Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4UniversalFluctuation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //
 29 // GEANT4 Class file
 30 //
 31 //
 32 // File name:     G4UniversalFluctuation
 33 //
 34 // Author:        V. Ivanchenko for Laszlo Urban
 35 // 
 36 // Creation date: 03.01.2002
 37 //
 38 // Modifications: 
 39 //
 40 //
 41 
 42 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 44 
 45 #include "G4UniversalFluctuation.hh"
 46 #include "G4PhysicalConstants.hh"
 47 #include "G4SystemOfUnits.hh"
 48 #include "Randomize.hh"
 49 #include "G4Poisson.hh"
 50 #include "G4Material.hh"
 51 #include "G4MaterialCutsCouple.hh"
 52 #include "G4DynamicParticle.hh"
 53 #include "G4ParticleDefinition.hh"
 54 #include "G4Log.hh"
 55 
 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 57 
 58 G4UniversalFluctuation::G4UniversalFluctuation(const G4String& nam)
 59  :G4VEmFluctuationModel(nam),
 60   minLoss(10.*CLHEP::eV)
 61 {
 62   rndmarray = new G4double[sizearray];
 63 }
 64 
 65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 66 
 67 G4UniversalFluctuation::~G4UniversalFluctuation()
 68 {
 69   delete [] rndmarray;
 70 }
 71 
 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 73 
 74 void G4UniversalFluctuation::InitialiseMe(const G4ParticleDefinition* part)
 75 {
 76   particle = part;
 77   particleMass = part->GetPDGMass();
 78   const G4double q = part->GetPDGCharge()/CLHEP::eplus;
 79 
 80   // Derived quantities
 81   m_Inv_particleMass = 1.0 / particleMass;
 82   m_massrate = CLHEP::electron_mass_c2 * m_Inv_particleMass;
 83   chargeSquare = q*q;
 84 }
 85 
 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 87 
 88 G4double 
 89 G4UniversalFluctuation::SampleFluctuations(const G4MaterialCutsCouple* couple,
 90                                            const G4DynamicParticle* dp,
 91                                            const G4double tcut,
 92                                            const G4double tmax,
 93                                            const G4double length,
 94                                            const G4double averageLoss)
 95 {
 96   // Calculate actual loss from the mean loss.
 97   // The model used to get the fluctuations is essentially the same
 98   // as in Glandz in Geant3 (Cern program library W5013, phys332).
 99   // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual
100 
101   // shortcut for very small loss or from a step nearly equal to the range
102   // (out of validity of the model)
103   //
104   if (averageLoss < minLoss) { return averageLoss; }
105   meanLoss = averageLoss;
106   const G4double tkin  = dp->GetKineticEnergy();
107   //G4cout<< "Emean= "<< meanLoss<< " tmax= "<< tmax<< " L= "<<length<<G4endl;
108 
109   if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); }
110 
111   CLHEP::HepRandomEngine* rndmEngineF = G4Random::getTheEngine();
112              
113   const G4double gam   = tkin * m_Inv_particleMass + 1.0;
114   const G4double gam2  = gam*gam;
115   const G4double beta  = dp->GetBeta(); 
116   const G4double beta2 = beta*beta;
117 
118   G4double loss(0.), siga(0.);
119 
120   const G4Material* material = couple->GetMaterial();
121   
122   // Gaussian regime
123   // for heavy particles only and conditions
124   // for Gauusian fluct. has been changed 
125   //
126   if (particleMass > CLHEP::electron_mass_c2 &&
127       meanLoss >= minNumberInteractionsBohr*tcut && tmax <= 2.*tcut) {
128 
129     siga = std::sqrt((tmax/beta2 - 0.5*tcut)*CLHEP::twopi_mc2_rcl2* 
130                       length*chargeSquare*material->GetElectronDensity());
131     const G4double sn = meanLoss/siga;
132   
133     // thick target case 
134     if (sn >= 2.0) {
135 
136       const G4double twomeanLoss = meanLoss + meanLoss;
137       do {
138   loss = G4RandGauss::shoot(rndmEngineF, meanLoss, siga);
139   // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
140       } while  (0.0 > loss || twomeanLoss < loss);
141 
142       // Gamma distribution
143     } else {
144 
145       const G4double neff = sn*sn;
146       loss = meanLoss*G4RandGamma::shoot(rndmEngineF, neff, 1.0)/neff;
147     }
148     //G4cout << "Gauss: " << loss << G4endl;
149     return loss;
150   }
151 
152   auto ioni = material->GetIonisation();
153   e0 = ioni->GetEnergy0fluct();
154 
155   // very small step or low-density material
156   if(tcut <= e0) { return meanLoss; }
157 
158   ipotFluct = ioni->GetMeanExcitationEnergy();
159   ipotLogFluct = ioni->GetLogMeanExcEnergy();
160 
161   // width correction for small cuts
162   const G4double scaling = std::min(1.+0.5*CLHEP::keV/tcut, 1.50);
163   meanLoss /= scaling;
164 
165   w2 = (tcut > ipotFluct) ? 
166     G4Log(2.*CLHEP::electron_mass_c2*beta2*gam2)-beta2 : 0.0;
167   return SampleGlandz(rndmEngineF, material, tcut)*scaling;
168 }
169 
170 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
171 
172 G4double 
173 G4UniversalFluctuation::SampleGlandz(CLHEP::HepRandomEngine* rndmEngineF,
174                                      const G4Material*,
175                                      const G4double tcut)
176 {
177   G4double a1(0.0), a3(0.0);
178   G4double loss = 0.0;
179   G4double e1 = ipotFluct;
180 
181   if(tcut > e1) {
182     a1 = meanLoss*(1.-rate)/e1;
183     if(a1 < a0) {
184       const G4double fwnow = 0.1+(fw-0.1)*std::sqrt(a1/a0);
185       a1 /= fwnow;
186       e1 *= fwnow;
187     } else {
188       a1 /= fw;
189       e1 *= fw;
190     }   
191   }
192 
193   const G4double w1 = tcut/e0;
194   a3 = rate*meanLoss*(tcut - e0)/(e0*tcut*G4Log(w1));
195   if(a1 <= 0.) { a3 /= rate; }
196   
197   //'nearly' Gaussian fluctuation if a1>nmaxCont&&a2>nmaxCont&&a3>nmaxCont  
198   G4double emean = 0.;
199   G4double sig2e = 0.;
200 
201   // excitation of type 1
202   if(a1 > 0.0) { AddExcitation(rndmEngineF, a1, e1, emean, loss, sig2e); }
203 
204   if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); }
205 
206   // ionisation 
207   if(a3 > 0.) {
208     emean = 0.;
209     sig2e = 0.;
210     G4double p3 = a3;
211     G4double alfa = 1.;
212     if(a3 > nmaxCont) {
213       alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3);
214       const G4double alfa1  = alfa*G4Log(alfa)/(alfa-1.);
215       const G4double namean = a3*w1*(alfa-1.)/((w1-1.)*alfa);
216       emean += namean*e0*alfa1;
217       sig2e += e0*e0*namean*(alfa-alfa1*alfa1);
218       p3 = a3 - namean;
219     }
220 
221     const G4double w3 = alfa*e0;
222     if(tcut > w3) {
223       const G4double w = (tcut-w3)/tcut;
224       const G4int nnb = (G4int)G4Poisson(p3);
225       if(nnb > 0) {
226         if(nnb > sizearray) {
227           sizearray = nnb;
228           delete [] rndmarray;
229           rndmarray = new G4double[nnb];
230         }
231         rndmEngineF->flatArray(nnb, rndmarray);
232         for (G4int k=0; k<nnb; ++k) { loss += w3/(1.-w*rndmarray[k]); }
233       }
234     }
235     if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); }
236   }
237   //G4cout << "### loss=" << loss << G4endl;
238   return loss;
239 }
240 
241 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
242 
243 
244 G4double G4UniversalFluctuation::Dispersion(
245                           const G4Material* material,
246                           const G4DynamicParticle* dp,
247                           const G4double tcut,
248                           const G4double tmax,
249                           const G4double length)
250 {
251   if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); }
252   const G4double beta = dp->GetBeta();
253   return (tmax/(beta*beta) - 0.5*tcut) * CLHEP::twopi_mc2_rcl2 * length
254     * material->GetElectronDensity() * chargeSquare;
255 }
256 
257 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
258 
259 void 
260 G4UniversalFluctuation::SetParticleAndCharge(const G4ParticleDefinition* part,
261                                              G4double q2)
262 {
263   if(part != particle) {
264     particle = part;
265     particleMass = part->GetPDGMass();
266 
267     // Derived quantities
268     m_Inv_particleMass = 1.0 / particleMass;
269     m_massrate = CLHEP::electron_mass_c2 * m_Inv_particleMass;
270   }
271   chargeSquare = q2;
272 }
273 
274 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
275