Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4UniversalFluctuation 33 // 34 // Author: V. Ivanchenko for Laszlo Urban 35 // 36 // Creation date: 03.01.2002 37 // 38 // Modifications: 39 // 40 // 41 42 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 44 45 #include "G4UniversalFluctuation.hh" 46 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 48 #include "Randomize.hh" 49 #include "G4Poisson.hh" 50 #include "G4Material.hh" 51 #include "G4MaterialCutsCouple.hh" 52 #include "G4DynamicParticle.hh" 53 #include "G4ParticleDefinition.hh" 54 #include "G4Log.hh" 55 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 58 G4UniversalFluctuation::G4UniversalFluctuation(const G4String& nam) 59 :G4VEmFluctuationModel(nam), 60 minLoss(10.*CLHEP::eV) 61 { 62 rndmarray = new G4double[sizearray]; 63 } 64 65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 66 67 G4UniversalFluctuation::~G4UniversalFluctuation() 68 { 69 delete [] rndmarray; 70 } 71 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 73 74 void G4UniversalFluctuation::InitialiseMe(const G4ParticleDefinition* part) 75 { 76 particle = part; 77 particleMass = part->GetPDGMass(); 78 const G4double q = part->GetPDGCharge()/CLHEP::eplus; 79 80 // Derived quantities 81 m_Inv_particleMass = 1.0 / particleMass; 82 m_massrate = CLHEP::electron_mass_c2 * m_Inv_particleMass; 83 chargeSquare = q*q; 84 } 85 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 87 88 G4double 89 G4UniversalFluctuation::SampleFluctuations(const G4MaterialCutsCouple* couple, 90 const G4DynamicParticle* dp, 91 const G4double tcut, 92 const G4double tmax, 93 const G4double length, 94 const G4double averageLoss) 95 { 96 // Calculate actual loss from the mean loss. 97 // The model used to get the fluctuations is essentially the same 98 // as in Glandz in Geant3 (Cern program library W5013, phys332). 99 // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual 100 101 // shortcut for very small loss or from a step nearly equal to the range 102 // (out of validity of the model) 103 // 104 if (averageLoss < minLoss) { return averageLoss; } 105 meanLoss = averageLoss; 106 const G4double tkin = dp->GetKineticEnergy(); 107 //G4cout<< "Emean= "<< meanLoss<< " tmax= "<< tmax<< " L= "<<length<<G4endl; 108 109 if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); } 110 111 CLHEP::HepRandomEngine* rndmEngineF = G4Random::getTheEngine(); 112 113 const G4double gam = tkin * m_Inv_particleMass + 1.0; 114 const G4double gam2 = gam*gam; 115 const G4double beta = dp->GetBeta(); 116 const G4double beta2 = beta*beta; 117 118 G4double loss(0.), siga(0.); 119 120 const G4Material* material = couple->GetMaterial(); 121 122 // Gaussian regime 123 // for heavy particles only and conditions 124 // for Gauusian fluct. has been changed 125 // 126 if (particleMass > CLHEP::electron_mass_c2 && 127 meanLoss >= minNumberInteractionsBohr*tcut && tmax <= 2.*tcut) { 128 129 siga = std::sqrt((tmax/beta2 - 0.5*tcut)*CLHEP::twopi_mc2_rcl2* 130 length*chargeSquare*material->GetElectronDensity()); 131 const G4double sn = meanLoss/siga; 132 133 // thick target case 134 if (sn >= 2.0) { 135 136 const G4double twomeanLoss = meanLoss + meanLoss; 137 do { 138 loss = G4RandGauss::shoot(rndmEngineF, meanLoss, siga); 139 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 140 } while (0.0 > loss || twomeanLoss < loss); 141 142 // Gamma distribution 143 } else { 144 145 const G4double neff = sn*sn; 146 loss = meanLoss*G4RandGamma::shoot(rndmEngineF, neff, 1.0)/neff; 147 } 148 //G4cout << "Gauss: " << loss << G4endl; 149 return loss; 150 } 151 152 auto ioni = material->GetIonisation(); 153 e0 = ioni->GetEnergy0fluct(); 154 155 // very small step or low-density material 156 if(tcut <= e0) { return meanLoss; } 157 158 ipotFluct = ioni->GetMeanExcitationEnergy(); 159 ipotLogFluct = ioni->GetLogMeanExcEnergy(); 160 161 // width correction for small cuts 162 const G4double scaling = std::min(1.+0.5*CLHEP::keV/tcut, 1.50); 163 meanLoss /= scaling; 164 165 w2 = (tcut > ipotFluct) ? 166 G4Log(2.*CLHEP::electron_mass_c2*beta2*gam2)-beta2 : 0.0; 167 return SampleGlandz(rndmEngineF, material, tcut)*scaling; 168 } 169 170 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 171 172 G4double 173 G4UniversalFluctuation::SampleGlandz(CLHEP::HepRandomEngine* rndmEngineF, 174 const G4Material*, 175 const G4double tcut) 176 { 177 G4double a1(0.0), a3(0.0); 178 G4double loss = 0.0; 179 G4double e1 = ipotFluct; 180 181 if(tcut > e1) { 182 a1 = meanLoss*(1.-rate)/e1; 183 if(a1 < a0) { 184 const G4double fwnow = 0.1+(fw-0.1)*std::sqrt(a1/a0); 185 a1 /= fwnow; 186 e1 *= fwnow; 187 } else { 188 a1 /= fw; 189 e1 *= fw; 190 } 191 } 192 193 const G4double w1 = tcut/e0; 194 a3 = rate*meanLoss*(tcut - e0)/(e0*tcut*G4Log(w1)); 195 if(a1 <= 0.) { a3 /= rate; } 196 197 //'nearly' Gaussian fluctuation if a1>nmaxCont&&a2>nmaxCont&&a3>nmaxCont 198 G4double emean = 0.; 199 G4double sig2e = 0.; 200 201 // excitation of type 1 202 if(a1 > 0.0) { AddExcitation(rndmEngineF, a1, e1, emean, loss, sig2e); } 203 204 if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); } 205 206 // ionisation 207 if(a3 > 0.) { 208 emean = 0.; 209 sig2e = 0.; 210 G4double p3 = a3; 211 G4double alfa = 1.; 212 if(a3 > nmaxCont) { 213 alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3); 214 const G4double alfa1 = alfa*G4Log(alfa)/(alfa-1.); 215 const G4double namean = a3*w1*(alfa-1.)/((w1-1.)*alfa); 216 emean += namean*e0*alfa1; 217 sig2e += e0*e0*namean*(alfa-alfa1*alfa1); 218 p3 = a3 - namean; 219 } 220 221 const G4double w3 = alfa*e0; 222 if(tcut > w3) { 223 const G4double w = (tcut-w3)/tcut; 224 const G4int nnb = (G4int)G4Poisson(p3); 225 if(nnb > 0) { 226 if(nnb > sizearray) { 227 sizearray = nnb; 228 delete [] rndmarray; 229 rndmarray = new G4double[nnb]; 230 } 231 rndmEngineF->flatArray(nnb, rndmarray); 232 for (G4int k=0; k<nnb; ++k) { loss += w3/(1.-w*rndmarray[k]); } 233 } 234 } 235 if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); } 236 } 237 //G4cout << "### loss=" << loss << G4endl; 238 return loss; 239 } 240 241 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 242 243 244 G4double G4UniversalFluctuation::Dispersion( 245 const G4Material* material, 246 const G4DynamicParticle* dp, 247 const G4double tcut, 248 const G4double tmax, 249 const G4double length) 250 { 251 if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); } 252 const G4double beta = dp->GetBeta(); 253 return (tmax/(beta*beta) - 0.5*tcut) * CLHEP::twopi_mc2_rcl2 * length 254 * material->GetElectronDensity() * chargeSquare; 255 } 256 257 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 258 259 void 260 G4UniversalFluctuation::SetParticleAndCharge(const G4ParticleDefinition* part, 261 G4double q2) 262 { 263 if(part != particle) { 264 particle = part; 265 particleMass = part->GetPDGMass(); 266 267 // Derived quantities 268 m_Inv_particleMass = 1.0 / particleMass; 269 m_massrate = CLHEP::electron_mass_c2 * m_Inv_particleMass; 270 } 271 chargeSquare = q2; 272 } 273 274 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 275