Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4hBetheBlochModel 33 // 34 // Author: V.Ivanchenko (Vladimir.Ivanchenko@cern.ch) 35 // 36 // Creation date: 20 July 2000 37 // 38 // Modifications: 39 // 20/07/2000 V.Ivanchenko First implementation 40 // 03/10/2000 V.Ivanchenko clean up accoding to CodeWizard 41 // 42 // Class Description: 43 // 44 // Bethe-Bloch ionisation model 45 // 46 // Class Description: End 47 // 48 // ------------------------------------------------------------------- 49 // 50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 51 52 #include "G4hBetheBlochModel.hh" 53 54 #include "globals.hh" 55 #include "G4PhysicalConstants.hh" 56 #include "G4SystemOfUnits.hh" 57 #include "G4DynamicParticle.hh" 58 #include "G4ParticleDefinition.hh" 59 #include "G4Material.hh" 60 61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 62 63 G4hBetheBlochModel::G4hBetheBlochModel(const G4String& name) 64 : G4VLowEnergyModel(name), 65 twoln10(2.*std::log(10.)), 66 bg2lim(0.0169), 67 taulim(8.4146e-3), 68 lowEnergyLimit(1.*MeV), 69 highEnergyLimit(100.*GeV) 70 {;} 71 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 73 74 G4hBetheBlochModel::~G4hBetheBlochModel() 75 {;} 76 77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 79 G4double G4hBetheBlochModel::TheValue(const G4DynamicParticle* particle, 80 const G4Material* material) 81 { 82 G4double energy = particle->GetKineticEnergy() ; 83 G4double particleMass = particle->GetMass() ; 84 85 G4double eloss = BetheBlochFormula(material,energy,particleMass) ; 86 87 return eloss ; 88 } 89 90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 91 92 G4double G4hBetheBlochModel::TheValue(const G4ParticleDefinition* aParticle, 93 const G4Material* material, 94 G4double kineticEnergy) 95 { 96 G4double particleMass = aParticle->GetPDGMass() ; 97 G4double eloss = BetheBlochFormula(material,kineticEnergy,particleMass) ; 98 99 return eloss ; 100 } 101 102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 103 104 G4double G4hBetheBlochModel::HighEnergyLimit( 105 const G4ParticleDefinition* , 106 const G4Material* ) const 107 { 108 return highEnergyLimit ; 109 } 110 111 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 112 113 G4double G4hBetheBlochModel::LowEnergyLimit( 114 const G4ParticleDefinition* aParticle, 115 const G4Material* material) const 116 { 117 G4double taul = (material->GetIonisation()->GetTaul())* 118 (aParticle->GetPDGMass()) ; 119 return taul ; 120 } 121 122 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 123 124 G4double G4hBetheBlochModel::HighEnergyLimit( 125 const G4ParticleDefinition* ) const 126 { 127 return highEnergyLimit ; 128 } 129 130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 131 132 G4double G4hBetheBlochModel::LowEnergyLimit( 133 const G4ParticleDefinition* ) const 134 { 135 return lowEnergyLimit ; 136 } 137 138 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 139 140 G4bool G4hBetheBlochModel::IsInCharge(const G4DynamicParticle* , 141 const G4Material* ) const 142 { 143 return true ; 144 } 145 146 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 147 148 G4bool G4hBetheBlochModel::IsInCharge(const G4ParticleDefinition* , 149 const G4Material* ) const 150 { 151 return true ; 152 } 153 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 155 156 G4double G4hBetheBlochModel::BetheBlochFormula( 157 const G4Material* material, 158 G4double kineticEnergy, 159 G4double particleMass) const 160 { 161 // This member function is applied normally to proton/antiproton 162 G4double ionloss ; 163 164 G4double rateMass = electron_mass_c2/particleMass ; 165 166 G4double taul = material->GetIonisation()->GetTaul() ; 167 G4double tau = kineticEnergy/particleMass ; // tau is relative energy 168 169 // It is not normal case for this function 170 // for low energy parametrisation have to be applied 171 if ( tau < taul ) tau = taul ; 172 173 // some local variables 174 175 G4double gamma,bg2,beta2,tmax,x,delta,sh ; 176 G4double electronDensity = material->GetElectronDensity(); 177 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 178 G4double eexc2 = eexc*eexc ; 179 G4double cden = material->GetIonisation()->GetCdensity(); 180 G4double mden = material->GetIonisation()->GetMdensity(); 181 G4double aden = material->GetIonisation()->GetAdensity(); 182 G4double x0den = material->GetIonisation()->GetX0density(); 183 G4double x1den = material->GetIonisation()->GetX1density(); 184 G4double* shellCorrectionVector = 185 material->GetIonisation()->GetShellCorrectionVector(); 186 187 gamma = tau + 1.0 ; 188 bg2 = tau*(tau+2.0) ; 189 beta2 = bg2/(gamma*gamma) ; 190 tmax = 2.*electron_mass_c2*bg2/(1.+2.*gamma*rateMass+rateMass*rateMass) ; 191 192 ionloss = std::log(2.0*electron_mass_c2*bg2*tmax/eexc2)-2.0*beta2 ; 193 194 // density correction 195 x = std::log(bg2)/twoln10 ; 196 if ( x < x0den ) { 197 delta = 0.0 ; 198 199 } else { 200 delta = twoln10*x - cden ; 201 if ( x < x1den ) delta += aden*std::pow((x1den-x),mden) ; 202 } 203 204 // shell correction 205 sh = 0.0 ; 206 x = 1.0 ; 207 208 if ( bg2 > bg2lim ) { 209 for (G4int k=0; k<=2; k++) { 210 x *= bg2 ; 211 sh += shellCorrectionVector[k]/x; 212 } 213 214 } else { 215 for (G4int k=0; k<=2; k++) { 216 x *= bg2lim ; 217 sh += shellCorrectionVector[k]/x; 218 } 219 sh *= std::log(tau/taul)/std::log(taulim/taul) ; 220 } 221 222 // now compute the total ionization loss 223 224 ionloss -= delta + sh ; 225 ionloss *= twopi_mc2_rcl2*electronDensity/beta2 ; 226 227 if ( ionloss < 0.0) ionloss = 0.0 ; 228 229 return ionloss; 230 } 231 232 233