Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class 30 // File name: G4PAIPhotModel.cc 31 // 32 // Author: Vladimir.Grichine@cern.ch on base of G4PAIModel MT interface 33 // 34 // Creation date: 07.10.2013 35 // 36 // Modifications: 37 // 38 // 39 40 #include "G4PAIPhotModel.hh" 41 42 #include "G4SystemOfUnits.hh" 43 #include "G4PhysicalConstants.hh" 44 #include "G4Region.hh" 45 #include "G4ProductionCutsTable.hh" 46 #include "G4MaterialCutsCouple.hh" 47 #include "G4MaterialTable.hh" 48 #include "G4RegionStore.hh" 49 50 #include "Randomize.hh" 51 #include "G4Electron.hh" 52 #include "G4Positron.hh" 53 #include "G4Gamma.hh" 54 #include "G4Poisson.hh" 55 #include "G4Step.hh" 56 #include "G4Material.hh" 57 #include "G4DynamicParticle.hh" 58 #include "G4ParticleDefinition.hh" 59 #include "G4ParticleChangeForLoss.hh" 60 #include "G4PAIPhotData.hh" 61 #include "G4DeltaAngle.hh" 62 63 //////////////////////////////////////////////////////////////////////// 64 65 using namespace std; 66 67 G4PAIPhotModel::G4PAIPhotModel(const G4ParticleDefinition* p, const G4String& nam) 68 : G4VEmModel(nam),G4VEmFluctuationModel(nam), 69 fVerbose(0), 70 fModelData(nullptr), 71 fParticle(nullptr) 72 { 73 fElectron = G4Electron::Electron(); 74 fPositron = G4Positron::Positron(); 75 76 fParticleChange = nullptr; 77 78 if(p) { SetParticle(p); } 79 else { SetParticle(fElectron); } 80 81 // default generator 82 SetAngularDistribution(new G4DeltaAngle()); 83 fLowestTcut = 12.5*CLHEP::eV; 84 } 85 86 //////////////////////////////////////////////////////////////////////////// 87 88 G4PAIPhotModel::~G4PAIPhotModel() 89 { 90 if(IsMaster()) { delete fModelData; fModelData = nullptr; } 91 } 92 93 //////////////////////////////////////////////////////////////////////////// 94 95 void G4PAIPhotModel::Initialise(const G4ParticleDefinition* p, 96 const G4DataVector& cuts) 97 { 98 if(fVerbose > 1) 99 { 100 G4cout<<"G4PAIPhotModel::Initialise for "<<p->GetParticleName()<<G4endl; 101 } 102 SetParticle(p); 103 fParticleChange = GetParticleChangeForLoss(); 104 105 if( IsMaster() ) 106 { 107 delete fModelData; 108 fMaterialCutsCoupleVector.clear(); 109 110 G4double tmin = LowEnergyLimit()*fRatio; 111 G4double tmax = HighEnergyLimit()*fRatio; 112 fModelData = new G4PAIPhotData(tmin, tmax, fVerbose); 113 114 // Prepare initialization 115 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 116 size_t numOfMat = G4Material::GetNumberOfMaterials(); 117 size_t numRegions = fPAIRegionVector.size(); 118 119 // protect for unit tests 120 if(0 == numRegions) { 121 G4Exception("G4PAIModel::Initialise()","em0106",JustWarning, 122 "no G4Regions are registered for the PAI model - World is used"); 123 fPAIRegionVector.push_back(G4RegionStore::GetInstance() 124 ->GetRegion("DefaultRegionForTheWorld", false)); 125 numRegions = 1; 126 } 127 128 for( size_t iReg = 0; iReg < numRegions; ++iReg ) 129 { 130 const G4Region* curReg = fPAIRegionVector[iReg]; 131 G4Region* reg = const_cast<G4Region*>(curReg); 132 133 for(size_t jMat = 0; jMat < numOfMat; ++jMat) 134 { 135 G4Material* mat = (*theMaterialTable)[jMat]; 136 const G4MaterialCutsCouple* cutCouple = reg->FindCouple(mat); 137 if(nullptr != cutCouple) 138 { 139 if(fVerbose > 1) 140 { 141 G4cout << "Reg <" <<curReg->GetName() << "> mat <" 142 << mat->GetName() << "> fCouple= " 143 << cutCouple << ", idx= " << cutCouple->GetIndex() 144 <<" " << p->GetParticleName() 145 <<", cuts.size() = " << cuts.size() << G4endl; 146 } 147 // check if this couple is not already initialized 148 149 size_t n = fMaterialCutsCoupleVector.size(); 150 151 G4bool isnew = true; 152 if( 0 < n ) 153 { 154 for(size_t i=0; i<fMaterialCutsCoupleVector.size(); ++i) 155 { 156 if(cutCouple == fMaterialCutsCoupleVector[i]) { 157 isnew = false; 158 break; 159 } 160 } 161 } 162 // initialise data banks 163 if(isnew) { 164 fMaterialCutsCoupleVector.push_back(cutCouple); 165 G4double deltaCutInKinEnergy = cuts[cutCouple->GetIndex()]; 166 fModelData->Initialise(cutCouple, deltaCutInKinEnergy, this); 167 } 168 } 169 } 170 } 171 InitialiseElementSelectors(p, cuts); 172 } 173 } 174 175 ///////////////////////////////////////////////////////////////////////// 176 177 void G4PAIPhotModel::InitialiseLocal(const G4ParticleDefinition*, 178 G4VEmModel* masterModel) 179 { 180 fModelData = static_cast<G4PAIPhotModel*>(masterModel)->GetPAIPhotData(); 181 fMaterialCutsCoupleVector = static_cast<G4PAIPhotModel*>(masterModel)->GetVectorOfCouples(); 182 SetElementSelectors( masterModel->GetElementSelectors() ); 183 } 184 185 ////////////////////////////////////////////////////////////////////////////// 186 187 G4double G4PAIPhotModel::MinEnergyCut(const G4ParticleDefinition*, 188 const G4MaterialCutsCouple*) 189 { 190 return fLowestTcut; 191 } 192 193 ////////////////////////////////////////////////////////////////////////////// 194 195 G4double G4PAIPhotModel::ComputeDEDXPerVolume(const G4Material*, 196 const G4ParticleDefinition* p, 197 G4double kineticEnergy, 198 G4double cutEnergy) 199 { 200 G4int coupleIndex = FindCoupleIndex(CurrentCouple()); 201 if(0 > coupleIndex) { return 0.0; } 202 203 G4double cut = std::min(MaxSecondaryEnergy(p, kineticEnergy), cutEnergy); 204 G4double scaledTkin = kineticEnergy*fRatio; 205 G4double dedx = fChargeSquare*fModelData->DEDXPerVolume(coupleIndex, scaledTkin, cut); 206 return dedx; 207 } 208 209 ///////////////////////////////////////////////////////////////////////// 210 211 G4double G4PAIPhotModel::CrossSectionPerVolume( const G4Material*, 212 const G4ParticleDefinition* p, 213 G4double kineticEnergy, 214 G4double cutEnergy, 215 G4double maxEnergy ) 216 { 217 G4int coupleIndex = FindCoupleIndex(CurrentCouple()); 218 if(0 > coupleIndex) { return 0.0; } 219 220 G4double tmax = std::min(MaxSecondaryEnergy(p, kineticEnergy), maxEnergy); 221 if(tmax <= cutEnergy) { return 0.0; } 222 223 G4double scaledTkin = kineticEnergy*fRatio; 224 G4double xs = fChargeSquare*fModelData->CrossSectionPerVolume(coupleIndex, 225 scaledTkin, cutEnergy, tmax); 226 return xs; 227 } 228 229 /////////////////////////////////////////////////////////////////////////// 230 // 231 // It is analog of PostStepDoIt in terms of secondary electron. 232 // 233 234 void G4PAIPhotModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 235 const G4MaterialCutsCouple* matCC, 236 const G4DynamicParticle* dp, 237 G4double tmin, 238 G4double maxEnergy) 239 { 240 G4int coupleIndex = FindCoupleIndex(matCC); 241 if(0 > coupleIndex) { return; } 242 243 SetParticle(dp->GetDefinition()); 244 245 G4double kineticEnergy = dp->GetKineticEnergy(); 246 247 G4double tmax = MaxSecondaryEnergy(fParticle, kineticEnergy); 248 249 if( maxEnergy < tmax) tmax = maxEnergy; 250 if( tmin >= tmax) return; 251 252 G4ThreeVector direction = dp->GetMomentumDirection(); 253 G4double scaledTkin = kineticEnergy*fRatio; 254 G4double totalEnergy = kineticEnergy + fMass; 255 G4double totalMomentum = sqrt(kineticEnergy*(totalEnergy + fMass)); 256 G4double plRatio = fModelData->GetPlasmonRatio(coupleIndex, scaledTkin); 257 258 if( G4UniformRand() <= plRatio ) 259 { 260 G4double deltaTkin = fModelData->SamplePostStepPlasmonTransfer(coupleIndex, scaledTkin); 261 262 // G4cout<<"G4PAIPhotModel::SampleSecondaries; dp "<<dp->GetParticleDefinition()->GetParticleName() 263 // <<"; Tkin = "<<kineticEnergy/keV<<" keV; transfer = "<<deltaTkin/keV<<" keV "<<G4endl; 264 265 if( deltaTkin <= 0. && fVerbose > 0) 266 { 267 G4cout<<"G4PAIPhotModel::SampleSecondary e- deltaTkin = "<<deltaTkin<<G4endl; 268 } 269 if( deltaTkin <= 0.) { return; } 270 271 if( deltaTkin > tmax) { deltaTkin = tmax; } 272 273 const G4Element* anElement = SelectTargetAtom(matCC,fParticle,kineticEnergy, 274 dp->GetLogKineticEnergy()); 275 G4int Z = anElement->GetZasInt(); 276 277 auto deltaRay = new G4DynamicParticle(fElectron, 278 GetAngularDistribution()->SampleDirection(dp, deltaTkin, 279 Z, matCC->GetMaterial()), 280 deltaTkin); 281 282 // primary change 283 284 kineticEnergy -= deltaTkin; 285 286 if( kineticEnergy <= 0. ) // kill primary as local? energy deposition 287 { 288 fParticleChange->SetProposedKineticEnergy(0.0); 289 fParticleChange->ProposeLocalEnergyDeposit(kineticEnergy+deltaTkin); 290 return; 291 } 292 else 293 { 294 G4ThreeVector dir = totalMomentum*direction - deltaRay->GetMomentum(); 295 direction = dir.unit(); 296 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 297 fParticleChange->SetProposedMomentumDirection(direction); 298 vdp->push_back(deltaRay); 299 } 300 } 301 else // secondary X-ray CR photon 302 { 303 G4double deltaTkin = fModelData->SamplePostStepPhotonTransfer(coupleIndex, scaledTkin); 304 305 // G4cout<<"PAIPhotonModel PhotonPostStepTransfer = "<<deltaTkin/keV<<" keV"<<G4endl; 306 307 if( deltaTkin <= 0. ) 308 { 309 G4cout<<"G4PAIPhotonModel::SampleSecondary gamma deltaTkin = "<<deltaTkin<<G4endl; 310 } 311 if( deltaTkin <= 0.) return; 312 313 if( deltaTkin >= kineticEnergy ) // stop primary 314 { 315 deltaTkin = kineticEnergy; 316 kineticEnergy = 0.0; 317 } 318 G4double costheta = 0.; // G4UniformRand(); // VG: ??? for start only 319 G4double sintheta = sqrt((1.+costheta)*(1.-costheta)); 320 321 // direction of the 'Cherenkov' photon 322 G4double phi = twopi*G4UniformRand(); 323 G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta; 324 325 G4ThreeVector deltaDirection(dirx,diry,dirz); 326 deltaDirection.rotateUz(direction); 327 328 if( kineticEnergy > 0.) // primary change 329 { 330 kineticEnergy -= deltaTkin; 331 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 332 } 333 else // stop primary, but pass X-ray CR 334 { 335 // fParticleChange->ProposeLocalEnergyDeposit(deltaTkin); 336 fParticleChange->SetProposedKineticEnergy(0.0); 337 } 338 // create G4DynamicParticle object for photon ray 339 340 auto photonRay = new G4DynamicParticle; 341 photonRay->SetDefinition( G4Gamma::Gamma() ); 342 photonRay->SetKineticEnergy( deltaTkin ); 343 photonRay->SetMomentumDirection(deltaDirection); 344 345 vdp->push_back(photonRay); 346 } 347 return; 348 } 349 350 /////////////////////////////////////////////////////////////////////// 351 352 G4double G4PAIPhotModel::SampleFluctuations( 353 const G4MaterialCutsCouple* matCC, 354 const G4DynamicParticle* aParticle, 355 const G4double, const G4double, 356 const G4double step, const G4double eloss) 357 { 358 // return 0.; 359 G4int coupleIndex = FindCoupleIndex(matCC); 360 if(0 > coupleIndex) { return eloss; } 361 362 SetParticle(aParticle->GetDefinition()); 363 364 // G4cout << "G4PAIPhotModel::SampleFluctuations step(mm)= "<< step/mm 365 // << " Eloss(keV)= " << eloss/keV << " in " 366 // << matCC->GetMaterial()->GetName() << G4endl; 367 368 G4double Tkin = aParticle->GetKineticEnergy(); 369 G4double scaledTkin = Tkin*fRatio; 370 371 G4double loss = fModelData->SampleAlongStepPhotonTransfer(coupleIndex, Tkin, 372 scaledTkin, 373 step*fChargeSquare); 374 loss += fModelData->SampleAlongStepPlasmonTransfer(coupleIndex, Tkin, 375 scaledTkin, step*fChargeSquare); 376 377 // G4cout<<" PAIPhotModel::SampleFluctuations loss = "<<loss/keV<<" keV, on step = " 378 // <<step/mm<<" mm"<<G4endl; 379 return loss; 380 381 } 382 383 ////////////////////////////////////////////////////////////////////// 384 // 385 // Returns the statistical estimation of the energy loss distribution variance 386 // 387 388 389 G4double G4PAIPhotModel::Dispersion(const G4Material* material, 390 const G4DynamicParticle* aParticle, 391 const G4double tcut, 392 const G4double tmax, 393 const G4double step) 394 { 395 G4double particleMass = aParticle->GetMass(); 396 G4double electronDensity = material->GetElectronDensity(); 397 G4double kineticEnergy = aParticle->GetKineticEnergy(); 398 G4double q = aParticle->GetCharge()/eplus; 399 G4double etot = kineticEnergy + particleMass; 400 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*particleMass)/(etot*etot); 401 G4double siga = (tmax/beta2 - 0.5*tcut) * twopi_mc2_rcl2 * step 402 * electronDensity * q * q; 403 404 return siga; 405 } 406 407 ///////////////////////////////////////////////////////////////////// 408 409 G4double G4PAIPhotModel::MaxSecondaryEnergy( const G4ParticleDefinition* p, 410 G4double kinEnergy) 411 { 412 SetParticle(p); 413 G4double tmax = kinEnergy; 414 if(p == fElectron) { tmax *= 0.5; } 415 else if(p != fPositron) { 416 G4double ratio= electron_mass_c2/fMass; 417 G4double gamma= kinEnergy/fMass + 1.0; 418 tmax = 2.0*electron_mass_c2*(gamma*gamma - 1.) / 419 (1. + 2.0*gamma*ratio + ratio*ratio); 420 } 421 return tmax; 422 } 423 424 /////////////////////////////////////////////////////////////// 425 426 void G4PAIPhotModel::DefineForRegion(const G4Region* r) 427 { 428 fPAIRegionVector.push_back(r); 429 } 430 431 // 432 // 433 ///////////////////////////////////////////////// 434