Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // GEANT4 Class file 28 // 29 // 30 // File name: G4AllisonPositronAtRestModel 31 // 32 // Author: Vladimir Ivanchenko 33 // 34 // Creation date: 14 May 2024 35 // 36 // ------------------------------------------------------------------- 37 // 38 39 #include "G4AllisonPositronAtRestModel.hh" 40 #include "G4DynamicParticle.hh" 41 #include "G4Material.hh" 42 #include "Randomize.hh" 43 #include "G4Gamma.hh" 44 #include "G4RandomDirection.hh" 45 #include "G4ThreeVector.hh" 46 #include "G4PhysicalConstants.hh" 47 #include "G4SystemOfUnits.hh" 48 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 50 51 G4AllisonPositronAtRestModel::G4AllisonPositronAtRestModel() 52 : G4VPositronAtRestModel("Allison") 53 {} 54 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 56 57 void G4AllisonPositronAtRestModel::SampleSecondaries( 58 std::vector<G4DynamicParticle*>& secParticles, 59 G4double&, const G4Material* material) const 60 { 61 const G4double eGamma = CLHEP::electron_mass_c2; 62 63 // In rest frame of positronium gammas are back to back 64 const G4ThreeVector& dir1 = G4RandomDirection(); 65 const G4ThreeVector& dir2 = -dir1; 66 auto aGamma1 = new G4DynamicParticle(G4Gamma::Gamma(),dir1,eGamma); 67 auto aGamma2 = new G4DynamicParticle(G4Gamma::Gamma(),dir2,eGamma); 68 69 // In rest frame the gammas are polarised perpendicular to each other - see 70 // Pryce and Ward, Nature No 4065 (1947) p.435. 71 // Snyder et al, Physical Review 73 (1948) p.440. 72 G4ThreeVector pol1 = (G4RandomDirection().cross(dir1)).unit(); 73 G4ThreeVector pol2 = (pol1.cross(dir2)).unit(); 74 75 // A positron in matter slows down and combines with an atomic electron to 76 // make a neutral atom called positronium, about half the size of a normal 77 // atom. I expect that when the energy of the positron is small enough, 78 // less than the binding energy of positronium (6.8 eV), it is 79 // energetically favourable for an electron from the outer orbitals of a 80 // nearby atom or molecule to transfer and bind to the positron, as in an 81 // ionic bond, leaving behind a mildly ionised nearby atom/molecule. I 82 // would expect the positronium to come away with a kinetic energy of a 83 // few eV on average. In its para (spin 0) state it annihilates into two 84 // photons, which in the rest frame of the positronium are collinear 85 // (back-to-back) due to momentum conservation. Because of the motion of the 86 // positronium, photons will be not quite back-to-back in the laboratory. 87 88 // The positroniuim acquires an energy of order its binding energy and 89 // doesn't have time to thermalise. Nevertheless, here we approximate its 90 // energy distribution by a Maxwell-Boltzman with mean energy <KE>. In terms 91 // of a more familiar concept of temperature, and the law of equipartition 92 // of energy of translational motion, <KE>=3kT/2. Each component of velocity 93 // has a distribution exp(-mv^2/2kT), which is a Gaussian of mean zero 94 // and variance kT/m=2<KE>/3m, where m is the positronium mass. 95 96 const G4double meanEnergyPerIonPair = material->GetIonisation()->GetMeanEnergyPerIonPair(); 97 const G4double& meanKE = meanEnergyPerIonPair; // Just an alias 98 99 if (meanKE > 0.) { // Positronium has motion 100 // Mass of positronium 101 const G4double mass = 2.*CLHEP::electron_mass_c2; 102 // Mean <KE>=3kT/2, as described above 103 // const G4double T = 2.*meanKE/(3.*k_Boltzmann); 104 // Component velocities: Gaussian, variance kT/m=2<KE>/3m. 105 const G4double sigmav = std::sqrt(2.*meanKE/(3.*mass)); 106 // This is in units where c=1 107 const G4double vx = G4RandGauss::shoot(0.,sigmav); 108 const G4double vy = G4RandGauss::shoot(0.,sigmav); 109 const G4double vz = G4RandGauss::shoot(0.,sigmav); 110 const G4ThreeVector v(vx,vy,vz); // In unit where c=1 111 const G4ThreeVector& beta = v; // so beta=v/c=v 112 aGamma1->Set4Momentum(aGamma1->Get4Momentum().boost(beta)); 113 aGamma2->Set4Momentum(aGamma2->Get4Momentum().boost(beta)); 114 115 // Rotate polarisation vectors 116 const G4ThreeVector& newDir1 = aGamma1->GetMomentumDirection(); 117 const G4ThreeVector& newDir2 = aGamma2->GetMomentumDirection(); 118 const G4ThreeVector& axis1 = dir1.cross(newDir1); // No need to be unit 119 const G4ThreeVector& axis2 = dir2.cross(newDir2); // No need to be unit 120 const G4double& angle1 = std::acos(dir1*newDir1); 121 const G4double& angle2 = std::acos(dir2*newDir2); 122 pol1.rotate(axis1, angle1); 123 pol2.rotate(axis2, angle2); 124 } 125 126 // use constructors optimal for massless particle 127 aGamma1->SetPolarization(pol1); 128 aGamma2->SetPolarization(pol2); 129 130 secParticles.push_back(aGamma1); 131 secParticles.push_back(aGamma2); 132 } 133 134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 135 136 void G4AllisonPositronAtRestModel::PrintGeneratorInformation() const 137 { 138 G4cout << "\n" << G4endl; 139 G4cout << "Allison AtRest positron 2-gamma annihilation model." << G4endl; 140 G4cout << "Takes into account positronium motion in the media." << G4endl; 141 } 142 143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 144