Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // File name: G4PolarizedCompton 27 // 28 // Author: Andreas Schaelicke 29 // based on code by Michel Maire / Vladimir IVANTCHENKO 30 // 31 // Class description 32 // modified version respecting media and beam polarization 33 // using the stokes formalism 34 35 #include "G4PolarizedCompton.hh" 36 37 #include "G4Electron.hh" 38 #include "G4EmParameters.hh" 39 #include "G4KleinNishinaCompton.hh" 40 #include "G4PhysicsTableHelper.hh" 41 #include "G4PolarizationManager.hh" 42 #include "G4PolarizedComptonModel.hh" 43 #include "G4ProductionCutsTable.hh" 44 #include "G4StokesVector.hh" 45 #include "G4SystemOfUnits.hh" 46 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 48 G4PhysicsTable* G4PolarizedCompton::theAsymmetryTable = nullptr; 49 50 G4PolarizedCompton::G4PolarizedCompton(const G4String& processName, 51 G4ProcessType type) 52 : G4VEmProcess(processName, type) 53 , fType(10) 54 , fBuildAsymmetryTable(true) 55 , fUseAsymmetryTable(true) 56 , fIsInitialised(false) 57 { 58 SetStartFromNullFlag(true); 59 SetBuildTableFlag(true); 60 SetSecondaryParticle(G4Electron::Electron()); 61 SetProcessSubType(fComptonScattering); 62 SetMinKinEnergyPrim(1. * MeV); 63 SetSplineFlag(true); 64 fEmModel = nullptr; 65 } 66 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 68 G4PolarizedCompton::~G4PolarizedCompton() { CleanTable(); } 69 70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 71 void G4PolarizedCompton::ProcessDescription(std::ostream& out) const 72 { 73 out << "Polarized model for Compton scattering.\n"; 74 75 G4VEmProcess::ProcessDescription(out); 76 } 77 78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 79 void G4PolarizedCompton::CleanTable() 80 { 81 if(theAsymmetryTable) 82 { 83 theAsymmetryTable->clearAndDestroy(); 84 delete theAsymmetryTable; 85 theAsymmetryTable = nullptr; 86 } 87 } 88 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 90 G4bool G4PolarizedCompton::IsApplicable(const G4ParticleDefinition& p) 91 { 92 return (&p == G4Gamma::Gamma()); 93 } 94 95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 96 void G4PolarizedCompton::InitialiseProcess(const G4ParticleDefinition*) 97 { 98 if(!fIsInitialised) 99 { 100 fIsInitialised = true; 101 if(0 == fType) 102 { 103 if(nullptr == EmModel(0)) 104 { 105 SetEmModel(new G4KleinNishinaCompton()); 106 } 107 } 108 else 109 { 110 fEmModel = new G4PolarizedComptonModel(); 111 SetEmModel(fEmModel); 112 } 113 G4EmParameters* param = G4EmParameters::Instance(); 114 EmModel(0)->SetLowEnergyLimit(param->MinKinEnergy()); 115 EmModel(0)->SetHighEnergyLimit(param->MaxKinEnergy()); 116 AddEmModel(1, EmModel(0)); 117 } 118 } 119 120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 121 void G4PolarizedCompton::SetModel(const G4String& ss) 122 { 123 if(ss == "Klein-Nishina") 124 { 125 fType = 0; 126 } 127 if(ss == "Polarized-Compton") 128 { 129 fType = 10; 130 } 131 } 132 133 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 134 G4double G4PolarizedCompton::GetMeanFreePath(const G4Track& aTrack, 135 G4double previousStepSize, 136 G4ForceCondition* condition) 137 { 138 // *** get unploarised mean free path from lambda table *** 139 G4double mfp = 140 G4VEmProcess::GetMeanFreePath(aTrack, previousStepSize, condition); 141 142 if(theAsymmetryTable && fUseAsymmetryTable && mfp < DBL_MAX) 143 { 144 mfp *= ComputeSaturationFactor(aTrack); 145 } 146 if(verboseLevel >= 2) 147 { 148 G4cout << "G4PolarizedCompton::MeanFreePath: " << mfp / mm << " mm " 149 << G4endl; 150 } 151 return mfp; 152 } 153 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 155 G4double G4PolarizedCompton::PostStepGetPhysicalInteractionLength( 156 const G4Track& aTrack, G4double previousStepSize, G4ForceCondition* condition) 157 { 158 // save previous values 159 G4double nLength = theNumberOfInteractionLengthLeft; 160 G4double iLength = currentInteractionLength; 161 162 // *** compute unpolarized step limit *** 163 // this changes theNumberOfInteractionLengthLeft and currentInteractionLength 164 G4double x = G4VEmProcess::PostStepGetPhysicalInteractionLength( 165 aTrack, previousStepSize, condition); 166 G4double x0 = x; 167 G4double satFact = 1.0; 168 169 // *** add corrections on polarisation *** 170 if(theAsymmetryTable && fUseAsymmetryTable && x < DBL_MAX) 171 { 172 satFact = ComputeSaturationFactor(aTrack); 173 G4double curLength = currentInteractionLength * satFact; 174 G4double prvLength = iLength * satFact; 175 if(nLength > 0.0) 176 { 177 theNumberOfInteractionLengthLeft = 178 std::max(nLength - previousStepSize / prvLength, 0.0); 179 } 180 x = theNumberOfInteractionLengthLeft * curLength; 181 } 182 if(verboseLevel >= 2) 183 { 184 G4cout << "G4PolarizedCompton::PostStepGPIL: " << std::setprecision(8) 185 << x / mm << " mm;" << G4endl 186 << " unpolarized value: " << std::setprecision(8) 187 << x0 / mm << " mm." << G4endl; 188 } 189 return x; 190 } 191 192 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 193 G4double G4PolarizedCompton::ComputeSaturationFactor(const G4Track& aTrack) 194 { 195 G4double factor = 1.0; 196 197 // *** get asymmetry, if target is polarized *** 198 const G4DynamicParticle* aDynamicGamma = aTrack.GetDynamicParticle(); 199 const G4double GammaEnergy = aDynamicGamma->GetKineticEnergy(); 200 const G4StokesVector GammaPolarization = 201 G4StokesVector(aTrack.GetPolarization()); 202 const G4ParticleMomentum GammaDirection0 = 203 aDynamicGamma->GetMomentumDirection(); 204 205 const G4Material* aMaterial = aTrack.GetMaterial(); 206 G4VPhysicalVolume* aPVolume = aTrack.GetVolume(); 207 G4LogicalVolume* aLVolume = aPVolume->GetLogicalVolume(); 208 209 G4PolarizationManager* polarizationManager = 210 G4PolarizationManager::GetInstance(); 211 212 const G4bool VolumeIsPolarized = polarizationManager->IsPolarized(aLVolume); 213 G4StokesVector ElectronPolarization = 214 polarizationManager->GetVolumePolarization(aLVolume); 215 216 if(VolumeIsPolarized) 217 { 218 if(verboseLevel >= 2) 219 { 220 G4cout << "G4PolarizedCompton::ComputeSaturationFactor: " << G4endl; 221 G4cout << " Mom " << GammaDirection0 << G4endl; 222 G4cout << " Polarization " << GammaPolarization << G4endl; 223 G4cout << " MaterialPol. " << ElectronPolarization << G4endl; 224 G4cout << " Phys. Volume " << aPVolume->GetName() << G4endl; 225 G4cout << " Log. Volume " << aLVolume->GetName() << G4endl; 226 G4cout << " Material " << aMaterial << G4endl; 227 } 228 229 std::size_t midx = CurrentMaterialCutsCoupleIndex(); 230 const G4PhysicsVector* aVector = nullptr; 231 if(midx < theAsymmetryTable->size()) 232 { 233 aVector = (*theAsymmetryTable)(midx); 234 } 235 if(aVector) 236 { 237 G4double asymmetry = aVector->Value(GammaEnergy); 238 239 // we have to determine angle between particle motion 240 // and target polarisation here 241 // circ pol * Vec(ElectronPol)*Vec(PhotonMomentum) 242 // both vectors in global reference frame 243 244 G4double pol = ElectronPolarization * GammaDirection0; 245 G4double polProduct = GammaPolarization.p3() * pol; 246 factor /= (1. + polProduct * asymmetry); 247 if(verboseLevel >= 2) 248 { 249 G4cout << " Asymmetry: " << asymmetry << G4endl; 250 G4cout << " PolProduct: " << polProduct << G4endl; 251 G4cout << " Factor: " << factor << G4endl; 252 } 253 } 254 else 255 { 256 G4ExceptionDescription ed; 257 ed << "Problem with asymmetry table: material index " << midx 258 << " is out of range or the table is not filled"; 259 G4Exception("G4PolarizedComptonModel::ComputeSaturationFactor", "em0048", 260 JustWarning, ed, ""); 261 } 262 } 263 return factor; 264 } 265 266 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 267 void G4PolarizedCompton::BuildPhysicsTable(const G4ParticleDefinition& part) 268 { 269 // *** build (unpolarized) cross section tables (Lambda) 270 G4VEmProcess::BuildPhysicsTable(part); 271 if(fBuildAsymmetryTable && fEmModel) 272 { 273 G4bool isMaster = true; 274 const G4PolarizedCompton* masterProcess = 275 static_cast<const G4PolarizedCompton*>(GetMasterProcess()); 276 if(masterProcess && masterProcess != this) 277 { 278 isMaster = false; 279 } 280 if(isMaster) 281 { 282 BuildAsymmetryTable(part); 283 } 284 } 285 } 286 287 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 288 void G4PolarizedCompton::BuildAsymmetryTable(const G4ParticleDefinition& part) 289 { 290 // cleanup old, initialise new table 291 CleanTable(); 292 theAsymmetryTable = 293 G4PhysicsTableHelper::PreparePhysicsTable(theAsymmetryTable); 294 295 // Access to materials 296 const G4ProductionCutsTable* theCoupleTable = 297 G4ProductionCutsTable::GetProductionCutsTable(); 298 G4int numOfCouples = (G4int)theCoupleTable->GetTableSize(); 299 if(!theAsymmetryTable) 300 { 301 return; 302 } 303 G4int nbins = LambdaBinning(); 304 G4double emin = MinKinEnergy(); 305 G4double emax = MaxKinEnergy(); 306 G4PhysicsLogVector* aVector = nullptr; 307 G4PhysicsLogVector* bVector = nullptr; 308 309 for(G4int i = 0; i < numOfCouples; ++i) 310 { 311 if(theAsymmetryTable->GetFlag(i)) 312 { 313 // create physics vector and fill it 314 const G4MaterialCutsCouple* couple = 315 theCoupleTable->GetMaterialCutsCouple(i); 316 // use same parameters as for lambda 317 if(!aVector) 318 { 319 aVector = new G4PhysicsLogVector(emin, emax, nbins, true); 320 bVector = aVector; 321 } 322 else 323 { 324 bVector = new G4PhysicsLogVector(*aVector); 325 } 326 327 for(G4int j = 0; j <= nbins; ++j) 328 { 329 G4double energy = bVector->Energy(j); 330 G4double tasm = 0.; 331 G4double asym = ComputeAsymmetry(energy, couple, part, 0., tasm); 332 bVector->PutValue(j, asym); 333 } 334 bVector->FillSecondDerivatives(); 335 G4PhysicsTableHelper::SetPhysicsVector(theAsymmetryTable, i, bVector); 336 } 337 } 338 } 339 340 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 341 G4double G4PolarizedCompton::ComputeAsymmetry( 342 G4double energy, const G4MaterialCutsCouple* couple, 343 const G4ParticleDefinition& aParticle, G4double cut, G4double& tAsymmetry) 344 { 345 G4double lAsymmetry = 0.0; 346 tAsymmetry = 0; 347 348 // calculate polarized cross section 349 G4ThreeVector thePolarization = G4ThreeVector(0., 0., 1.); 350 fEmModel->SetTargetPolarization(thePolarization); 351 fEmModel->SetBeamPolarization(thePolarization); 352 G4double sigma2 = 353 fEmModel->CrossSection(couple, &aParticle, energy, cut, energy); 354 355 // calculate unpolarized cross section 356 thePolarization = G4ThreeVector(); 357 fEmModel->SetTargetPolarization(thePolarization); 358 fEmModel->SetBeamPolarization(thePolarization); 359 G4double sigma0 = 360 fEmModel->CrossSection(couple, &aParticle, energy, cut, energy); 361 362 // determine asymmetries 363 if(sigma0 > 0.) 364 { 365 lAsymmetry = sigma2 / sigma0 - 1.; 366 } 367 return lAsymmetry; 368 } 369