Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4eeToTwoGammaModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //
 29 // GEANT4 Class file
 30 //
 31 //
 32 // File name:   G4eeToTwoGammaModel
 33 //
 34 // Author:        Vladimir Ivanchenko on base of Michel Maire code
 35 //
 36 // Creation date: 02.08.2004
 37 //
 38 // Modifications:
 39 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko)
 40 // 18-04-05 Compute CrossSectionPerVolume (V.Ivanchenko)
 41 // 06-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma)
 42 // 29-06-06 Fix problem for zero energy incident positron (V.Ivanchenko) 
 43 // 20-10-06 Add theGamma as a member (V.Ivanchenko)
 44 // 18-01-20 Introduce thermal model of annihilation at rest (J.Allison)
 45 //
 46 //
 47 // Class Description:
 48 //
 49 // Implementation of e+ annihilation into 2 gamma
 50 //
 51 // The secondaries Gamma energies are sampled using the Heitler cross section.
 52 //
 53 // A modified version of the random number techniques of Butcher & Messel
 54 // is used (Nuc Phys 20(1960),15).
 55 //
 56 // GEANT4 internal units.
 57 //
 58 // Note 1: The initial electron is assumed free and at rest if atomic PDF 
 59 //         is not defined
 60 //
 61 // Note 2: The annihilation processes producing one or more than two photons are
 62 //         ignored, as negligible compared to the two photons process.
 63 
 64 //
 65 // -------------------------------------------------------------------
 66 //
 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 69 
 70 #include "G4eeToTwoGammaModel.hh"
 71 #include "G4PhysicalConstants.hh"
 72 #include "G4SystemOfUnits.hh"
 73 #include "G4TrackStatus.hh"
 74 #include "G4Electron.hh"
 75 #include "G4Positron.hh"
 76 #include "G4Gamma.hh"
 77 #include "Randomize.hh"
 78 #include "G4RandomDirection.hh"
 79 #include "G4ParticleChangeForGamma.hh"
 80 #include "G4EmParameters.hh"
 81 #include "G4Log.hh"
 82 #include "G4Exp.hh"
 83 
 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 85 
 86 G4eeToTwoGammaModel::G4eeToTwoGammaModel(const G4ParticleDefinition*,
 87                                          const G4String& nam)
 88   : G4VEmModel(nam),
 89     pi_rcl2(CLHEP::pi*CLHEP::classic_electr_radius*CLHEP::classic_electr_radius)
 90 {
 91   theGamma = G4Gamma::Gamma();
 92   fParticleChange = nullptr;
 93 }
 94 
 95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 96 
 97 G4eeToTwoGammaModel::~G4eeToTwoGammaModel() = default;
 98 
 99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100 
101 void G4eeToTwoGammaModel::Initialise(const G4ParticleDefinition*,
102                                      const G4DataVector&)
103 {
104   if (nullptr != fParticleChange) { return; }
105   fParticleChange = GetParticleChangeForGamma();
106 }
107 
108 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
109 
110 G4double 
111 G4eeToTwoGammaModel::ComputeCrossSectionPerElectron(G4double kineticEnergy)
112 {
113   // Calculates the cross section per electron of annihilation into two photons
114   // from the Heilter formula.
115 
116   G4double ekin  = std::max(CLHEP::eV, kineticEnergy);
117 
118   G4double tau   = ekin/CLHEP::electron_mass_c2;
119   G4double gam   = tau + 1.0;
120   G4double gamma2= gam*gam;
121   G4double bg2   = tau * (tau+2.0);
122   G4double bg    = std::sqrt(bg2);
123 
124   G4double cross = pi_rcl2*((gamma2+4*gam+1.)*G4Log(gam+bg) - (gam+3.)*bg)
125                  / (bg2*(gam+1.));
126   return cross;  
127 }
128 
129 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
130 
131 G4double G4eeToTwoGammaModel::ComputeCrossSectionPerAtom(
132                                     const G4ParticleDefinition*,
133                                     G4double kineticEnergy, G4double Z,
134             G4double, G4double, G4double)
135 {
136   // Calculates the cross section per atom of annihilation into two photons
137   return Z*ComputeCrossSectionPerElectron(kineticEnergy);  
138 }
139 
140 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
141 
142 G4double G4eeToTwoGammaModel::CrossSectionPerVolume(
143           const G4Material* material,
144           const G4ParticleDefinition*,
145                 G4double kineticEnergy,
146                 G4double, G4double)
147 {
148   // Calculates the cross section per volume of annihilation into two photons
149   return material->GetElectronDensity()*ComputeCrossSectionPerElectron(kineticEnergy);
150 }
151 
152 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
153 
154 // Polarisation of gamma according to M.H.L.Pryce and J.C.Ward,
155 // Nature 4065 (1947) 435.
156 
157 void G4eeToTwoGammaModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
158               const G4MaterialCutsCouple*,
159               const G4DynamicParticle* dp,
160               G4double,
161               G4double)
162 {
163   // kill primary positron
164   fParticleChange->SetProposedKineticEnergy(0.0);
165   fParticleChange->ProposeTrackStatus(fStopAndKill);
166 
167   // Case at rest not considered anymore inside this model
168   G4LorentzVector lv(dp->GetMomentum(),
169          dp->GetKineticEnergy() + 2*CLHEP::electron_mass_c2);
170   G4double eGammaCMS = 0.5 * lv.mag();
171 
172   G4ThreeVector dir1 = G4RandomDirection();
173   G4double phi = CLHEP::twopi * G4UniformRand();
174   G4double cosphi = std::cos(phi);
175   G4double sinphi = std::sin(phi);
176   G4ThreeVector pol1(cosphi, sinphi, 0.0);
177   pol1.rotateUz(dir1);
178   G4LorentzVector lv1(eGammaCMS*dir1, eGammaCMS);
179   
180   G4ThreeVector pol2(-sinphi, cosphi, 0.0);
181   pol2.rotateUz(dir1);
182 
183   // transformation to lab system
184   lv1.boost(lv.boostVector());
185   lv -= lv1;
186 
187   //!!! boost of polarisation vector is not yet implemented
188   
189   // use constructors optimal for massless particle
190   auto aGamma1 = new G4DynamicParticle(G4Gamma::Gamma(), lv1.vect());
191   aGamma1->SetPolarization(pol1);
192   auto aGamma2 = new G4DynamicParticle(G4Gamma::Gamma(), lv.vect());
193   aGamma2->SetPolarization(pol2);
194  
195   vdp->push_back(aGamma1);
196   vdp->push_back(aGamma2);
197 }
198 
199 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
200