Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 #ifndef G4ElectronIonPair_h 27 #define G4ElectronIonPair_h 1 28 29 // ------------------------------------------------------------- 30 // 31 // GEANT4 Class header file 32 // 33 // 34 // File name: G4ElectronIonPair 35 // 36 // Author: Vladimir Ivanchenko 37 // 38 // Creation date: 08.07.2008 39 // 40 // Modifications: 41 // 42 // 43 // Class Description: 44 // Compution on number of electon-ion or electorn-hole pairs 45 // at the step of a particle and sampling ionisation points 46 // in space 47 // 48 // Based on ICRU Report 31, 1979 49 // "Average Energy Required to Produce an Ion Pair" 50 // 51 // 06.04.2010 V. Grichine, substitute Gauss by Gamma for ionisation 52 // distribution at fixed energy deposition 53 // 54 // ------------------------------------------------------------- 55 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 58 59 #include "globals.hh" 60 #include "G4Step.hh" 61 #include "G4ParticleDefinition.hh" 62 #include "G4ThreeVector.hh" 63 #include "G4VProcess.hh" 64 #include "Randomize.hh" 65 #include <vector> 66 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 68 69 class G4Material; 70 71 class G4ElectronIonPair 72 { 73 public: 74 75 explicit G4ElectronIonPair(G4int verb); 76 77 virtual ~G4ElectronIonPair(); 78 79 // compute mean number of ionisation points at a step 80 G4double MeanNumberOfIonsAlongStep(const G4ParticleDefinition*, 81 const G4Material*, 82 G4double edepTotal, 83 G4double edepNIEL = 0.0); 84 85 inline G4double MeanNumberOfIonsAlongStep(const G4Step*); 86 87 inline G4int SampleNumberOfIonsAlongStep(const G4Step*); 88 89 // returns pointer to the new vector of positions of 90 // ionisation points in the World coordinate system 91 std::vector<G4ThreeVector>* SampleIonsAlongStep(const G4Step*); 92 93 // compute number of holes in the atom after PostStep interaction 94 G4int ResidualeChargePostStep(const G4ParticleDefinition*, 95 const G4TrackVector* secondary = nullptr, 96 G4int processSubType = -1) const; 97 98 inline G4int ResidualeChargePostStep(const G4Step*) const; 99 100 // find mean energies per ionisation 101 G4double FindG4MeanEnergyPerIonPair(const G4Material*) const; 102 103 // dump mean energies per ionisation used in run time 104 void DumpMeanEnergyPerIonPair() const; 105 106 // dump G4 list 107 void DumpG4MeanEnergyPerIonPair() const; 108 109 inline void SetVerbose(G4int); 110 111 // hide assignment operator 112 G4ElectronIonPair & operator=(const G4ElectronIonPair &right) = delete; 113 G4ElectronIonPair(const G4ElectronIonPair&) = delete; 114 115 private: 116 117 void Initialise(); 118 119 G4double FindMeanEnergyPerIonPair(const G4Material*) const; 120 121 // cache 122 const G4Material* curMaterial; 123 G4double curMeanEnergy; 124 125 G4double invFanoFactor; 126 127 G4int verbose; 128 G4int nMaterials; 129 130 // list of G4 NIST materials with mean energy per ion defined 131 std::vector<G4double> g4MatData; 132 std::vector<G4String> g4MatNames; 133 }; 134 135 inline G4double 136 G4ElectronIonPair::MeanNumberOfIonsAlongStep(const G4Step* step) 137 { 138 return MeanNumberOfIonsAlongStep(step->GetTrack()->GetParticleDefinition(), 139 step->GetPreStepPoint()->GetMaterial(), 140 step->GetTotalEnergyDeposit(), 141 step->GetNonIonizingEnergyDeposit()); 142 } 143 144 inline G4int 145 G4ElectronIonPair::SampleNumberOfIonsAlongStep(const G4Step* step) 146 { 147 // use gamma distribution with mean value n=meanion and 148 // dispersion D=meanion/invFanoFactor 149 G4double meanion = MeanNumberOfIonsAlongStep(step); 150 return G4lrint(G4RandGamma::shoot(meanion*invFanoFactor,invFanoFactor)); 151 } 152 153 inline G4int 154 G4ElectronIonPair::ResidualeChargePostStep(const G4Step* step) const 155 { 156 G4int subtype = -1; 157 const G4VProcess* proc = step->GetPostStepPoint()->GetProcessDefinedStep(); 158 if(proc) { subtype = proc->GetProcessSubType(); } 159 return ResidualeChargePostStep(step->GetTrack()->GetParticleDefinition(), 160 step->GetSecondary(), 161 subtype); 162 } 163 164 inline void G4ElectronIonPair::SetVerbose(G4int val) 165 { 166 verbose = val; 167 } 168 169 #endif 170 171