GetDynamicParticle(); 111 112 *condition = NotForced; 113 114 G4double gamma = 115 aDynamicParticle->GetTotalEnergy() / aDynamicParticle->GetMass(); 116 117 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge(); 118 119 if(gamma < 1.0e3 || 0.0 == particleCharge) 120 { 121 MeanFreePath = DBL_MAX; 122 } 123 else 124 { 125 G4ThreeVector FieldValue; 126 const G4Field* pField = nullptr; 127 G4bool fieldExertsForce = false; 128 129 G4FieldManager* fieldMgr = 130 fFieldPropagator->FindAndSetFieldManager(trackData.GetVolume()); 131 132 if(fieldMgr != nullptr) 133 { 134 // If the field manager has no field, there is no field ! 135 fieldExertsForce = (fieldMgr->GetDetectorField() != nullptr); 136 } 137 138 if(fieldExertsForce) 139 { 140 pField = fieldMgr->GetDetectorField(); 141 G4ThreeVector globPosition = trackData.GetPosition(); 142 143 G4double globPosVec[4], FieldValueVec[6]; 144 145 globPosVec[0] = globPosition.x(); 146 globPosVec[1] = globPosition.y(); 147 globPosVec[2] = globPosition.z(); 148 globPosVec[3] = trackData.GetGlobalTime(); 149 150 pField->GetFieldValue(globPosVec, FieldValueVec); 151 152 FieldValue = 153 G4ThreeVector(FieldValueVec[0], FieldValueVec[1], FieldValueVec[2]); 154 155 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection(); 156 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum); 157 G4double perpB = unitMcrossB.mag(); 158 159 static const G4double fLambdaConst = 160 std::sqrt(3.0) * eplus / (2.5 * fine_structure_const * c_light); 161 162 if(perpB > 0.0) 163 { 164 MeanFreePath = fLambdaConst * 165 aDynamicParticle->GetDefinition()->GetPDGMass() / 166 (perpB * particleCharge * particleCharge); 167 } 168 if(verboseLevel > 0 && FirstTime) 169 { 170 G4cout << "G4SynchrotronRadiation::GetMeanFreePath " 171 << " for particle " 172 << aDynamicParticle->GetDefinition()->GetParticleName() << ":" 173 << '\n' 174 << " MeanFreePath = " << G4BestUnit(MeanFreePath, "Length") 175 << G4endl; 176 if(verboseLevel > 1) 177 { 178 G4ThreeVector pvec = aDynamicParticle->GetMomentum(); 179 G4double Btot = FieldValue.getR(); 180 G4double ptot = pvec.getR(); 181 G4double rho = ptot / (MeV * c_light * Btot); 182 // full bending radius 183 G4double Theta = unitMomentum.theta(FieldValue); 184 // angle between particle and field 185 G4cout << " B = " << Btot / tesla << " Tesla" 186 << " perpB = " << perpB / tesla << " Tesla" 187 << " Theta = " << Theta 188 << " std::sin(Theta)=" << std::sin(Theta) << '\n' 189 << " ptot = " << G4BestUnit(ptot, "Energy") 190 << " rho = " << G4BestUnit(rho, "Length") << G4endl; 191 } 192 FirstTime = false; 193 } 194 } 195 } 196 return MeanFreePath; 197 } 198 199 /////////////////////////////////////////////////////////////////////////////// 200 G4VParticleChange* G4SynchrotronRadiation::PostStepDoIt( 201 const G4Track& trackData, const G4Step& stepData) 202 203 { 204 aParticleChange.Initialize(trackData); 205 206 const G4DynamicParticle* aDynamicParticle = trackData.GetDynamicParticle(); 207 208 G4double gamma = aDynamicParticle->GetTotalEnergy() / 209 (aDynamicParticle->GetDefinition()->GetPDGMass()); 210 211 G4double particleCharge = aDynamicParticle->GetDefinition()->GetPDGCharge(); 212 if(gamma <= 1.0e3 || 0.0 == particleCharge) 213 { 214 return G4VDiscreteProcess::PostStepDoIt(trackData, stepData); 215 } 216 217 G4ThreeVector FieldValue; 218 const G4Field* pField = nullptr; 219 220 G4bool fieldExertsForce = false; 221 G4FieldManager* fieldMgr = 222 fFieldPropagator->FindAndSetFieldManager(trackData.GetVolume()); 223 224 if(fieldMgr != nullptr) 225 { 226 // If the field manager has no field, there is no field ! 227 fieldExertsForce = (fieldMgr->GetDetectorField() != nullptr); 228 } 229 230 if(fieldExertsForce) 231 { 232 pField = fieldMgr->GetDetectorField(); 233 G4ThreeVector globPosition = trackData.GetPosition(); 234 G4double globPosVec[4], FieldValueVec[6]; 235 globPosVec[0] = globPosition.x(); 236 globPosVec[1] = globPosition.y(); 237 globPosVec[2] = globPosition.z(); 238 globPosVec[3] = trackData.GetGlobalTime(); 239 240 pField->GetFieldValue(globPosVec, FieldValueVec); 241 FieldValue = 242 G4ThreeVector(FieldValueVec[0], FieldValueVec[1], FieldValueVec[2]); 243 244 G4ThreeVector unitMomentum = aDynamicParticle->GetMomentumDirection(); 245 G4ThreeVector unitMcrossB = FieldValue.cross(unitMomentum); 246 G4double perpB = unitMcrossB.mag(); 247 if(perpB > 0.0) 248 { 249 // M-C of synchrotron photon energy 250 G4double energyOfSR = GetRandomEnergySR( 251 gamma, perpB, aDynamicParticle->GetDefinition()->GetPDGMass()); 252 253 // check against insufficient energy 254 if(energyOfSR <= 0.0) 255 { 256 return G4VDiscreteProcess::PostStepDoIt(trackData, stepData); 257 } 258 G4double kineticEnergy = aDynamicParticle->GetKineticEnergy(); 259 G4ThreeVector gammaDirection = 260 genAngle->SampleDirection(aDynamicParticle, energyOfSR, 1, nullptr); 261 262 G4ThreeVector gammaPolarization = FieldValue.cross(gammaDirection); 263 gammaPolarization = gammaPolarization.unit(); 264 265 // create G4DynamicParticle object for the SR photon 266 auto aGamma = 267 new G4DynamicParticle(theGamma, gammaDirection, energyOfSR); 268 aGamma->SetPolarization(gammaPolarization.x(), gammaPolarization.y(), 269 gammaPolarization.z()); 270 271 aParticleChange.SetNumberOfSecondaries(1); 272 273 // Update the incident particle 274 G4double newKinEnergy = kineticEnergy - energyOfSR; 275 276 if(newKinEnergy > 0.) 277 { 278 aParticleChange.ProposeEnergy(newKinEnergy); 279 } 280 else 281 { 282 aParticleChange.ProposeEnergy(0.); 283 } 284 285 // Create the G4Track 286 G4Track* aSecondaryTrack = new G4Track(aGamma, trackData.GetGlobalTime(), trackData.GetPosition()); 287 aSecondaryTrack->SetTouchableHandle(stepData.GetPostStepPoint()->GetTouchableHandle()); 288 aSecondaryTrack->SetParentID(trackData.GetTrackID()); 289 aSecondaryTrack->SetCreatorModelID(secID); 290 aParticleChange.AddSecondary(aSecondaryTrack); 291 292 } 293 } 294 return G4VDiscreteProcess::PostStepDoIt(trackData, stepData); 295 } 296 297 /////////////////////////////////////////////////////////////////////////////// 298 G4double G4SynchrotronRadiation::InvSynFracInt(G4double x) 299 // direct generation 300 { 301 // from 0 to 0.7 302 static constexpr G4double aa1 = 0; 303 static constexpr G4double aa2 = 0.7; 304 static constexpr G4int ncheb1 = 27; 305 static constexpr G4double cheb1[ncheb1] = { 306 1.22371665676046468821, 0.108956475422163837267, 307 0.0383328524358594396134, 0.00759138369340257753721, 308 0.00205712048644963340914, 0.000497810783280019308661, 309 0.000130743691810302187818, 0.0000338168760220395409734, 310 8.97049680900520817728e-6, 2.38685472794452241466e-6, 311 6.41923109149104165049e-7, 1.73549898982749277843e-7, 312 4.72145949240790029153e-8, 1.29039866111999149636e-8, 313 3.5422080787089834182e-9, 9.7594757336403784905e-10, 314 2.6979510184976065731e-10, 7.480422622550977077e-11, 315 2.079598176402699913e-11, 5.79533622220841193e-12, 316 1.61856011449276096e-12, 4.529450993473807e-13, 317 1.2698603951096606e-13, 3.566117394511206e-14, 318 1.00301587494091e-14, 2.82515346447219e-15, 319 7.9680747949792e-16 320 }; 321 // from 0.7 to 0.9132260271183847 322 static constexpr G4double aa3 = 0.9132260271183847; 323 static constexpr G4int ncheb2 = 27; 324 static constexpr G4double cheb2[ncheb2] = { 325 1.1139496701107756, 0.3523967429328067, 0.0713849171926623, 326 0.01475818043595387, 0.003381255637322462, 0.0008228057599452224, 327 0.00020785506681254216, 0.00005390169253706556, 0.000014250571923902464, 328 3.823880733161044e-6, 1.0381966089136036e-6, 2.8457557457837253e-7, 329 7.86223332179956e-8, 2.1866609342508474e-8, 6.116186259857143e-9, 330 1.7191233618437565e-9, 4.852755117740807e-10, 1.3749966961763457e-10, 331 3.908961987062447e-11, 1.1146253766895824e-11, 3.1868887323415814e-12, 332 9.134319791300977e-13, 2.6211077371181566e-13, 7.588643377757906e-14, 333 2.1528376972619e-14, 6.030906040404772e-15, 1.9549163926819867e-15 334 }; 335 // Chebyshev with exp/log scale 336 // a = -Log[1 - SynFracInt[1]]; b = -Log[1 - SynFracInt[7]]; 337 static constexpr G4double aa4 = 2.4444485538746025480; 338 static constexpr G4double aa5 = 9.3830728608909477079; 339 static constexpr G4int ncheb3 = 28; 340 static constexpr G4double cheb3[ncheb3] = { 341 1.2292683840435586977, 0.160353449247864455879, 342 -0.0353559911947559448721, 0.00776901561223573936985, 343 -0.00165886451971685133259, 0.000335719118906954279467, 344 -0.0000617184951079161143187, 9.23534039743246708256e-6, 345 -6.06747198795168022842e-7, -3.07934045961999778094e-7, 346 1.98818772614682367781e-7, -8.13909971567720135413e-8, 347 2.84298174969641838618e-8, -9.12829766621316063548e-9, 348 2.77713868004820551077e-9, -8.13032767247834023165e-10, 349 2.31128525568385247392e-10, -6.41796873254200220876e-11, 350 1.74815310473323361543e-11, -4.68653536933392363045e-12, 351 1.24016595805520752748e-12, -3.24839432979935522159e-13, 352 8.44601465226513952994e-14, -2.18647276044246803998e-14, 353 5.65407548745690689978e-15, -1.46553625917463067508e-15, 354 3.82059606377570462276e-16, -1.00457896653436912508e-16 355 }; 356 static constexpr G4double aa6 = 33.122936966163038145; 357 static constexpr G4int ncheb4 = 27; 358 static constexpr G4double cheb4[ncheb4] = { 359 1.69342658227676741765, 0.0742766400841232319225, 360 -0.019337880608635717358, 0.00516065527473364110491, 361 -0.00139342012990307729473, 0.000378549864052022522193, 362 -0.000103167085583785340215, 0.0000281543441271412178337, 363 -7.68409742018258198651e-6, 2.09543221890204537392e-6, 364 -5.70493140367526282946e-7, 1.54961164548564906446e-7, 365 -4.19665599629607704794e-8, 1.13239680054166507038e-8, 366 -3.04223563379021441863e-9, 8.13073745977562957997e-10, 367 -2.15969415476814981374e-10, 5.69472105972525594811e-11, 368 -1.48844799572430829499e-11, 3.84901514438304484973e-12, 369 -9.82222575944247161834e-13, 2.46468329208292208183e-13, 370 -6.04953826265982691612e-14, 1.44055805710671611984e-14, 371 -3.28200813577388740722e-15, 6.96566359173765367675e-16, 372 -1.294122794852896275e-16 373 }; 374 375 if(x < aa2) 376 return x * x * x * Chebyshev(aa1, aa2, cheb1, ncheb1, x); 377 else if(x < aa3) 378 return Chebyshev(aa2, aa3, cheb2, ncheb2, x); 379 else if(x < 1 - 0.0000841363) 380 { 381 G4double y = -G4Log(1 - x); 382 return y * Chebyshev(aa4, aa5, cheb3, ncheb3, y); 383 } 384 else 385 { 386 G4double y = -G4Log(1 - x); 387 return y * Chebyshev(aa5, aa6, cheb4, ncheb4, y); 388 } 389 } 390 391 G4double G4SynchrotronRadiation::GetRandomEnergySR(G4double gamma, 392 G4double perpB, 393 G4double mass_c2) 394 { 395 static const G4double fEnergyConst = 396 1.5 * c_light * c_light * eplus * hbar_Planck; 397 G4double Ecr = fEnergyConst * gamma * gamma * perpB / mass_c2; 398 399 if(verboseLevel > 0 && FirstTime1) 400 { 401 // mean and rms of photon energy 402 G4double Emean = 8. / (15. * std::sqrt(3.)) * Ecr; 403 G4double E_rms = std::sqrt(211. / 675.) * Ecr; 404 G4long prec = G4cout.precision(); 405 G4cout << "G4SynchrotronRadiation::GetRandomEnergySR :" << '\n' 406 << std::setprecision(4) << " Ecr = " << G4BestUnit(Ecr, "Energy") 407 << '\n' 408 << " Emean = " << G4BestUnit(Emean, "Energy") << '\n' 409 << " E_rms = " << G4BestUnit(E_rms, "Energy") << G4endl; 410 FirstTime1 = false; 411 G4cout.precision(prec); 412 } 413 414 G4double energySR = Ecr * InvSynFracInt(G4UniformRand()); 415 return energySR; 416 } 417 418 /////////////////////////////////////////////////////////////////////////////// 419 void G4SynchrotronRadiation::BuildPhysicsTable(const G4ParticleDefinition& part) 420 { 421 if(0 < verboseLevel && &part == G4Electron::Electron()) 422 ProcessDescription(G4cout); 423 // same for all particles, print only for one (electron) 424 } 425 426 /////////////////////////////////////////////////////////////////////////////// 427 void G4SynchrotronRadiation::ProcessDescription(std::ostream& out) const 428 { 429 out << GetProcessName() 430 << ": Incoherent Synchrotron Radiation\n" 431 "Good description for long magnets at all energies.\n"; 432 } 433