Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/utils/src/G4EmParameters.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // -------------------------------------------------------------------
 27 //
 28 // GEANT4 Class file
 29 //
 30 // File name:     G4EmParameters
 31 //
 32 // Author:        Vladimir Ivanchenko
 33 //
 34 // Creation date: 18.05.2013
 35 //
 36 // Modifications:
 37 //
 38 // -------------------------------------------------------------------
 39 //
 40 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 41 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 42 
 43 #include "G4EmParameters.hh"
 44 #include "G4PhysicalConstants.hh"
 45 #include "G4UnitsTable.hh"
 46 #include "G4SystemOfUnits.hh"
 47 #include "G4VEmProcess.hh"
 48 #include "G4VEnergyLossProcess.hh"
 49 #include "G4VAtomDeexcitation.hh"
 50 #include "G4EmExtraParameters.hh"
 51 #include "G4EmLowEParameters.hh"
 52 #include "G4EmParametersMessenger.hh"
 53 #include "G4NistManager.hh"
 54 #include "G4RegionStore.hh"
 55 #include "G4Region.hh"
 56 #include "G4ApplicationState.hh"
 57 #include "G4StateManager.hh"
 58 #include "G4Threading.hh"
 59 #include "G4AutoLock.hh"
 60 
 61 G4EmParameters* G4EmParameters::theInstance = nullptr;
 62 
 63 namespace
 64 {
 65   G4Mutex emParametersMutex = G4MUTEX_INITIALIZER;
 66 }
 67 
 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
 69 
 70 G4EmParameters* G4EmParameters::Instance()
 71 {
 72   if(nullptr == theInstance) { 
 73     G4AutoLock l(&emParametersMutex);
 74     if(nullptr == theInstance) {
 75       static G4EmParameters manager;
 76       theInstance = &manager;
 77     }
 78     l.unlock();
 79   }
 80   return theInstance;
 81 }
 82 
 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
 84 
 85 G4EmParameters::~G4EmParameters()
 86 {
 87   delete theMessenger;
 88   delete fBParameters;
 89   delete fCParameters;
 90   delete emSaturation;
 91 }
 92 
 93 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
 94 
 95 G4EmParameters::G4EmParameters()
 96 {
 97   G4NistManager::Instance();
 98   theMessenger = new G4EmParametersMessenger(this);
 99   Initialise();
100 
101   fBParameters = new G4EmExtraParameters();
102   fCParameters = new G4EmLowEParameters();
103 
104   fStateManager = G4StateManager::GetStateManager();
105   emSaturation = nullptr;
106 }
107 
108 void G4EmParameters::SetDefaults()
109 {
110   if(!IsLocked()) { 
111     Initialise();
112     fBParameters->Initialise();
113     fCParameters->Initialise();
114   }
115 }
116 
117 void G4EmParameters::Initialise()
118 {
119   lossFluctuation = true;
120   buildCSDARange = false;
121   flagLPM = true;
122   cutAsFinalRange = false;
123   applyCuts = false;
124   lateralDisplacement = true;
125   lateralDisplacementAlg96 = true;
126   muhadLateralDisplacement = false;
127   useAngGeneratorForIonisation = false;
128   useMottCorrection = false;
129   integral = true;
130   birks = false;
131   fICRU90 = false;
132   gener = false;
133   onIsolated = false;
134   fSamplingTable = false;
135   fPolarisation = false;
136   fMuDataFromFile = false;
137   fPEKShell = true;
138   fMscPosiCorr = true;
139   fUseEPICS2017XS = false;
140   f3GammaAnnihilationOnFly = false;
141   fUseRiGePairProductionModel = false;
142   fDNA = false;
143   fIsPrinted = false;
144 
145   minKinEnergy = 0.1*CLHEP::keV;
146   maxKinEnergy = 100.0*CLHEP::TeV;
147   maxKinEnergyCSDA = 1.0*CLHEP::GeV;
148   max5DEnergyForMuPair = 0.0;
149   lowestElectronEnergy = 1.0*CLHEP::keV;
150   lowestMuHadEnergy = 1.0*CLHEP::keV;
151   lowestTripletEnergy = 1.0*CLHEP::MeV;
152   maxNIELEnergy = 0.0;
153   linLossLimit = 0.01;
154   bremsTh = bremsMuHadTh = maxKinEnergy;
155   lambdaFactor = 0.8;
156   factorForAngleLimit = 1.0;
157   thetaLimit = CLHEP::pi;
158   energyLimit = 100.0*CLHEP::MeV;
159   rangeFactor = 0.04;
160   rangeFactorMuHad = 0.2;
161   geomFactor = 2.5;
162   skin = 1.0;
163   safetyFactor = 0.6;
164   lambdaLimit  = 1.0*CLHEP::mm;
165   factorScreen = 1.0;
166 
167   nbinsPerDecade = 7;
168   verbose = 1;
169   workerVerbose = 0;
170   nForFreeVector = 2;
171   tripletConv = 0;
172 
173   fTransportationWithMsc = G4TransportationWithMscType::fDisabled;
174   mscStepLimit = fUseSafety;
175   mscStepLimitMuHad = fMinimal;
176   nucFormfactor = fExponentialNF;
177   fSStype = fWVI;
178   fFluct = fUniversalFluctuation;
179   fPositronium = fSimplePositronium;
180 
181   const char* data_dir = G4FindDataDir("G4LEDATA");
182   if (nullptr != data_dir) {
183     fDirLEDATA = G4String(data_dir);
184   }
185   else {
186     G4Exception("G4EmParameters::Initialise()", "em0003", JustWarning,
187                 "G4LEDATA data directory was not found.");
188   }
189 }
190 
191 void G4EmParameters::SetLossFluctuations(G4bool val)
192 {
193   if(IsLocked()) { return; }
194   lossFluctuation = val;
195 }
196 
197 G4bool G4EmParameters::LossFluctuation() const
198 {
199   return lossFluctuation;
200 }
201 
202 void G4EmParameters::SetBuildCSDARange(G4bool val)
203 {
204   if(IsLocked()) { return; }
205   buildCSDARange = val;
206 }
207 
208 G4bool G4EmParameters::BuildCSDARange() const 
209 {
210   return buildCSDARange;
211 }
212 
213 void G4EmParameters::SetLPM(G4bool val)
214 {
215   if(IsLocked()) { return; }
216   flagLPM = val;
217 }
218 
219 G4bool G4EmParameters::LPM() const 
220 {
221   return flagLPM;
222 }
223 
224 void G4EmParameters::SetUseCutAsFinalRange(G4bool val)
225 {
226   if(IsLocked()) { return; }
227   cutAsFinalRange = val;
228 }
229 
230 G4bool G4EmParameters::UseCutAsFinalRange() const
231 {
232   return cutAsFinalRange;
233 }
234 
235 void G4EmParameters::SetApplyCuts(G4bool val)
236 {
237   if(IsLocked()) { return; }
238   applyCuts = val;
239 }
240 
241 G4bool G4EmParameters::ApplyCuts() const
242 {
243   return applyCuts;
244 }
245 
246 void G4EmParameters::SetFluo(G4bool val)
247 {
248   if(IsLocked()) { return; }
249   fCParameters->SetFluo(val);
250 }
251 
252 G4bool G4EmParameters::Fluo() const
253 {
254   return fCParameters->Fluo();
255 }
256 
257 G4EmFluoDirectory G4EmParameters::FluoDirectory() const
258 {
259   return fCParameters->FluoDirectory();
260 }
261 
262 void G4EmParameters::SetFluoDirectory(G4EmFluoDirectory val)
263 {
264   if(IsLocked()) { return; }
265   fCParameters->SetFluoDirectory(val);
266 }
267 
268 void G4EmParameters::SetBeardenFluoDir(G4bool val)
269 {
270   if(IsLocked()) { return; }
271   fCParameters->SetBeardenFluoDir(val);
272 }
273 
274 void G4EmParameters::SetANSTOFluoDir(G4bool val)
275 {
276   if(IsLocked()) { return; }
277   fCParameters->SetANSTOFluoDir(val);
278 }
279 
280 void G4EmParameters::SetXDB_EADLFluoDir(G4bool val)
281 {
282   if(IsLocked()) { return; }
283   fCParameters->SetXDB_EADLFluoDir(val);
284 }
285 
286 void G4EmParameters::SetAuger(G4bool val)
287 {
288   if(IsLocked()) { return; }
289   fCParameters->SetAuger(val);
290 }
291 
292 G4bool G4EmParameters::BeardenFluoDir()
293 {
294   auto dir = fCParameters->FluoDirectory();
295   return (dir == fluoBearden);
296 }
297 
298 G4bool G4EmParameters::ANSTOFluoDir()
299 {
300   auto dir = fCParameters->FluoDirectory();
301   return (dir == fluoANSTO);
302 }
303 
304 G4bool G4EmParameters::Auger() const
305 {
306   return fCParameters->Auger();
307 }
308 
309 void G4EmParameters::SetPixe(G4bool val)
310 {
311   if(IsLocked()) { return; }
312   fCParameters->SetPixe(val);
313 }
314 
315 G4bool G4EmParameters::Pixe() const
316 {
317   return fCParameters->Pixe();
318 }
319 
320 void G4EmParameters::SetDeexcitationIgnoreCut(G4bool val)
321 {
322   if(IsLocked()) { return; }
323   fCParameters->SetDeexcitationIgnoreCut(val);
324 }
325 
326 G4bool G4EmParameters::DeexcitationIgnoreCut() const
327 {
328   return fCParameters->DeexcitationIgnoreCut();
329 }
330 
331 void G4EmParameters::SetLateralDisplacement(G4bool val)
332 {
333   if(IsLocked()) { return; }
334   lateralDisplacement = val;
335 }
336 
337 G4bool G4EmParameters::LateralDisplacement() const
338 {
339   return lateralDisplacement;
340 }
341 
342 void G4EmParameters::SetLateralDisplacementAlg96(G4bool val)
343 {
344   if(IsLocked()) { return; }
345   lateralDisplacementAlg96 = val;
346 }
347 
348 G4bool G4EmParameters::LateralDisplacementAlg96() const
349 {
350   return lateralDisplacementAlg96;
351 }
352 
353 void G4EmParameters::SetMuHadLateralDisplacement(G4bool val)
354 {
355   if(IsLocked()) { return; }
356   muhadLateralDisplacement = val;
357 }
358 
359 G4bool G4EmParameters::MuHadLateralDisplacement() const
360 {
361   return muhadLateralDisplacement;
362 }
363 
364 void G4EmParameters::ActivateAngularGeneratorForIonisation(G4bool val)
365 {
366   if(IsLocked()) { return; }
367   useAngGeneratorForIonisation = val;
368 }
369 
370 G4bool G4EmParameters::UseAngularGeneratorForIonisation() const
371 {
372   return useAngGeneratorForIonisation;
373 }
374 
375 void G4EmParameters::SetUseMottCorrection(G4bool val)
376 {
377   if(IsLocked()) { return; }
378   useMottCorrection = val;
379 }
380 
381 G4bool G4EmParameters::UseMottCorrection() const
382 {
383   return useMottCorrection;
384 }
385 
386 void G4EmParameters::SetIntegral(G4bool val)
387 {
388   if(IsLocked()) { return; }
389   integral = val;
390 }
391 
392 G4bool G4EmParameters::Integral() const
393 {
394   return integral;
395 }
396 
397 void G4EmParameters::SetEnablePolarisation(G4bool val)
398 {
399   if(IsLocked()) { return; }
400   fPolarisation = val;
401 }
402 
403 G4bool G4EmParameters::EnablePolarisation() const
404 {
405   return fPolarisation;
406 }
407 
408 void G4EmParameters::SetBirksActive(G4bool val)
409 {
410   if(IsLocked()) { return; }
411   birks = val;
412   if(birks && nullptr == emSaturation) { emSaturation = new G4EmSaturation(1); }
413 }
414 
415 G4bool G4EmParameters::BirksActive() const
416 {
417   return birks;
418 }
419 
420 void G4EmParameters::SetUseICRU90Data(G4bool val)
421 {
422   if(IsLocked()) { return; }
423   fICRU90 = val;
424 }
425 
426 G4bool G4EmParameters::UseICRU90Data() const
427 {
428   return fICRU90;
429 }
430 
431 void G4EmParameters::SetDNAFast(G4bool val)
432 {
433   if(IsLocked()) { return; }
434   fCParameters->SetDNAFast(val);
435   if(val) { ActivateDNA(); }
436 }
437 
438 G4bool G4EmParameters::DNAFast() const
439 {
440   return fCParameters->DNAFast();
441 }
442 
443 void G4EmParameters::SetDNAStationary(G4bool val)
444 {
445   if(IsLocked()) { return; }
446   fCParameters->SetDNAStationary(val);
447   if(val) { ActivateDNA(); }
448 }
449 
450 G4bool G4EmParameters::DNAStationary() const
451 {
452   return fCParameters->DNAStationary();
453 }
454 
455 void G4EmParameters::SetDNAElectronMsc(G4bool val)
456 {
457   if(IsLocked()) { return; }
458   fCParameters->SetDNAElectronMsc(val);
459   if(val) { ActivateDNA(); }
460 }
461 
462 G4bool G4EmParameters::DNAElectronMsc() const
463 {
464   return fCParameters->DNAElectronMsc();
465 }
466 
467 void G4EmParameters::SetGeneralProcessActive(G4bool val)
468 {
469   if(IsLocked()) { return; }
470   gener = val;
471 }
472 
473 G4bool G4EmParameters::GeneralProcessActive() const
474 {
475   return gener;
476 }
477 
478 void G4EmParameters::SetEmSaturation(G4EmSaturation* ptr)
479 {
480   if(IsLocked()) { return; }
481   birks = (nullptr != ptr);
482   if(emSaturation != ptr) {
483     delete emSaturation;
484     emSaturation = ptr;
485   }
486 }
487 
488 G4bool G4EmParameters::RetrieveMuDataFromFile() const
489 {
490   return fMuDataFromFile;
491 }
492 
493 void G4EmParameters::SetRetrieveMuDataFromFile(G4bool v)
494 {
495   fMuDataFromFile = v;
496 }
497 
498 void G4EmParameters::SetOnIsolated(G4bool val)
499 {
500   if(IsLocked()) { return; }
501   onIsolated = val;
502 }
503 
504 G4bool G4EmParameters::OnIsolated() const
505 {
506   return onIsolated;
507 }
508 
509 void G4EmParameters::SetEnableSamplingTable(G4bool val)
510 {
511   if(IsLocked()) { return; }
512   fSamplingTable = val;
513 }
514 
515 G4bool G4EmParameters::EnableSamplingTable() const
516 {
517   return fSamplingTable;
518 }
519 
520 G4bool G4EmParameters::PhotoeffectBelowKShell() const
521 {
522   return fPEKShell;
523 }
524 
525 void G4EmParameters::SetPhotoeffectBelowKShell(G4bool v)
526 {
527   if(IsLocked()) { return; }
528   fPEKShell = v;
529 }
530 
531 G4bool G4EmParameters::MscPositronCorrection() const
532 {
533   return fMscPosiCorr;
534 }
535 
536 void G4EmParameters::SetMscPositronCorrection(G4bool v)
537 {
538   if(IsLocked()) { return; }
539   fMscPosiCorr = v;
540 }
541 
542 G4bool G4EmParameters::UseEPICS2017XS() const
543 {
544   return fUseEPICS2017XS;
545 }
546 
547 void G4EmParameters::SetUseEPICS2017XS(G4bool v)
548 {
549   if(IsLocked()) { return; }
550   fUseEPICS2017XS = v;
551 }
552 
553 G4bool G4EmParameters::Use3GammaAnnihilationOnFly() const
554 {
555   return f3GammaAnnihilationOnFly;
556 }
557 
558 void G4EmParameters::Set3GammaAnnihilationOnFly(G4bool v)
559 {
560   if(IsLocked()) { return; }
561   f3GammaAnnihilationOnFly = v;
562 }
563 
564 G4bool G4EmParameters::UseRiGePairProductionModel() const
565 {
566   return fUseRiGePairProductionModel;
567 }
568 
569 void G4EmParameters::SetUseRiGePairProductionModel(G4bool v)
570 {
571   if (IsLocked()) { return; }
572   fUseRiGePairProductionModel = v;
573 }
574 
575 void G4EmParameters::ActivateDNA()
576 {
577   if(IsLocked()) { return; }
578   fDNA = true;
579 }
580 
581 void G4EmParameters::SetIsPrintedFlag(G4bool val)
582 {
583   fIsPrinted = val;
584 }
585 
586 G4bool G4EmParameters::IsPrintLocked() const
587 {
588   return fIsPrinted;
589 }
590 
591 G4EmSaturation* G4EmParameters::GetEmSaturation()
592 {
593   if(nullptr == emSaturation) { 
594 #ifdef G4MULTITHREADED
595     G4MUTEXLOCK(&emParametersMutex);
596     if(nullptr == emSaturation) { 
597 #endif
598       emSaturation = new G4EmSaturation(1);
599 #ifdef G4MULTITHREADED
600     }
601     G4MUTEXUNLOCK(&emParametersMutex);
602 #endif
603   }
604   birks = true;
605   return emSaturation;
606 }
607 
608 void G4EmParameters::SetMinEnergy(G4double val)
609 {
610   if(IsLocked()) { return; }
611   if(val > 1.e-3*CLHEP::eV && val < maxKinEnergy) {
612     minKinEnergy = val;
613   } else {
614     G4ExceptionDescription ed;
615     ed << "Value of MinKinEnergy - is out of range: " << val/CLHEP::MeV 
616        << " MeV is ignored"; 
617     PrintWarning(ed);
618   }
619 }
620 
621 G4double G4EmParameters::MinKinEnergy() const
622 {
623   return minKinEnergy;
624 }
625 
626 void G4EmParameters::SetMaxEnergy(G4double val)
627 {
628   if(IsLocked()) { return; }
629   if(val > std::max(minKinEnergy,599.9*CLHEP::MeV) && val < 1.e+7*CLHEP::TeV) {
630     maxKinEnergy = val;
631   } else {
632     G4ExceptionDescription ed;
633     ed << "Value of MaxKinEnergy is out of range: " 
634        << val/CLHEP::GeV 
635        << " GeV is ignored; allowed range 600 MeV - 1.e+7 TeV"; 
636     PrintWarning(ed);
637   }
638 }
639 
640 G4double G4EmParameters::MaxKinEnergy() const
641 {
642   return maxKinEnergy;
643 }
644 
645 void G4EmParameters::SetMaxEnergyForCSDARange(G4double val)
646 {
647   if(IsLocked()) { return; }
648   if(val > minKinEnergy && val <= 100*CLHEP::TeV) {
649     maxKinEnergyCSDA = val;
650   } else {
651     G4ExceptionDescription ed;
652     ed << "Value of MaxKinEnergyCSDA is out of range: " 
653        << val/CLHEP::GeV << " GeV is ignored; allowed range "
654        << minKinEnergy << " MeV - 100 TeV"; 
655     PrintWarning(ed);
656   }
657 }
658 
659 G4double G4EmParameters::MaxEnergyForCSDARange() const
660 {
661   return maxKinEnergyCSDA; 
662 }
663 
664 void G4EmParameters::SetLowestElectronEnergy(G4double val)
665 {
666   if(IsLocked()) { return; }
667   if(val >= 0.0) { lowestElectronEnergy = val; }
668 }
669 
670 G4double G4EmParameters::LowestElectronEnergy() const
671 {
672   return lowestElectronEnergy; 
673 }
674 
675 void G4EmParameters::SetLowestMuHadEnergy(G4double val)
676 {
677   if(IsLocked()) { return; }
678   if(val >= 0.0) { lowestMuHadEnergy = val; }
679 }
680 
681 G4double G4EmParameters::LowestMuHadEnergy() const
682 {
683   return lowestMuHadEnergy; 
684 }
685 
686 void G4EmParameters::SetLowestTripletEnergy(G4double val)
687 {
688   if(IsLocked()) { return; }
689   if(val > 0.0) { lowestTripletEnergy = val; }
690 }
691 
692 G4double G4EmParameters::LowestTripletEnergy() const
693 {
694   return lowestTripletEnergy;
695 }
696 
697 void G4EmParameters::SetMaxNIELEnergy(G4double val)
698 {
699   if(IsLocked()) { return; }
700   if(val >= 0.0) { maxNIELEnergy = val; }
701 }
702 
703 G4double G4EmParameters::MaxNIELEnergy() const
704 {
705   return maxNIELEnergy;
706 }
707 
708 void G4EmParameters::SetMaxEnergyFor5DMuPair(G4double val)
709 {
710   if(IsLocked()) { return; }
711   if(val > 0.0) { max5DEnergyForMuPair = val; }
712 }
713 
714 G4double G4EmParameters::MaxEnergyFor5DMuPair() const
715 {
716   return max5DEnergyForMuPair;
717 }
718 
719 void G4EmParameters::SetLinearLossLimit(G4double val)
720 {
721   if(IsLocked()) { return; }
722   if(val > 0.0 && val < 0.5) {
723     linLossLimit = val;
724   } else {
725     G4ExceptionDescription ed;
726     ed << "Value of linLossLimit is out of range: " << val 
727        << " is ignored"; 
728     PrintWarning(ed);
729   }
730 }
731 
732 G4double G4EmParameters::LinearLossLimit() const
733 {
734   return linLossLimit;
735 }
736 
737 void G4EmParameters::SetBremsstrahlungTh(G4double val)
738 {
739   if(IsLocked()) { return; }
740   if(val > 0.0) {
741     bremsTh = val;
742   } else {
743     G4ExceptionDescription ed;
744     ed << "Value of bremsstrahlung threshold is out of range: " 
745        << val/GeV << " GeV is ignored"; 
746     PrintWarning(ed);
747   }
748 }
749 
750 G4double G4EmParameters::BremsstrahlungTh() const 
751 {
752   return bremsTh;
753 }
754 
755 void G4EmParameters::SetMuHadBremsstrahlungTh(G4double val)
756 {
757   if(IsLocked()) { return; }
758   if(val > 0.0) {
759     bremsMuHadTh = val;
760   } else {
761     G4ExceptionDescription ed;
762     ed << "Value of bremsstrahlung threshold is out of range: " 
763        << val/GeV << " GeV is ignored"; 
764     PrintWarning(ed);
765   }
766 }
767 
768 G4double G4EmParameters::MuHadBremsstrahlungTh() const
769 {
770   return bremsMuHadTh;
771 }
772 
773 void G4EmParameters::SetLambdaFactor(G4double val)
774 {
775   if(IsLocked()) { return; }
776   if(val > 0.0 && val < 1.0) {
777     lambdaFactor = val;
778   } else {
779     G4ExceptionDescription ed;
780     ed << "Value of lambda factor is out of range: " << val 
781        << " is ignored"; 
782     PrintWarning(ed);
783   }
784 }
785 
786 G4double G4EmParameters::LambdaFactor() const 
787 {
788   return lambdaFactor;
789 }
790 
791 void G4EmParameters::SetFactorForAngleLimit(G4double val)
792 {
793   if(IsLocked()) { return; }
794   if(val > 0.0) {
795     factorForAngleLimit = val;
796   } else {
797     G4ExceptionDescription ed;
798     ed << "Value of factor for enegry limit is out of range: " 
799        << val << " is ignored"; 
800     PrintWarning(ed);
801   }
802 }
803 
804 G4double G4EmParameters::FactorForAngleLimit() const 
805 {
806   return factorForAngleLimit;
807 }
808 
809 void G4EmParameters::SetMscThetaLimit(G4double val)
810 {
811   if(IsLocked()) { return; }
812   if(val >= 0.0 && val <= pi) {
813     thetaLimit = val;
814   } else {
815     G4ExceptionDescription ed;
816     ed << "Value of polar angle limit is out of range: " 
817        << val << " is ignored"; 
818     PrintWarning(ed);
819   }
820 }
821 
822 G4double G4EmParameters::MscThetaLimit() const 
823 {
824   return thetaLimit;
825 }
826 
827 void G4EmParameters::SetMscEnergyLimit(G4double val)
828 {
829   if(IsLocked()) { return; }
830   if(val >= 0.0) {
831     energyLimit = val;
832   } else {
833     G4ExceptionDescription ed;
834     ed << "Value of msc energy limit is out of range: " 
835        << val << " is ignored"; 
836     PrintWarning(ed);
837   }
838 }
839 
840 G4double G4EmParameters::MscEnergyLimit() const
841 {
842   return energyLimit;
843 }
844 
845 void G4EmParameters::SetMscRangeFactor(G4double val)
846 {
847   if(IsLocked()) { return; }
848   if(val > 0.0 && val < 1.0) {
849     rangeFactor = val;
850   } else {
851     G4ExceptionDescription ed;
852     ed << "Value of rangeFactor is out of range: " 
853        << val << " is ignored"; 
854     PrintWarning(ed);
855   }
856 }
857 
858 G4double G4EmParameters::MscRangeFactor() const 
859 {
860   return rangeFactor;
861 }
862 
863 void G4EmParameters::SetMscMuHadRangeFactor(G4double val)
864 {
865   if(IsLocked()) { return; }
866   if(val > 0.0 && val < 1.0) {
867     rangeFactorMuHad = val;
868   } else {
869     G4ExceptionDescription ed;
870     ed << "Value of rangeFactorMuHad is out of range: " 
871        << val << " is ignored"; 
872     PrintWarning(ed);
873   }
874 }
875 
876 G4double G4EmParameters::MscMuHadRangeFactor() const 
877 {
878   return rangeFactorMuHad;
879 }
880 
881 void G4EmParameters::SetMscGeomFactor(G4double val)
882 {
883   if(IsLocked()) { return; }
884   if(val >= 1.0) {
885     geomFactor = val;
886   } else {
887     G4ExceptionDescription ed;
888     ed << "Value of geomFactor is out of range: " 
889        << val << " is ignored"; 
890     PrintWarning(ed);
891   }
892 }
893 
894 G4double G4EmParameters::MscGeomFactor() const 
895 {
896   return geomFactor;
897 }
898 
899 void G4EmParameters::SetMscSafetyFactor(G4double val)
900 {
901   if(IsLocked()) { return; }
902   if(val >= 0.1) {
903     safetyFactor = val;
904   } else {
905     G4ExceptionDescription ed;
906     ed << "Value of safetyFactor is out of range: " 
907        << val << " is ignored"; 
908     PrintWarning(ed);
909   }
910 }
911 
912 G4double G4EmParameters::MscSafetyFactor() const 
913 {
914   return safetyFactor;
915 }
916 
917 void G4EmParameters::SetMscLambdaLimit(G4double val)
918 {
919   if(IsLocked()) { return; }
920   if(val >= 0.0) {
921     lambdaLimit = val;
922   } else {
923     G4ExceptionDescription ed;
924     ed << "Value of lambdaLimit is out of range: " 
925        << val << " is ignored"; 
926     PrintWarning(ed);
927   }
928 }
929 
930 G4double G4EmParameters::MscLambdaLimit() const 
931 {
932   return lambdaLimit;
933 }
934 
935 void G4EmParameters::SetMscSkin(G4double val)
936 {
937   if(IsLocked()) { return; }
938   if(val >= 1.0) {
939     skin = val;
940   } else {
941     G4ExceptionDescription ed;
942     ed << "Value of skin is out of range: " 
943        << val << " is ignored"; 
944     PrintWarning(ed);
945   }
946 }
947 
948 G4double G4EmParameters::MscSkin() const 
949 {
950   return skin;
951 }
952 
953 void G4EmParameters::SetScreeningFactor(G4double val)
954 {
955   if(IsLocked()) { return; }
956   if(val > 0.0) {
957     factorScreen = val;
958   } else {
959     G4ExceptionDescription ed;
960     ed << "Value of factorScreen is out of range: " 
961        << val << " is ignored"; 
962     PrintWarning(ed);
963   }
964 }
965 
966 G4double G4EmParameters::ScreeningFactor() const
967 {
968   return factorScreen;
969 }
970 
971 void G4EmParameters::SetStepFunction(G4double v1, G4double v2)
972 {
973   if(IsLocked()) { return; }
974   fBParameters->SetStepFunction(v1, v2);
975 }
976 
977 void G4EmParameters::SetStepFunctionMuHad(G4double v1, G4double v2)
978 {
979   if(IsLocked()) { return; }
980   fBParameters->SetStepFunctionMuHad(v1, v2);
981 }
982 
983 void G4EmParameters::SetStepFunctionLightIons(G4double v1, G4double v2)
984 {
985   if(IsLocked()) { return; }
986   fBParameters->SetStepFunctionLightIons(v1, v2);
987 }
988 
989 void G4EmParameters::SetStepFunctionIons(G4double v1, G4double v2)
990 {
991   if(IsLocked()) { return; }
992   fBParameters->SetStepFunctionIons(v1, v2);
993 }
994 
995 void G4EmParameters::FillStepFunction(const G4ParticleDefinition* part, G4VEnergyLossProcess* proc) const
996 {
997   fBParameters->FillStepFunction(part, proc);
998 }
999 
1000 G4int G4EmParameters::NumberOfBins() const 
1001 {
1002   return nbinsPerDecade*G4lrint(std::log10(maxKinEnergy/minKinEnergy));
1003 }
1004 
1005 void G4EmParameters::SetNumberOfBinsPerDecade(G4int val)
1006 {
1007   if(IsLocked()) { return; }
1008   if(val >= 5 && val < 1000000) {
1009     nbinsPerDecade = val;
1010   } else {
1011     G4ExceptionDescription ed;
1012     ed << "Value of number of bins per decade is out of range: " 
1013        << val << " is ignored"; 
1014     PrintWarning(ed);
1015   }
1016 }
1017 
1018 G4int G4EmParameters::NumberOfBinsPerDecade() const 
1019 {
1020   return nbinsPerDecade; 
1021 }
1022 
1023 void G4EmParameters::SetVerbose(G4int val)
1024 {
1025   if(IsLocked()) { return; }
1026   verbose = val;
1027   workerVerbose = std::min(workerVerbose, verbose);
1028 }
1029 
1030 G4int G4EmParameters::Verbose() const 
1031 {
1032   return verbose;
1033 }
1034 
1035 void G4EmParameters::SetWorkerVerbose(G4int val)
1036 {
1037   if(IsLocked()) { return; }
1038   workerVerbose = val;
1039 }
1040 
1041 G4int G4EmParameters::WorkerVerbose() const 
1042 {
1043   return workerVerbose;
1044 }
1045 
1046 void G4EmParameters::SetNumberForFreeVector(G4int val)
1047 {
1048   if(IsLocked()) { return; }
1049   nForFreeVector = val;
1050 }
1051 
1052 G4int G4EmParameters::NumberForFreeVector() const 
1053 {
1054   return nForFreeVector;
1055 }
1056 
1057 void G4EmParameters::SetTransportationWithMsc(G4TransportationWithMscType val)
1058 {
1059   if(IsLocked()) { return; }
1060   fTransportationWithMsc = val;
1061 }
1062 
1063 G4TransportationWithMscType G4EmParameters::TransportationWithMsc() const
1064 {
1065   return fTransportationWithMsc;
1066 }
1067 
1068 void G4EmParameters::SetFluctuationType(G4EmFluctuationType val)
1069 {
1070   if(IsLocked()) { return; }
1071   fFluct = val;
1072 }
1073 
1074 G4EmFluctuationType G4EmParameters::FluctuationType() const
1075 {
1076   return fFluct;
1077 }
1078 
1079 void G4EmParameters::SetPositronAtRestModelType(G4PositronAtRestModelType val)
1080 {
1081   if(IsLocked()) { return; }
1082   fPositronium = val;
1083 }
1084 
1085 G4PositronAtRestModelType G4EmParameters::PositronAtRestModelType() const
1086 {
1087   return fPositronium;
1088 }
1089 
1090 void G4EmParameters::SetMscStepLimitType(G4MscStepLimitType val)
1091 {
1092   if(IsLocked()) { return; }
1093   mscStepLimit = val;
1094 }
1095 
1096 G4MscStepLimitType G4EmParameters::MscStepLimitType() const 
1097 {
1098   return mscStepLimit;
1099 }
1100 
1101 void G4EmParameters::SetMscMuHadStepLimitType(G4MscStepLimitType val)
1102 {
1103   if(IsLocked()) { return; }
1104   mscStepLimitMuHad = val;
1105 }
1106 
1107 G4MscStepLimitType G4EmParameters::MscMuHadStepLimitType() const 
1108 {
1109   return mscStepLimitMuHad;
1110 }
1111 
1112 void G4EmParameters::SetSingleScatteringType(G4eSingleScatteringType val)
1113 {
1114   if(IsLocked()) { return; }
1115   fSStype = val;
1116 }
1117 
1118 G4eSingleScatteringType G4EmParameters::SingleScatteringType() const
1119 {
1120   return fSStype;
1121 }
1122 
1123 void 
1124 G4EmParameters::SetNuclearFormfactorType(G4NuclearFormfactorType val)
1125 {
1126   if(IsLocked()) { return; }
1127   nucFormfactor = val;
1128 }
1129 
1130 G4NuclearFormfactorType G4EmParameters::NuclearFormfactorType() const
1131 {
1132   return nucFormfactor;
1133 }
1134 
1135 void G4EmParameters::SetDNAeSolvationSubType(G4DNAModelSubType val)
1136 {
1137   if(IsLocked()) { return; }
1138   fCParameters->SetDNAeSolvationSubType(val);
1139   ActivateDNA();
1140 }
1141 
1142 G4DNAModelSubType G4EmParameters::DNAeSolvationSubType() const
1143 {
1144   return fCParameters->DNAeSolvationSubType();
1145 }
1146 
1147 void G4EmParameters::SetConversionType(G4int val)
1148 {
1149   if(IsLocked()) { return; }
1150   tripletConv = val;
1151 }
1152 
1153 G4int G4EmParameters::GetConversionType() const
1154 {
1155   return tripletConv;
1156 }
1157 
1158 void G4EmParameters::SetPIXECrossSectionModel(const G4String& sss)
1159 {
1160   if(IsLocked()) { return; }
1161   fCParameters->SetPIXECrossSectionModel(sss);
1162 }
1163 
1164 const G4String& G4EmParameters::PIXECrossSectionModel()
1165 {
1166   return fCParameters->PIXECrossSectionModel();
1167 }
1168 
1169 void G4EmParameters::SetPIXEElectronCrossSectionModel(const G4String& sss)
1170 {
1171   if(IsLocked()) { return; }
1172   fCParameters->SetPIXEElectronCrossSectionModel(sss);
1173 }
1174 
1175 const G4String& G4EmParameters::PIXEElectronCrossSectionModel()
1176 {
1177   return fCParameters->PIXEElectronCrossSectionModel();
1178 }
1179 
1180 void G4EmParameters::SetLivermoreDataDir(const G4String& sss)
1181 {
1182   if(IsLocked()) { return; }
1183   fCParameters->SetLivermoreDataDir(sss);
1184 }
1185 
1186 const G4String& G4EmParameters::LivermoreDataDir()
1187 {
1188   return fCParameters->LivermoreDataDir();
1189 }
1190 
1191 void G4EmParameters::PrintWarning(G4ExceptionDescription& ed) const
1192 {
1193   G4Exception("G4EmParameters", "em0044", JustWarning, ed);
1194 }
1195 
1196 void G4EmParameters::AddPAIModel(const G4String& particle,
1197                                  const G4String& region,
1198                                  const G4String& type)
1199 {
1200   if(IsLocked()) { return; }
1201   fBParameters->AddPAIModel(particle, region, type);
1202 }
1203 
1204 const std::vector<G4String>& G4EmParameters::ParticlesPAI() const
1205 {
1206   return fBParameters->ParticlesPAI();
1207 }
1208 
1209 const std::vector<G4String>& G4EmParameters::RegionsPAI() const
1210 {
1211   return fBParameters->RegionsPAI();
1212 }
1213 
1214 const std::vector<G4String>& G4EmParameters::TypesPAI() const
1215 {
1216   return fBParameters->TypesPAI();
1217 }
1218 
1219 void G4EmParameters::AddMicroElec(const G4String& region)
1220 {
1221   if(IsLocked()) { return; }
1222   fCParameters->AddMicroElec(region);
1223 }
1224 
1225 const std::vector<G4String>& G4EmParameters::RegionsMicroElec() const
1226 {
1227   return fCParameters->RegionsMicroElec();
1228 }
1229 
1230 void G4EmParameters::AddDNA(const G4String& region, const G4String& type)
1231 {
1232   if(IsLocked()) { return; }
1233   fCParameters->AddDNA(region, type);
1234   ActivateDNA();
1235 }
1236 
1237 const std::vector<G4String>& G4EmParameters::RegionsDNA() const
1238 {
1239   return fCParameters->RegionsDNA();
1240 }
1241 
1242 const std::vector<G4String>& G4EmParameters::TypesDNA() const
1243 {
1244   return fCParameters->TypesDNA();
1245 }
1246 
1247 void G4EmParameters::AddPhysics(const G4String& region, const G4String& type)
1248 {
1249   if(IsLocked()) { return; }
1250   fBParameters->AddPhysics(region, type);
1251 }
1252 
1253 const std::vector<G4String>& G4EmParameters::RegionsPhysics() const
1254 {
1255   return fBParameters->RegionsPhysics();
1256 }
1257 
1258 const std::vector<G4String>& G4EmParameters::TypesPhysics() const
1259 {
1260   return fBParameters->TypesPhysics();
1261 }
1262 
1263 void G4EmParameters::SetSubCutRegion(const G4String& region)
1264 {
1265   if(IsLocked()) { return; }
1266   fBParameters->SetSubCutRegion(region);
1267 }
1268 
1269 void 
1270 G4EmParameters::SetDeexActiveRegion(const G4String& region, G4bool adeex,
1271                                     G4bool aauger, G4bool apixe)
1272 {
1273   if(IsLocked()) { return; }
1274   fCParameters->SetDeexActiveRegion(region, adeex, aauger, apixe);
1275 }
1276 
1277 void 
1278 G4EmParameters::SetProcessBiasingFactor(const G4String& procname, 
1279                                         G4double val, G4bool wflag)
1280 {
1281   if(IsLocked()) { return; }
1282   fBParameters->SetProcessBiasingFactor(procname, val, wflag);
1283 }
1284 
1285 void 
1286 G4EmParameters::ActivateForcedInteraction(const G4String& procname, 
1287                                           const G4String& region,
1288                                           G4double length, 
1289                                           G4bool wflag)
1290 {
1291   if(IsLocked() && !gener) { return; }
1292   fBParameters->ActivateForcedInteraction(procname, region, length, wflag);
1293 }
1294 
1295 void 
1296 G4EmParameters::ActivateSecondaryBiasing(const G4String& procname,
1297                                          const G4String& region, 
1298                                          G4double factor,
1299                                          G4double energyLim)
1300 {
1301   if(IsLocked()) { return; }
1302   fBParameters->ActivateSecondaryBiasing(procname, region, factor, energyLim);
1303 }
1304 
1305 void G4EmParameters::DefineRegParamForLoss(G4VEnergyLossProcess* ptr) const
1306 {
1307   fBParameters->DefineRegParamForLoss(ptr);
1308 }
1309 
1310 void G4EmParameters::DefineRegParamForEM(G4VEmProcess* ptr) const
1311 {
1312   fBParameters->DefineRegParamForEM(ptr);
1313 }
1314 
1315 G4bool G4EmParameters::QuantumEntanglement() const
1316 {
1317   return fBParameters->QuantumEntanglement(); 
1318 }
1319 
1320 void G4EmParameters::SetQuantumEntanglement(G4bool v)
1321 {
1322   if(IsLocked()) { return; }
1323   fBParameters->SetQuantumEntanglement(v); 
1324 }
1325 
1326 G4bool G4EmParameters::GetDirectionalSplitting() const { 
1327   return fBParameters->GetDirectionalSplitting(); 
1328 }
1329 
1330 void G4EmParameters::SetDirectionalSplitting(G4bool v) 
1331 { 
1332   if(IsLocked()) { return; }
1333   fBParameters->SetDirectionalSplitting(v); 
1334 }
1335 
1336 void G4EmParameters::SetDirectionalSplittingTarget(const G4ThreeVector& v)
1337 { 
1338   if(IsLocked()) { return; }
1339   fBParameters->SetDirectionalSplittingTarget(v);
1340 }
1341 
1342 G4ThreeVector G4EmParameters::GetDirectionalSplittingTarget() const
1343 { 
1344   return fBParameters->GetDirectionalSplittingTarget(); 
1345 }
1346 
1347 void G4EmParameters::SetDirectionalSplittingRadius(G4double r)
1348 { 
1349   if(IsLocked()) { return; }
1350   fBParameters->SetDirectionalSplittingRadius(r); 
1351 }
1352 
1353 G4double G4EmParameters::GetDirectionalSplittingRadius()
1354 { 
1355   return fBParameters->GetDirectionalSplittingRadius(); 
1356 }
1357 
1358 void G4EmParameters::DefineRegParamForDeex(G4VAtomDeexcitation* ptr) const
1359 {
1360   fCParameters->DefineRegParamForDeex(ptr); 
1361 }
1362 
1363 const G4String& G4EmParameters::GetDirLEDATA() const
1364 {
1365   return fDirLEDATA;
1366 }
1367 
1368 void G4EmParameters::StreamInfo(std::ostream& os) const
1369 {
1370   G4long prec = os.precision(5);
1371   os << "=======================================================================" << "\n";
1372   os << "======                 Electromagnetic Physics Parameters      ========" << "\n";
1373   os << "=======================================================================" << "\n";
1374   os << "LPM effect enabled                                 " <<flagLPM << "\n";
1375   os << "Enable creation and use of sampling tables         " <<fSamplingTable << "\n";
1376   os << "Apply cuts on all EM processes                     " <<applyCuts << "\n";
1377   const char* transportationWithMsc = "Disabled";
1378   if(fTransportationWithMsc == G4TransportationWithMscType::fEnabled) {
1379     transportationWithMsc = "Enabled";
1380   } else if (fTransportationWithMsc == G4TransportationWithMscType::fMultipleSteps) {
1381     transportationWithMsc = "MultipleSteps";
1382   }
1383   os << "Use combined TransportationWithMsc                 " <<transportationWithMsc << "\n";
1384   os << "Use general process                                " <<gener << "\n";
1385   os << "Enable linear polarisation for gamma               " <<fPolarisation << "\n";
1386   os << "Enable photoeffect sampling below K-shell          " <<fPEKShell << "\n";
1387   os << "Enable sampling of quantum entanglement            " 
1388      <<fBParameters->QuantumEntanglement()  << "\n";
1389   os << "X-section factor for integral approach             " <<lambdaFactor << "\n";
1390   os << "Min kinetic energy for tables                      " 
1391      <<G4BestUnit(minKinEnergy,"Energy") << "\n";
1392   os << "Max kinetic energy for tables                      " 
1393      <<G4BestUnit(maxKinEnergy,"Energy") << "\n";
1394   os << "Number of bins per decade of a table               " <<nbinsPerDecade << "\n";
1395   os << "Verbose level                                      " <<verbose << "\n";
1396   os << "Verbose level for worker thread                    " <<workerVerbose << "\n";
1397   os << "Bremsstrahlung energy threshold above which \n" 
1398      << "  primary e+- is added to the list of secondary    " 
1399      <<G4BestUnit(bremsTh,"Energy") << "\n";
1400   os << "Bremsstrahlung energy threshold above which primary\n" 
1401      << "  muon/hadron is added to the list of secondary    " 
1402      <<G4BestUnit(bremsMuHadTh,"Energy") << "\n";
1403   G4String name3g = "SimplePositronium";
1404   if (fPositronium == fAllisonPositronium) { name3g = "AllisonPositronium"; }
1405   else if (fPositronium == fOrePowell) { name3g = "OrePowell"; }
1406   else if (fPositronium == fOrePowellPolar) { name3g = "OrePowellPolar"; }
1407   os << "Positron annihilation at rest model                " << name3g << "\n";
1408   
1409   os << "Enable 3 gamma annihilation on fly                 "
1410      << f3GammaAnnihilationOnFly << "\n";
1411   os << "Lowest triplet kinetic energy                      " 
1412      <<G4BestUnit(lowestTripletEnergy,"Energy") << "\n";
1413   os << "Enable sampling of gamma linear polarisation       " <<fPolarisation << "\n";
1414   os << "5D gamma conversion model type                     " <<tripletConv << "\n";
1415   os << "5D gamma conversion model on isolated ion          " <<onIsolated << "\n";
1416   if(max5DEnergyForMuPair>0.0) {
1417   os << "5D gamma conversion limit for muon pair            " 
1418      << max5DEnergyForMuPair/CLHEP::GeV << " GeV\n";
1419   }
1420   os << "Use Ricardo-Gerardo pair production model          "
1421      << fUseRiGePairProductionModel << "\n";
1422   os << "Livermore data directory                           " 
1423      << fCParameters->LivermoreDataDir() << "\n";
1424 
1425   os << "=======================================================================" << "\n";
1426   os << "======                 Ionisation Parameters                   ========" << "\n";
1427   os << "=======================================================================" << "\n";
1428   os << "Step function for e+-                              " 
1429      <<"("<<fBParameters->GetStepFunctionP1() << ", " 
1430      << fBParameters->GetStepFunctionP2()/CLHEP::mm << " mm)\n";
1431   os << "Step function for muons/hadrons                    " 
1432      <<"("<<fBParameters->GetStepFunctionMuHadP1() << ", " 
1433      << fBParameters->GetStepFunctionMuHadP2()/CLHEP::mm << " mm)\n";
1434   os << "Step function for light ions                       " 
1435      <<"("<<fBParameters->GetStepFunctionLightIonsP1() << ", " 
1436      << fBParameters->GetStepFunctionLightIonsP2()/CLHEP::mm << " mm)\n";
1437   os << "Step function for general ions                     " 
1438      <<"("<<fBParameters->GetStepFunctionIonsP1() << ", " 
1439      << fBParameters->GetStepFunctionIonsP2()/CLHEP::mm << " mm)\n";
1440   os << "Lowest e+e- kinetic energy                         " 
1441      <<G4BestUnit(lowestElectronEnergy,"Energy") << "\n";
1442   os << "Lowest muon/hadron kinetic energy                  " 
1443      <<G4BestUnit(lowestMuHadEnergy,"Energy") << "\n";
1444   os << "Use ICRU90 data                                    " << fICRU90 << "\n";
1445   os << "Fluctuations of dE/dx are enabled                  " <<lossFluctuation << "\n";
1446   G4String namef = "Universal";
1447   if(fFluct == fUrbanFluctuation) { namef = "Urban"; }
1448   else if(fFluct == fDummyFluctuation) { namef = "Dummy"; }
1449   os << "Type of fluctuation model for leptons and hadrons  " << namef << "\n";
1450   os << "Use built-in Birks satuaration                     " << birks << "\n";
1451   os << "Build CSDA range enabled                           " <<buildCSDARange << "\n";
1452   os << "Use cut as a final range enabled                   " <<cutAsFinalRange << "\n";
1453   os << "Enable angular generator interface                 " 
1454      <<useAngGeneratorForIonisation << "\n";
1455   os << "Max kinetic energy for CSDA tables                 " 
1456      <<G4BestUnit(maxKinEnergyCSDA,"Energy") << "\n";
1457   os << "Max kinetic energy for NIEL computation            " 
1458      <<G4BestUnit(maxNIELEnergy,"Energy") << "\n";
1459   os << "Linear loss limit                                  " <<linLossLimit << "\n";
1460   os << "Read data from file for e+e- pair production by mu " <<fMuDataFromFile << "\n";
1461 
1462   os << "=======================================================================" << "\n";
1463   os << "======                 Multiple Scattering Parameters          ========" << "\n";
1464   os << "=======================================================================" << "\n";
1465   os << "Type of msc step limit algorithm for e+-           " <<mscStepLimit << "\n";
1466   os << "Type of msc step limit algorithm for muons/hadrons " <<mscStepLimitMuHad << "\n";
1467   os << "Msc lateral displacement for e+- enabled           " <<lateralDisplacement << "\n";
1468   os << "Msc lateral displacement for muons and hadrons     " <<muhadLateralDisplacement << "\n";
1469   os << "Urban msc model lateral displacement alg96         " <<lateralDisplacementAlg96 << "\n";
1470   os << "Range factor for msc step limit for e+-            " <<rangeFactor << "\n";
1471   os << "Range factor for msc step limit for muons/hadrons  " <<rangeFactorMuHad << "\n";
1472   os << "Geometry factor for msc step limitation of e+-     " <<geomFactor << "\n";
1473   os << "Safety factor for msc step limit for e+-           " <<safetyFactor << "\n";
1474   os << "Skin parameter for msc step limitation of e+-      " <<skin << "\n";
1475   os << "Lambda limit for msc step limit for e+-            " <<lambdaLimit/CLHEP::mm << " mm\n";
1476   os << "Use Mott correction for e- scattering              " << useMottCorrection << "\n";
1477   os << "Factor used for dynamic computation of angular \n" 
1478      << "  limit between single and multiple scattering     " << factorForAngleLimit << "\n";
1479   os << "Fixed angular limit between single \n"
1480      << "  and multiple scattering                          " 
1481      << thetaLimit/CLHEP::rad << " rad\n";
1482   os << "Upper energy limit for e+- multiple scattering     " 
1483      << energyLimit/CLHEP::MeV << " MeV\n";
1484   os << "Type of electron single scattering model           " <<fSStype << "\n";
1485   os << "Type of nuclear form-factor                        " <<nucFormfactor << "\n";
1486   os << "Screening factor                                   " <<factorScreen << "\n";
1487   os << "=======================================================================" << "\n";
1488 
1489   if(fCParameters->Fluo()) {
1490   os << "======                 Atomic Deexcitation Parameters          ========" << "\n";
1491   os << "=======================================================================" << "\n";
1492   os << "Fluorescence enabled                               " <<fCParameters->Fluo() << "\n";
1493   G4String named = "fluor";
1494   G4EmFluoDirectory fdir = FluoDirectory();
1495   if(fdir == fluoBearden) { named = "fluor_Bearden"; }
1496   else if(fdir == fluoANSTO) { named = "fluor_ANSTO"; }
1497   else if(fdir == fluoXDB_EADL) { named = "fluor_XDB_EADL"; }
1498   os << "Directory in G4LEDATA for fluorescence data files  " << named << "\n";
1499   os << "Auger electron cascade enabled                     " 
1500      <<fCParameters->Auger() << "\n";
1501   os << "PIXE atomic de-excitation enabled                  " <<fCParameters->Pixe() << "\n";
1502   os << "De-excitation module ignores cuts                  " 
1503      <<fCParameters->DeexcitationIgnoreCut() << "\n";
1504   os << "Type of PIXE cross section for hadrons             " 
1505      <<fCParameters->PIXECrossSectionModel() << "\n";
1506   os << "Type of PIXE cross section for e+-                 " 
1507      <<fCParameters->PIXEElectronCrossSectionModel() << "\n";
1508   os << "=======================================================================" << "\n";
1509   }
1510   if(fDNA) {
1511   os << "======                 DNA Physics Parameters                  ========" << "\n";
1512   os << "=======================================================================" << "\n";
1513   os << "Use fast sampling in DNA models                    " 
1514      << fCParameters->DNAFast() << "\n";
1515   os << "Use Stationary option in DNA models                " 
1516      << fCParameters->DNAStationary() << "\n";
1517   os << "Use DNA with multiple scattering of e-             " 
1518      << fCParameters->DNAElectronMsc() << "\n";
1519   os << "Use DNA e- solvation model type                    " 
1520      << fCParameters->DNAeSolvationSubType() << "\n";
1521   auto chemModel = fCParameters->GetChemTimeStepModel();
1522   if(fCParameters->GetChemTimeStepModel() != G4ChemTimeStepModel::Unknown)
1523   {
1524     std::vector<G4String> ChemModel{"Unknown","SBS","IRT","IRT_syn"};
1525     os << "Use DNA Chemistry model                            "
1526        << ChemModel.at((std::size_t)chemModel) << "\n";
1527   }
1528   os << "=======================================================================" << G4endl;
1529   }
1530   os.precision(prec);
1531 }
1532 
1533 void G4EmParameters::Dump()
1534 {
1535   if(fIsPrinted) return;
1536 
1537 #ifdef G4MULTITHREADED
1538   G4MUTEXLOCK(&emParametersMutex);
1539 #endif
1540   StreamInfo(G4cout);
1541 #ifdef G4MULTITHREADED
1542   G4MUTEXUNLOCK(&emParametersMutex);
1543 #endif
1544 }
1545 
1546 std::ostream& operator<< (std::ostream& os, const G4EmParameters& par)
1547 {
1548   par.StreamInfo(os);
1549   return os;
1550 }
1551 
1552 G4bool G4EmParameters::IsLocked() const
1553 {
1554   return (!G4Threading::IsMasterThread() ||
1555     (fStateManager->GetCurrentState() != G4State_PreInit &&
1556            fStateManager->GetCurrentState() != G4State_Init &&
1557      fStateManager->GetCurrentState() != G4State_Idle));
1558 }
1559 
1560 
1561 void G4EmParameters::SetTimeStepModel(const G4ChemTimeStepModel& model)
1562 {
1563   fCParameters-> SetChemTimeStepModel(model);
1564 }
1565 
1566 G4ChemTimeStepModel G4EmParameters::GetTimeStepModel() const
1567 {
1568   return fCParameters->GetChemTimeStepModel();
1569 }
1570 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
1571