Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4IonCoulombScatteringModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //  G4IonCoulombScatteringModel.cc
 27 // -------------------------------------------------------------------
 28 //
 29 // GEANT4 Class header file
 30 //
 31 // File name:    G4IonCoulombScatteringModel
 32 //
 33 // Author:      Cristina Consolandi
 34 //
 35 // Creation date: 05.10.2010 from G4eCoulombScatteringModel 
 36 //                               & G4CoulombScatteringModel
 37 //
 38 // Class Description:
 39 //      Single Scattering Model for
 40 //      for protons, alpha and heavy Ions
 41 //
 42 // Reference:
 43 //      M.J. Boschini et al. "Nuclear and Non-Ionizing Energy-Loss 
 44 //      for Coulomb ScatteredParticles from Low Energy up to Relativistic 
 45 //      Regime in Space Radiation Environment"
 46 //      Accepted for publication in the Proceedings of  the  ICATPP Conference
 47 //      on Cosmic Rays for Particle and Astroparticle Physics, Villa  Olmo, 7-8
 48 //      October,  2010, to be published by World Scientific (Singapore).
 49 //
 50 //      Available for downloading at:
 51 //  http://arxiv.org/abs/1011.4822
 52 //
 53 // -------------------------------------------------------------------
 54 //
 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 56 
 57 
 58 #include "G4IonCoulombScatteringModel.hh"
 59 #include "G4PhysicalConstants.hh"
 60 #include "G4SystemOfUnits.hh"
 61 #include "Randomize.hh"
 62 #include "G4ParticleChangeForGamma.hh"
 63 #include "G4Proton.hh"
 64 #include "G4ProductionCutsTable.hh"
 65 #include "G4NucleiProperties.hh"
 66 #include "G4ParticleTable.hh"
 67 #include "G4IonTable.hh"
 68 
 69 #include "G4UnitsTable.hh"
 70 
 71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 72 
 73 using namespace std;
 74 
 75 G4IonCoulombScatteringModel::G4IonCoulombScatteringModel(const G4String& nam)
 76   : G4VEmModel(nam),
 77     cosThetaMin(1.0)
 78 {
 79   fNistManager = G4NistManager::Instance();
 80   theIonTable  = G4ParticleTable::GetParticleTable()->GetIonTable();
 81   theProton    = G4Proton::Proton();
 82 
 83   pCuts = nullptr;
 84   currentMaterial = nullptr;
 85   currentElement  = nullptr;
 86   currentCouple   = nullptr;
 87   fParticleChange = nullptr;
 88 
 89   recoilThreshold = 0.*eV;
 90   heavycorr =0;
 91   particle = nullptr;
 92   mass=0;
 93   currentMaterialIndex = -1;
 94 
 95   ioncross = new G4IonCoulombCrossSection(); 
 96 }
 97 
 98 
 99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100 
101 G4IonCoulombScatteringModel::~G4IonCoulombScatteringModel()
102 { 
103   delete  ioncross;
104 }
105 
106 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
107 
108 void G4IonCoulombScatteringModel::Initialise(const G4ParticleDefinition* p,
109                const G4DataVector& cuts)
110 {
111   SetupParticle(p);
112   currentCouple = nullptr;
113   currentMaterialIndex = -1;
114   ioncross->Initialise(p,cosThetaMin);
115  
116   pCuts = &cuts;
117   //  G4ProductionCutsTable::GetProductionCutsTable()->GetEnergyCutsVector(3);
118   if(!fParticleChange) {
119     fParticleChange = GetParticleChangeForGamma();
120   }
121 }
122 
123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
124 
125 G4double G4IonCoulombScatteringModel::ComputeCrossSectionPerAtom(
126                                 const G4ParticleDefinition* p,
127         G4double kinEnergy, 
128         G4double Z, 
129         G4double, G4double, G4double)
130 {
131   SetupParticle(p);
132  
133   G4double cross = 0.0;
134 
135   DefineMaterial(CurrentCouple());
136 
137   G4int iz = G4lrint(Z);
138 
139   //from lab to pCM & mu_rel of effective particle
140   G4double tmass = proton_mass_c2;
141   if(1 < iz) {
142     tmass = fNistManager->GetAtomicMassAmu(iz)*amu_c2;
143   }
144   ioncross->SetupKinematic(kinEnergy, tmass);
145   ioncross->SetupTarget(Z, kinEnergy, heavycorr);
146   cross = ioncross->NuclearCrossSection();
147   return cross;
148 }
149 
150 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
151 
152 void G4IonCoulombScatteringModel::SampleSecondaries(
153              std::vector<G4DynamicParticle*>* fvect,
154              const G4MaterialCutsCouple* couple,
155              const G4DynamicParticle* dp,
156              G4double, G4double)
157 {
158   G4double kinEnergy = dp->GetKineticEnergy();
159   DefineMaterial(couple);
160   SetupParticle(dp->GetDefinition());
161 
162   // Choose nucleus
163   currentElement = SelectTargetAtom(couple, particle, kinEnergy,
164                                     dp->GetLogKineticEnergy());
165 
166   G4int iz = currentElement->GetZasInt();
167   G4int ia = SelectIsotopeNumber(currentElement);
168   G4double mass2 = G4NucleiProperties::GetNuclearMass(ia, iz);
169 
170   ioncross->SetupKinematic(kinEnergy, mass2);
171   ioncross->SetupTarget(currentElement->GetZ(), kinEnergy, heavycorr);
172     
173   //scattering angle, z1 == (1-cost)
174   G4double z1 = ioncross->SampleCosineTheta(); 
175   if(z1 > 2.0)      { z1 = 2.0; }
176   else if(z1 < 0.0) { z1 = 0.0; }
177   /*
178   G4cout << "Sample: " << particle->GetParticleName() 
179    << " mass(GeV)= " << mass/GeV 
180    << " Ekin(MeV)= " << kinEnergy << " cost= " << 1. - z1 << G4endl; 
181   G4cout << "     Z= " << iz << " A= " << ia 
182    << " mass(GeV)= " << mass2/GeV << G4endl;
183   */
184   G4double cost = 1.0 - z1;
185   G4double sint = sqrt(z1*(1.0 + cost));
186   G4double phi  = twopi * G4UniformRand();
187 
188   // kinematics in the Lab system
189   G4double ptot = sqrt(kinEnergy*(kinEnergy + 2.0*mass));
190   G4double e1   = mass + kinEnergy;
191   
192   // Lab. system kinematics along projectile direction
193   G4LorentzVector v0 = G4LorentzVector(0, 0, ptot, e1+mass2);
194   G4LorentzVector v1 = G4LorentzVector(0, 0, ptot, e1);
195   G4ThreeVector bst = v0.boostVector();
196   v1.boost(-bst);
197   // CM projectile
198   G4double momCM = v1.pz(); 
199   
200   // Momentum after scattering of incident particle
201   v1.setX(momCM*sint*cos(phi));
202   v1.setY(momCM*sint*sin(phi));
203   v1.setZ(momCM*cost);
204 
205   // CM--->Lab
206   v1.boost(bst);
207 
208   // Rotate to global system
209   G4ThreeVector dir = dp->GetMomentumDirection(); 
210   G4ThreeVector newDirection = v1.vect().unit();
211   newDirection.rotateUz(dir);   
212   
213   fParticleChange->ProposeMomentumDirection(newDirection);   
214   
215   // recoil v0 energy is kinetic
216   v0 -= v1; 
217   G4double trec = std::max(v0.e() - mass2, 0.0);
218   G4double edep = 0.0;
219 
220   G4double tcut = recoilThreshold;
221   if(pCuts) { 
222     tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]); 
223     //G4cout<<" tcut eV "<<tcut/eV<<endl;
224   }
225  
226   // Recoil
227   if(trec > tcut) {
228     G4ParticleDefinition* ion = theIonTable->GetIon(iz, ia, 0);
229     newDirection = v0.vect().unit();
230     newDirection.rotateUz(dir);   
231     auto newdp = new G4DynamicParticle(ion, newDirection, trec);
232     fvect->push_back(newdp);
233   } else if(trec > 0.0) {
234     edep = trec;
235     fParticleChange->ProposeNonIonizingEnergyDeposit(edep);
236   }
237 
238   // finelize primary energy and energy balance
239   G4double finalT = v1.e() - mass;
240   if(finalT < 0.0) { 
241     edep += finalT;
242     finalT = 0.0;
243   } 
244   edep = std::max(edep, 0.0);
245   //G4cout << "Efinal(MeV)= " << finalT << " Edep(MeV)= " << edep 
246   //   << " Trec(MeV)= " << trec << G4endl;
247   fParticleChange->SetProposedKineticEnergy(finalT);
248   fParticleChange->ProposeLocalEnergyDeposit(edep);
249 }
250 
251 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
252     
253