Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4PenelopeRayleighModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // Author: Luciano Pandola
 28 //
 29 // History:
 30 // --------
 31 // 03 Dec 2009   L Pandola    First implementation
 32 // 25 May 2011   L.Pandola    Renamed (make v2008 as default Penelope)
 33 // 19 Sep 2013   L.Pandola    Migration to MT
 34 //
 35 
 36 #include "G4PenelopeRayleighModel.hh"
 37 #include "G4PhysicalConstants.hh"
 38 #include "G4SystemOfUnits.hh"
 39 #include "G4PenelopeSamplingData.hh"
 40 #include "G4ParticleDefinition.hh"
 41 #include "G4MaterialCutsCouple.hh"
 42 #include "G4ProductionCutsTable.hh"
 43 #include "G4DynamicParticle.hh"
 44 #include "G4PhysicsTable.hh"
 45 #include "G4ElementTable.hh"
 46 #include "G4Element.hh"
 47 #include "G4PhysicsFreeVector.hh"
 48 #include "G4AutoLock.hh"
 49 #include "G4Exp.hh"
 50 
 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 52 
 53 const G4int G4PenelopeRayleighModel::fMaxZ;
 54 G4PhysicsFreeVector* G4PenelopeRayleighModel::fLogAtomicCrossSection[] = {nullptr};
 55 G4PhysicsFreeVector* G4PenelopeRayleighModel::fAtomicFormFactor[] = {nullptr};
 56 
 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 58 
 59 G4PenelopeRayleighModel::G4PenelopeRayleighModel(const G4ParticleDefinition* part,
 60              const G4String& nam)
 61   :G4VEmModel(nam),fParticleChange(nullptr),fParticle(nullptr),
 62    fLogFormFactorTable(nullptr),fPMaxTable(nullptr),fSamplingTable(nullptr),
 63    fIsInitialised(false),fLocalTable(false)
 64 {
 65   fIntrinsicLowEnergyLimit = 100.0*eV;
 66   fIntrinsicHighEnergyLimit = 100.0*GeV;
 67   //  SetLowEnergyLimit(fIntrinsicLowEnergyLimit);
 68   SetHighEnergyLimit(fIntrinsicHighEnergyLimit);
 69 
 70   if (part)
 71     SetParticle(part);
 72 
 73   //
 74   fVerboseLevel= 0;
 75   // Verbosity scale:
 76   // 0 = nothing
 77   // 1 = warning for energy non-conservation
 78   // 2 = details of energy budget
 79   // 3 = calculation of cross sections, file openings, sampling of atoms
 80   // 4 = entering in methods
 81 
 82   //build the energy grid. It is the same for all materials
 83   G4double logenergy = G4Log(fIntrinsicLowEnergyLimit/2.);
 84   G4double logmaxenergy = G4Log(1.5*fIntrinsicHighEnergyLimit);
 85   //finer grid below 160 keV
 86   G4double logtransitionenergy = G4Log(160*keV);
 87   G4double logfactor1 = G4Log(10.)/250.;
 88   G4double logfactor2 = logfactor1*10;
 89   fLogEnergyGridPMax.push_back(logenergy);
 90   do{
 91     if (logenergy < logtransitionenergy)
 92       logenergy += logfactor1;
 93     else
 94       logenergy += logfactor2;
 95     fLogEnergyGridPMax.push_back(logenergy);
 96   }while (logenergy < logmaxenergy);
 97 }
 98 
 99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100 
101 G4PenelopeRayleighModel::~G4PenelopeRayleighModel()
102 {
103   if (IsMaster() || fLocalTable)
104     {
105       
106       for(G4int i=0; i<=fMaxZ; ++i) 
107   {
108     if(fLogAtomicCrossSection[i]) 
109       { 
110         delete fLogAtomicCrossSection[i];
111         fLogAtomicCrossSection[i] = nullptr;
112       }
113     if(fAtomicFormFactor[i])
114       {
115         delete fAtomicFormFactor[i];
116         fAtomicFormFactor[i] = nullptr;
117       }
118   }
119       ClearTables();
120     }
121 }
122 
123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
124 void G4PenelopeRayleighModel::ClearTables()
125 {
126    if (fLogFormFactorTable)
127      {
128        for (auto& item : (*fLogFormFactorTable))
129    if (item.second) delete item.second;
130        delete fLogFormFactorTable;
131        fLogFormFactorTable = nullptr; //zero explicitly
132      }
133    if (fPMaxTable)
134      {
135        for (auto& item : (*fPMaxTable))
136    if (item.second) delete item.second;
137        delete fPMaxTable;
138        fPMaxTable = nullptr; //zero explicitly
139      }
140    if (fSamplingTable)
141      {
142        for (auto& item : (*fSamplingTable))
143    if (item.second) delete item.second;
144        delete fSamplingTable;
145        fSamplingTable = nullptr; //zero explicitly
146      }
147    return;
148 }
149 
150 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
151 
152 void G4PenelopeRayleighModel::Initialise(const G4ParticleDefinition* part,
153            const G4DataVector& )
154 {
155   if (fVerboseLevel > 3)
156     G4cout << "Calling G4PenelopeRayleighModel::Initialise()" << G4endl;
157 
158   SetParticle(part);
159 
160   //Only the master model creates/fills/destroys the tables
161   if (IsMaster() && part == fParticle)
162     {
163       //clear tables depending on materials, not the atomic ones
164       ClearTables();
165 
166       if (fVerboseLevel > 3)
167   G4cout << "Calling G4PenelopeRayleighModel::Initialise() [master]" << G4endl;
168 
169       //create new tables  
170       if (!fLogFormFactorTable)
171   fLogFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
172       if (!fPMaxTable)
173   fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
174       if (!fSamplingTable)
175   fSamplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>;
176 
177       G4ProductionCutsTable* theCoupleTable =
178   G4ProductionCutsTable::GetProductionCutsTable();
179 
180       for (G4int i=0;i<(G4int)theCoupleTable->GetTableSize();++i)
181   {
182     const G4Material* material =
183       theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
184     const G4ElementVector* theElementVector = material->GetElementVector();
185 
186     for (std::size_t j=0;j<material->GetNumberOfElements();++j)
187       {
188         G4int iZ = theElementVector->at(j)->GetZasInt();
189         //read data files only in the master
190         if (!fLogAtomicCrossSection[iZ])
191     ReadDataFile(iZ);
192       }
193 
194     //1) If the table has not been built for the material, do it!
195     if (!fLogFormFactorTable->count(material))
196       BuildFormFactorTable(material);
197 
198     //2) retrieve or build the sampling table
199     if (!(fSamplingTable->count(material)))
200       InitializeSamplingAlgorithm(material);
201 
202     //3) retrieve or build the pMax data
203     if (!fPMaxTable->count(material))
204       GetPMaxTable(material);
205   }
206 
207       if (fVerboseLevel > 1) {
208   G4cout << "Penelope Rayleigh model v2008 is initialized " << G4endl
209          << "Energy range: "
210          << LowEnergyLimit() / keV << " keV - "
211          << HighEnergyLimit() / GeV << " GeV"
212          << G4endl;
213       }
214     }
215 
216   if(fIsInitialised) return;
217   fParticleChange = GetParticleChangeForGamma();
218   fIsInitialised = true;
219 }
220 
221 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
222 
223 void G4PenelopeRayleighModel::InitialiseLocal(const G4ParticleDefinition* part,
224                  G4VEmModel *masterModel)
225 {
226   if (fVerboseLevel > 3)
227     G4cout << "Calling  G4PenelopeRayleighModel::InitialiseLocal()" << G4endl;
228   //
229   //Check that particle matches: one might have multiple master models (e.g.
230   //for e+ and e-).
231   //
232   if (part == fParticle)
233     {
234       //Get the const table pointers from the master to the workers
235       const G4PenelopeRayleighModel* theModel =
236   static_cast<G4PenelopeRayleighModel*> (masterModel);
237 
238       //Copy pointers to the data tables
239       for(G4int i=0; i<=fMaxZ; ++i) 
240   {
241     fLogAtomicCrossSection[i] = theModel->fLogAtomicCrossSection[i];
242     fAtomicFormFactor[i] = theModel->fAtomicFormFactor[i];
243   }
244       fLogFormFactorTable = theModel->fLogFormFactorTable;
245       fPMaxTable = theModel->fPMaxTable;
246       fSamplingTable = theModel->fSamplingTable;
247 
248       //copy the G4DataVector with the grid
249       fLogQSquareGrid = theModel->fLogQSquareGrid;
250 
251       //Same verbosity for all workers, as the master
252       fVerboseLevel = theModel->fVerboseLevel;
253     }
254 
255   return;
256 }
257 
258 
259 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
260 namespace { G4Mutex  PenelopeRayleighModelMutex = G4MUTEX_INITIALIZER; }
261 G4double G4PenelopeRayleighModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
262                    G4double energy,
263                    G4double Z,
264                    G4double,
265                    G4double,
266                    G4double)
267 {
268   // Cross section of Rayleigh scattering in Penelope v2008 is calculated by the EPDL97
269   // tabulation, Cuellen et al. (1997), with non-relativistic form factors from Hubbel
270   // et al. J. Phys. Chem. Ref. Data 4 (1975) 471; Erratum ibid. 6 (1977) 615.
271 
272    if (fVerboseLevel > 3)
273     G4cout << "Calling CrossSectionPerAtom() of G4PenelopeRayleighModel" << G4endl;
274 
275    G4int iZ = G4int(Z);
276 
277    if (!fLogAtomicCrossSection[iZ])
278      {
279        //If we are here, it means that Initialize() was inkoved, but the MaterialTable was
280        //not filled up. This can happen in a UnitTest or via G4EmCalculator
281        if (fVerboseLevel > 0)
282   {
283     //Issue a G4Exception (warning) only in verbose mode
284     G4ExceptionDescription ed;
285     ed << "Unable to retrieve the cross section table for Z=" << iZ << G4endl;
286     ed << "This can happen only in Unit Tests or via G4EmCalculator" << G4endl;
287     G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()",
288           "em2040",JustWarning,ed);
289   }
290        //protect file reading via autolock
291        G4AutoLock lock(&PenelopeRayleighModelMutex);
292        ReadDataFile(iZ);
293        lock.unlock();
294      }
295 
296    G4double cross = 0;
297    G4PhysicsFreeVector* atom = fLogAtomicCrossSection[iZ];
298    if (!atom)
299      {
300        G4ExceptionDescription ed;
301        ed << "Unable to find Z=" << iZ << " in the atomic cross section table" << G4endl;
302        G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()",
303        "em2041",FatalException,ed);
304        return 0;
305      }
306    G4double logene = G4Log(energy);
307    G4double logXS = atom->Value(logene);
308    cross = G4Exp(logXS);
309 
310    if (fVerboseLevel > 2)
311      {
312        G4cout << "Rayleigh cross section at " << energy/keV << " keV for Z=" << Z <<
313    " = " << cross/barn << " barn" << G4endl;
314      }
315    return cross;
316 }
317 
318 
319 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
320 void G4PenelopeRayleighModel::BuildFormFactorTable(const G4Material* material)
321 {
322   /*
323     1) get composition and equivalent molecular density
324   */
325   std::size_t nElements = material->GetNumberOfElements();
326   const G4ElementVector* elementVector = material->GetElementVector();
327   const G4double* fractionVector = material->GetFractionVector();
328 
329   std::vector<G4double> *StechiometricFactors = new std::vector<G4double>;
330   for (std::size_t i=0;i<nElements;++i)
331     {
332       G4double fraction = fractionVector[i];
333       G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole);
334       StechiometricFactors->push_back(fraction/atomicWeigth);
335     }
336   //Find max
337   G4double MaxStechiometricFactor = 0.;
338   for (std::size_t i=0;i<nElements;++i)
339     {
340       if ((*StechiometricFactors)[i] > MaxStechiometricFactor)
341         MaxStechiometricFactor = (*StechiometricFactors)[i];
342     }
343   if (MaxStechiometricFactor<1e-16)
344     {
345       G4ExceptionDescription ed;
346       ed << "Inconsistent data of atomic composition for " <<
347   material->GetName() << G4endl;
348       G4Exception("G4PenelopeRayleighModel::BuildFormFactorTable()",
349       "em2042",FatalException,ed);
350     }
351   //Normalize
352   for (std::size_t i=0;i<nElements;++i)
353     (*StechiometricFactors)[i] /=  MaxStechiometricFactor;
354 
355   /*
356     CREATE THE FORM FACTOR TABLE
357   */
358   G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector(fLogQSquareGrid.size(),/*spline=*/true);
359 
360   for (std::size_t k=0;k<fLogQSquareGrid.size();++k)
361     {
362       G4double ff2 = 0; //squared form factor
363       for (std::size_t i=0;i<nElements;++i)
364   {
365     G4int iZ = (*elementVector)[i]->GetZasInt();
366     G4PhysicsFreeVector* theAtomVec = fAtomicFormFactor[iZ];
367     G4double f = (*theAtomVec)[k]; //the q-grid is always the same
368     ff2 += f*f*(*StechiometricFactors)[i];
369   }
370       if (ff2)
371   theFFVec->PutValue(k,fLogQSquareGrid[k],G4Log(ff2)); //NOTICE: THIS IS log(Q^2) vs. log(F^2)
372     }
373   theFFVec->FillSecondDerivatives(); //vector is filled!
374   fLogFormFactorTable->insert(std::make_pair(material,theFFVec));
375 
376   delete StechiometricFactors;
377   return;
378 }
379 
380 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
381 
382 void G4PenelopeRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* ,
383             const G4MaterialCutsCouple* couple,
384             const G4DynamicParticle* aDynamicGamma,
385             G4double,
386             G4double)
387 {
388   // Sampling of the Rayleigh final state (namely, scattering angle of the photon)
389   // from the Penelope2008 model. The scattering angle is sampled from the atomic
390   // cross section dOmega/d(cosTheta) from Born ("Atomic Phyisics", 1969), disregarding
391   // anomalous scattering effects. The Form Factor F(Q) function which appears in the
392   // analytical cross section is retrieved via the method GetFSquared(); atomic data
393   // are tabulated for F(Q). Form factor for compounds is calculated according to
394   // the additivity rule. The sampling from the F(Q) is made via a Rational Inverse
395   // Transform with Aliasing (RITA) algorithm; RITA parameters are calculated once
396   // for each material and managed by G4PenelopeSamplingData objects.
397   // The sampling algorithm (rejection method) has efficiency 67% at low energy, and
398   // increases with energy. For E=100 keV the efficiency is 100% and 86% for
399   // hydrogen and uranium, respectively.
400 
401   if (fVerboseLevel > 3)
402     G4cout << "Calling SamplingSecondaries() of G4PenelopeRayleighModel" << G4endl;
403 
404   G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
405 
406   if (photonEnergy0 <= fIntrinsicLowEnergyLimit)
407     {
408       fParticleChange->ProposeTrackStatus(fStopAndKill);
409       fParticleChange->SetProposedKineticEnergy(0.);
410       fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0);
411       return ;
412     }
413 
414   G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
415 
416   const G4Material* theMat = couple->GetMaterial();
417 
418   //1) Verify if tables are ready
419   //Either Initialize() was not called, or we are in a slave and InitializeLocal() was
420   //not invoked
421   if (!fPMaxTable || !fSamplingTable || !fLogFormFactorTable)
422     {
423       //create a **thread-local** version of the table. Used only for G4EmCalculator and
424       //Unit Tests
425       fLocalTable = true;
426       if (!fLogFormFactorTable)
427   fLogFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
428       if (!fPMaxTable)
429   fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
430       if (!fSamplingTable)
431   fSamplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>;
432     }
433 
434   if (!fSamplingTable->count(theMat))
435     {
436       //If we are here, it means that Initialize() was inkoved, but the MaterialTable was
437       //not filled up. This can happen in a UnitTest
438       if (fVerboseLevel > 0)
439   {
440     //Issue a G4Exception (warning) only in verbose mode
441     G4ExceptionDescription ed;
442     ed << "Unable to find the fSamplingTable data for " <<
443       theMat->GetName() << G4endl;
444     ed << "This can happen only in Unit Tests" << G4endl;
445     G4Exception("G4PenelopeRayleighModel::SampleSecondaries()",
446           "em2019",JustWarning,ed);
447   }
448       const G4ElementVector* theElementVector = theMat->GetElementVector();
449       //protect file reading via autolock
450       G4AutoLock lock(&PenelopeRayleighModelMutex);
451       for (std::size_t j=0;j<theMat->GetNumberOfElements();++j)
452   {
453     G4int iZ = theElementVector->at(j)->GetZasInt();
454     if (!fLogAtomicCrossSection[iZ])
455       {
456         lock.lock();
457         ReadDataFile(iZ);
458         lock.unlock();
459       }
460   }
461       lock.lock();
462       //1) If the table has not been built for the material, do it!
463       if (!fLogFormFactorTable->count(theMat))
464   BuildFormFactorTable(theMat);
465 
466       //2) retrieve or build the sampling table
467       if (!(fSamplingTable->count(theMat)))
468   InitializeSamplingAlgorithm(theMat);
469 
470       //3) retrieve or build the pMax data
471       if (!fPMaxTable->count(theMat))
472   GetPMaxTable(theMat);
473       lock.unlock();
474     }
475 
476   //Ok, restart the job
477   G4PenelopeSamplingData* theDataTable = fSamplingTable->find(theMat)->second;
478   G4PhysicsFreeVector* thePMax = fPMaxTable->find(theMat)->second;
479 
480   G4double cosTheta = 1.0;
481 
482   //OK, ready to go!
483   G4double qmax = 2.0*photonEnergy0/electron_mass_c2; //this is non-dimensional now
484 
485   if (qmax < 1e-10) //very low momentum transfer
486     {
487       G4bool loopAgain=false;
488       do
489   {
490     loopAgain = false;
491     cosTheta = 1.0-2.0*G4UniformRand();
492     G4double G = 0.5*(1+cosTheta*cosTheta);
493     if (G4UniformRand()>G)
494       loopAgain = true;
495   }while(loopAgain);
496     }
497   else //larger momentum transfer
498     {
499       std::size_t nData = theDataTable->GetNumberOfStoredPoints();
500       G4double LastQ2inTheTable = theDataTable->GetX(nData-1);
501       G4double q2max = std::min(qmax*qmax,LastQ2inTheTable);
502 
503       G4bool loopAgain = false;
504       G4double MaxPValue = thePMax->Value(photonEnergy0);
505       G4double xx=0;
506 
507       //Sampling by rejection method. The rejection function is
508       //G = 0.5*(1+cos^2(theta))
509       //
510       do{
511   loopAgain = false;
512   G4double RandomMax = G4UniformRand()*MaxPValue;
513   xx = theDataTable->SampleValue(RandomMax);
514   //xx is a random value of q^2 in (0,q2max),sampled according to
515   //F(Q^2) via the RITA algorithm
516   if (xx > q2max)
517     loopAgain = true;
518   cosTheta = 1.0-2.0*xx/q2max;
519   G4double G = 0.5*(1+cosTheta*cosTheta);
520   if (G4UniformRand()>G)
521     loopAgain = true;
522       }while(loopAgain);
523     }
524 
525   G4double sinTheta = std::sqrt(1-cosTheta*cosTheta);
526 
527   // Scattered photon angles. ( Z - axis along the parent photon)
528   G4double phi = twopi * G4UniformRand() ;
529   G4double dirX = sinTheta*std::cos(phi);
530   G4double dirY = sinTheta*std::sin(phi);
531   G4double dirZ = cosTheta;
532 
533   // Update G4VParticleChange for the scattered photon
534   G4ThreeVector photonDirection1(dirX, dirY, dirZ);
535 
536   photonDirection1.rotateUz(photonDirection0);
537   fParticleChange->ProposeMomentumDirection(photonDirection1) ;
538   fParticleChange->SetProposedKineticEnergy(photonEnergy0) ;
539 
540   return;
541 }
542 
543 
544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
545 
546 void G4PenelopeRayleighModel::ReadDataFile(const G4int Z)
547 {
548   if (fVerboseLevel > 2)
549     {
550       G4cout << "G4PenelopeRayleighModel::ReadDataFile()" << G4endl;
551       G4cout << "Going to read Rayleigh data files for Z=" << Z << G4endl;
552     }
553     const char* path = G4FindDataDir("G4LEDATA");
554     if(!path)
555     {
556       G4String excep = "G4LEDATA environment variable not set!";
557       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
558       "em0006",FatalException,excep);
559       return;
560     }
561 
562   /*
563     Read first the cross section file
564   */
565   std::ostringstream ost;
566   if (Z>9)
567     ost << path << "/penelope/rayleigh/pdgra" << Z << ".p08";
568   else
569     ost << path << "/penelope/rayleigh/pdgra0" << Z << ".p08";
570   std::ifstream file(ost.str().c_str());
571   if (!file.is_open())
572     {
573       G4String excep = "Data file " + G4String(ost.str()) + " not found!";
574       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
575       "em0003",FatalException,excep);
576     }
577   G4int readZ =0;
578   std::size_t nPoints= 0;
579   file >> readZ >> nPoints;
580   //check the right file is opened.
581   if (readZ != Z || nPoints <= 0 || nPoints >= 5000)
582     {
583       G4ExceptionDescription ed;
584       ed << "Corrupted data file for Z=" << Z << G4endl;
585       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
586       "em0005",FatalException,ed);
587       return;
588     }
589 
590   fLogAtomicCrossSection[Z] = new G4PhysicsFreeVector((std::size_t)nPoints);
591   G4double ene=0,f1=0,f2=0,xs=0;
592   for (std::size_t i=0;i<nPoints;++i)
593     {
594       file >> ene >> f1 >> f2 >> xs;
595       //dimensional quantities
596       ene *= eV;
597       xs *= cm2;
598       fLogAtomicCrossSection[Z]->PutValue(i,G4Log(ene),G4Log(xs));
599       if (file.eof() && i != (nPoints-1)) //file ended too early
600   {
601     G4ExceptionDescription ed ;
602     ed << "Corrupted data file for Z=" << Z << G4endl;
603     ed << "Found less than " << nPoints << "entries " <<G4endl;
604     G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
605           "em0005",FatalException,ed);
606   }
607     }
608   file.close();
609 
610   /*
611     Then read the form factor file
612   */
613   std::ostringstream ost2;
614   if (Z>9)
615     ost2 << path << "/penelope/rayleigh/pdaff" << Z << ".p08";
616   else
617     ost2 << path << "/penelope/rayleigh/pdaff0" << Z << ".p08";
618   file.open(ost2.str().c_str());
619   if (!file.is_open())
620     {
621       G4String excep = "Data file " + G4String(ost2.str()) + " not found!";
622       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
623       "em0003",FatalException,excep);
624     }
625   file >> readZ >> nPoints;
626   //check the right file is opened.
627   if (readZ != Z || nPoints <= 0 || nPoints >= 5000)
628     {
629       G4ExceptionDescription ed;
630       ed << "Corrupted data file for Z=" << Z << G4endl;
631       G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
632       "em0005",FatalException,ed);
633       return;
634     }
635   fAtomicFormFactor[Z] = new G4PhysicsFreeVector((std::size_t)nPoints);
636   G4double q=0,ff=0,incoh=0;
637   G4bool fillQGrid = false;
638   //fill this vector only the first time.
639   if (!fLogQSquareGrid.size())
640     fillQGrid = true;
641   for (std::size_t i=0;i<nPoints;++i)
642     {
643       file >> q >> ff >> incoh;
644       //q and ff are dimensionless (q is in units of (m_e*c)
645       fAtomicFormFactor[Z]->PutValue(i,q,ff);
646       if (fillQGrid)
647   {
648     fLogQSquareGrid.push_back(2.0*G4Log(q));
649   }
650       if (file.eof() && i != (nPoints-1)) //file ended too early
651   {
652     G4ExceptionDescription ed;
653     ed << "Corrupted data file for Z=" << Z << G4endl;
654     ed << "Found less than " << nPoints << "entries " <<G4endl;
655     G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
656           "em0005",FatalException,ed);
657   }
658     }
659   file.close();
660   return;
661 }
662 
663 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
664 
665 G4double G4PenelopeRayleighModel::GetFSquared(const G4Material* mat, const G4double QSquared)
666 {
667   G4double f2 = 0;
668   //Input value QSquared could be zero: protect the log() below against
669   //the FPE exception
670   //If Q<1e-10, set Q to 1e-10
671   G4double logQSquared = (QSquared>1e-10) ? G4Log(QSquared) : -23.;
672   //last value of the table
673   G4double maxlogQ2 = fLogQSquareGrid[fLogQSquareGrid.size()-1];
674 
675   //now it should  be all right
676   G4PhysicsFreeVector* theVec = fLogFormFactorTable->find(mat)->second;
677 
678   if (!theVec)
679     {
680       G4ExceptionDescription ed;
681       ed << "Unable to retrieve F squared table for " << mat->GetName() << G4endl;
682       G4Exception("G4PenelopeRayleighModel::GetFSquared()",
683       "em2046",FatalException,ed);
684       return 0;
685     }
686   if (logQSquared < -20) // Q < 1e-9
687     {
688       G4double logf2 = (*theVec)[0]; //first value of the table
689       f2 = G4Exp(logf2);
690     }
691   else if (logQSquared > maxlogQ2)
692     f2 =0;
693   else
694     {
695       //log(Q^2) vs. log(F^2)
696       G4double logf2 = theVec->Value(logQSquared);
697       f2 = G4Exp(logf2);
698 
699     }
700   if (fVerboseLevel > 3)
701     {
702       G4cout << "G4PenelopeRayleighModel::GetFSquared() in " << mat->GetName() << G4endl;
703       G4cout << "Q^2 = " <<  QSquared << " (units of 1/(m_e*c); F^2 = " << f2 << G4endl;
704     }
705   return f2;
706 }
707 
708 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
709 
710 void G4PenelopeRayleighModel::InitializeSamplingAlgorithm(const G4Material* mat)
711 {
712   G4double q2min = 0;
713   G4double q2max = 0;
714   const std::size_t np = 150; //hard-coded in Penelope
715   //G4cout << "Init N= " << fLogQSquareGrid.size() << G4endl;
716   for (std::size_t i=1;i<fLogQSquareGrid.size();++i)
717     {
718       G4double Q2 = G4Exp(fLogQSquareGrid[i]);
719       if (GetFSquared(mat,Q2) >  1e-35)
720   {
721     q2max = G4Exp(fLogQSquareGrid[i-1]);
722   }
723       //G4cout << "Q2= " << Q2 << " q2max= " << q2max << G4endl;
724     }
725 
726   std::size_t nReducedPoints = np/4;
727 
728   //check for errors
729   if (np < 16)
730     {
731       G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
732       "em2047",FatalException,
733       "Too few points to initialize the sampling algorithm");
734     }
735   if (q2min > (q2max-1e-10))
736     {
737       G4cout << "q2min= " << q2min << " q2max= " << q2max << G4endl;
738       G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
739       "em2048",FatalException,
740       "Too narrow grid to initialize the sampling algorithm");
741     }
742 
743   //This is subroutine RITAI0 of Penelope
744   //Create an object of type G4PenelopeRayleighSamplingData --> store in a map::Material*
745 
746   //temporary vectors --> Then everything is stored in G4PenelopeSamplingData
747   G4DataVector* x = new G4DataVector();
748 
749   /*******************************************************************************
750     Start with a grid of NUNIF points uniformly spaced in the interval q2min,q2max
751   ********************************************************************************/
752   std::size_t NUNIF = std::min(std::max(((std::size_t)8),nReducedPoints),np/2);
753   const G4int nip = 51; //hard-coded in Penelope
754 
755   G4double dx = (q2max-q2min)/((G4double) NUNIF-1);
756   x->push_back(q2min);
757   for (std::size_t i=1;i<NUNIF-1;++i)
758     {
759       G4double app = q2min + i*dx;
760       x->push_back(app); //increase
761     }
762   x->push_back(q2max);
763 
764   if (fVerboseLevel> 3)
765     G4cout << "Vector x has " << x->size() << " points, while NUNIF = " << NUNIF << G4endl;
766 
767   //Allocate temporary storage vectors
768   G4DataVector* area = new G4DataVector();
769   G4DataVector* a = new G4DataVector();
770   G4DataVector* b = new G4DataVector();
771   G4DataVector* c = new G4DataVector();
772   G4DataVector* err = new G4DataVector();
773 
774   for (std::size_t i=0;i<NUNIF-1;++i) //build all points but the last
775     {
776       //Temporary vectors for this loop
777       G4DataVector* pdfi = new G4DataVector();
778       G4DataVector* pdfih = new G4DataVector();
779       G4DataVector* sumi = new G4DataVector();
780 
781       G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1));
782       G4double pdfmax = 0;
783       for (G4int k=0;k<nip;k++)
784   {
785     G4double xik = (*x)[i]+k*dxi;
786     G4double pdfk = std::max(GetFSquared(mat,xik),0.);
787     pdfi->push_back(pdfk);
788     pdfmax = std::max(pdfmax,pdfk);
789     if (k < (nip-1))
790       {
791         G4double xih = xik + 0.5*dxi;
792         G4double pdfIK = std::max(GetFSquared(mat,xih),0.);
793         pdfih->push_back(pdfIK);
794         pdfmax = std::max(pdfmax,pdfIK);
795       }
796   }
797 
798       //Simpson's integration
799       G4double cons = dxi*0.5*(1./3.);
800       sumi->push_back(0.);
801       for (G4int k=1;k<nip;k++)
802   {
803     G4double previous = (*sumi)[k-1];
804     G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]);
805     sumi->push_back(next);
806   }
807 
808       G4double lastIntegral = (*sumi)[sumi->size()-1];
809       area->push_back(lastIntegral);
810       //Normalize cumulative function
811       G4double factor = 1.0/lastIntegral;
812       for (std::size_t k=0;k<sumi->size();++k)
813   (*sumi)[k] *= factor;
814 
815       //When the PDF vanishes at one of the interval end points, its value is modified
816       if ((*pdfi)[0] < 1e-35)
817   (*pdfi)[0] = 1e-5*pdfmax;
818       if ((*pdfi)[pdfi->size()-1] < 1e-35)
819   (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax;
820 
821       G4double pli = (*pdfi)[0]*factor;
822       G4double pui = (*pdfi)[pdfi->size()-1]*factor;
823       G4double B_temp = 1.0-1.0/(pli*pui*dx*dx);
824       G4double A_temp = (1.0/(pli*dx))-1.0-B_temp;
825       G4double C_temp = 1.0+A_temp+B_temp;
826       if (C_temp < 1e-35)
827   {
828     a->push_back(0.);
829     b->push_back(0.);
830     c->push_back(1.);
831   }
832       else
833   {
834     a->push_back(A_temp);
835     b->push_back(B_temp);
836     c->push_back(C_temp);
837   }
838 
839       //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation
840       //and the true pdf, extended over the interval (X(I),X(I+1))
841       G4int icase = 1; //loop code
842       G4bool reLoop = false;
843       err->push_back(0.);
844       do
845   {
846     reLoop = false;
847     (*err)[i] = 0.; //zero variable
848     for (G4int k=0;k<nip;k++)
849       {
850         G4double rr = (*sumi)[k];
851         G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/
852     ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i]));
853         if (k == 0 || k == nip-1)
854     (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]);
855         else
856     (*err)[i] += std::fabs(pap-(*pdfi)[k]);
857       }
858     (*err)[i] *= dxi;
859 
860     //If err(I) is too large, the pdf is approximated by a uniform distribution
861     if ((*err)[i] > 0.1*(*area)[i] && icase == 1)
862       {
863         (*b)[i] = 0;
864         (*a)[i] = 0;
865         (*c)[i] = 1.;
866         icase = 2;
867         reLoop = true;
868       }
869   }while(reLoop);
870       delete pdfi;
871       delete pdfih;
872       delete sumi;
873     } //end of first loop over i
874 
875   //Now assign last point
876   (*x)[x->size()-1] = q2max;
877   a->push_back(0.);
878   b->push_back(0.);
879   c->push_back(0.);
880   err->push_back(0.);
881   area->push_back(0.);
882 
883   if (x->size() != NUNIF || a->size() != NUNIF ||
884       err->size() != NUNIF || area->size() != NUNIF)
885     {
886       G4ExceptionDescription ed;
887       ed << "Problem in building the Table for Sampling: array dimensions do not match" << G4endl;
888       G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
889       "em2049",FatalException,ed);
890     }
891 
892   /*******************************************************************************
893    New grid points are added by halving the sub-intervals with the largest absolute error
894   This is done up to np=150 points in the grid
895   ********************************************************************************/
896   do
897     {
898       G4double maxError = 0.0;
899       std::size_t iErrMax = 0;
900       for (std::size_t i=0;i<err->size()-2;++i)
901   {
902     //maxError is the lagest of the interval errors err[i]
903     if ((*err)[i] > maxError)
904       {
905         maxError = (*err)[i];
906         iErrMax = i;
907       }
908   }
909 
910       //OK, now I have to insert one new point in the position iErrMax
911       G4double newx = 0.5*((*x)[iErrMax]+(*x)[iErrMax+1]);
912 
913       x->insert(x->begin()+iErrMax+1,newx);
914       //Add place-holders in the other vectors
915       area->insert(area->begin()+iErrMax+1,0.);
916       a->insert(a->begin()+iErrMax+1,0.);
917       b->insert(b->begin()+iErrMax+1,0.);
918       c->insert(c->begin()+iErrMax+1,0.);
919       err->insert(err->begin()+iErrMax+1,0.);
920 
921       //Now calculate the other parameters
922       for (std::size_t i=iErrMax;i<=iErrMax+1;++i)
923   {
924     //Temporary vectors for this loop
925     G4DataVector* pdfi = new G4DataVector();
926     G4DataVector* pdfih = new G4DataVector();
927     G4DataVector* sumi = new G4DataVector();
928 
929     G4double dxLocal = (*x)[i+1]-(*x)[i];
930     G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1));
931     G4double pdfmax = 0;
932     for (G4int k=0;k<nip;k++)
933       {
934         G4double xik = (*x)[i]+k*dxi;
935         G4double pdfk = std::max(GetFSquared(mat,xik),0.);
936         pdfi->push_back(pdfk);
937         pdfmax = std::max(pdfmax,pdfk);
938         if (k < (nip-1))
939     {
940       G4double xih = xik + 0.5*dxi;
941       G4double pdfIK = std::max(GetFSquared(mat,xih),0.);
942       pdfih->push_back(pdfIK);
943       pdfmax = std::max(pdfmax,pdfIK);
944     }
945       }
946 
947     //Simpson's integration
948     G4double cons = dxi*0.5*(1./3.);
949     sumi->push_back(0.);
950     for (G4int k=1;k<nip;k++)
951       {
952         G4double previous = (*sumi)[k-1];
953         G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]);
954         sumi->push_back(next);
955       }
956     G4double lastIntegral = (*sumi)[sumi->size()-1];
957     (*area)[i] = lastIntegral;
958 
959     //Normalize cumulative function
960     G4double factor = 1.0/lastIntegral;
961     for (std::size_t k=0;k<sumi->size();++k)
962       (*sumi)[k] *= factor;
963 
964     //When the PDF vanishes at one of the interval end points, its value is modified
965     if ((*pdfi)[0] < 1e-35)
966       (*pdfi)[0] = 1e-5*pdfmax;
967     if ((*pdfi)[pdfi->size()-1] < 1e-35)
968       (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax;
969 
970     G4double pli = (*pdfi)[0]*factor;
971     G4double pui = (*pdfi)[pdfi->size()-1]*factor;
972     G4double B_temp = 1.0-1.0/(pli*pui*dxLocal*dxLocal);
973     G4double A_temp = (1.0/(pli*dxLocal))-1.0-B_temp;
974     G4double C_temp = 1.0+A_temp+B_temp;
975     if (C_temp < 1e-35)
976       {
977         (*a)[i]= 0.;
978         (*b)[i] = 0.;
979         (*c)[i] = 1;
980       }
981     else
982       {
983         (*a)[i]= A_temp;
984         (*b)[i] = B_temp;
985         (*c)[i] = C_temp;
986       }
987     //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation
988     //and the true pdf, extended over the interval (X(I),X(I+1))
989     G4int icase = 1; //loop code
990     G4bool reLoop = false;
991     do
992       {
993         reLoop = false;
994         (*err)[i] = 0.; //zero variable
995         for (G4int k=0;k<nip;k++)
996     {
997       G4double rr = (*sumi)[k];
998       G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/
999         ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i]));
1000       if (k == 0 || k == nip-1)
1001         (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]);
1002       else
1003         (*err)[i] += std::fabs(pap-(*pdfi)[k]);
1004     }
1005         (*err)[i] *= dxi;
1006 
1007         //If err(I) is too large, the pdf is approximated by a uniform distribution
1008         if ((*err)[i] > 0.1*(*area)[i] && icase == 1)
1009     {
1010       (*b)[i] = 0;
1011       (*a)[i] = 0;
1012       (*c)[i] = 1.;
1013       icase = 2;
1014       reLoop = true;
1015     }
1016       }while(reLoop);
1017     delete pdfi;
1018     delete pdfih;
1019     delete sumi;
1020   }
1021     }while(x->size() < np);
1022 
1023   if (x->size() != np || a->size() != np ||
1024       err->size() != np || area->size() != np)
1025     {
1026       G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
1027       "em2050",FatalException,
1028       "Problem in building the extended Table for Sampling: array dimensions do not match ");
1029     }
1030 
1031   /*******************************************************************************
1032    Renormalization
1033   ********************************************************************************/
1034   G4double ws = 0;
1035   for (std::size_t i=0;i<np-1;++i)
1036     ws += (*area)[i];
1037   ws = 1.0/ws;
1038   G4double errMax = 0;
1039   for (std::size_t i=0;i<np-1;++i)
1040     {
1041       (*area)[i] *= ws;
1042       (*err)[i] *= ws;
1043       errMax = std::max(errMax,(*err)[i]);
1044     }
1045 
1046   //Vector with the normalized cumulative distribution
1047   G4DataVector* PAC = new G4DataVector();
1048   PAC->push_back(0.);
1049   for (std::size_t i=0;i<np-1;++i)
1050     {
1051       G4double previous = (*PAC)[i];
1052       PAC->push_back(previous+(*area)[i]);
1053     }
1054   (*PAC)[PAC->size()-1] = 1.;
1055 
1056   /*******************************************************************************
1057   Pre-calculated limits for the initial binary search for subsequent sampling
1058   ********************************************************************************/
1059   std::vector<std::size_t> *ITTL = new std::vector<std::size_t>;
1060   std::vector<std::size_t> *ITTU = new std::vector<std::size_t>;
1061 
1062   //Just create place-holders
1063   for (std::size_t i=0;i<np;++i)
1064     {
1065       ITTL->push_back(0);
1066       ITTU->push_back(0);
1067     }
1068 
1069   G4double bin = 1.0/(np-1);
1070   (*ITTL)[0]=0;
1071   for (std::size_t i=1;i<(np-1);++i)
1072     {
1073       G4double ptst = i*bin;
1074       G4bool found = false;
1075       for (std::size_t j=(*ITTL)[i-1];j<np && !found;++j)
1076   {
1077     if ((*PAC)[j] > ptst)
1078       {
1079         (*ITTL)[i] = j-1;
1080         (*ITTU)[i-1] = j;
1081         found = true;
1082       }
1083   }
1084     }
1085   (*ITTU)[ITTU->size()-2] = ITTU->size()-1;
1086   (*ITTU)[ITTU->size()-1] = ITTU->size()-1;
1087   (*ITTL)[ITTL->size()-1] = ITTU->size()-2;
1088 
1089   if (ITTU->size() != np || ITTU->size() != np)
1090     {
1091       G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
1092       "em2051",FatalException,
1093       "Problem in building the Limit Tables for Sampling: array dimensions do not match");
1094     }
1095 
1096   /********************************************************************************
1097     Copy tables
1098   ********************************************************************************/
1099   G4PenelopeSamplingData* theTable = new G4PenelopeSamplingData(np);
1100   for (std::size_t i=0;i<np;++i)
1101     {
1102       theTable->AddPoint((*x)[i],(*PAC)[i],(*a)[i],(*b)[i],(*ITTL)[i],(*ITTU)[i]);
1103     }
1104 
1105   if (fVerboseLevel > 2)
1106     {
1107       G4cout << "*************************************************************************" <<
1108   G4endl;
1109       G4cout << "Sampling table for Penelope Rayleigh scattering in " << mat->GetName() << G4endl;
1110       theTable->DumpTable();
1111     }
1112   fSamplingTable->insert(std::make_pair(mat,theTable));
1113 
1114   //Clean up temporary vectors
1115   delete x;
1116   delete a;
1117   delete b;
1118   delete c;
1119   delete err;
1120   delete area;
1121   delete PAC;
1122   delete ITTL;
1123   delete ITTU;
1124 
1125   //DONE!
1126   return;
1127 }
1128 
1129 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1130 
1131 void G4PenelopeRayleighModel::GetPMaxTable(const G4Material* mat)
1132 {
1133   if (!fPMaxTable)
1134     {
1135       G4cout << "G4PenelopeRayleighModel::BuildPMaxTable" << G4endl;
1136       G4cout << "Going to instanziate the fPMaxTable !" << G4endl;
1137       G4cout << "That should _not_ be here! " << G4endl;
1138       fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
1139     }
1140   //check if the table is already there
1141   if (fPMaxTable->count(mat))
1142     return;
1143 
1144   //otherwise build it
1145   if (!fSamplingTable)
1146     {
1147       G4Exception("G4PenelopeRayleighModel::GetPMaxTable()",
1148       "em2052",FatalException,
1149       "SamplingTable is not properly instantiated");
1150       return;
1151     }
1152 
1153   //This should not be: the sampling table is built before the p-table
1154   if (!fSamplingTable->count(mat))
1155     {
1156        G4ExceptionDescription ed;
1157        ed << "Sampling table for material " << mat->GetName() << " not found";
1158        G4Exception("G4PenelopeRayleighModel::GetPMaxTable()",
1159                   "em2052",FatalException,
1160                   ed);
1161        return;
1162     }
1163 
1164   G4PenelopeSamplingData *theTable = fSamplingTable->find(mat)->second;
1165   std::size_t tablePoints = theTable->GetNumberOfStoredPoints();
1166 
1167   std::size_t nOfEnergyPoints = fLogEnergyGridPMax.size();
1168   G4PhysicsFreeVector* theVec = new G4PhysicsFreeVector(nOfEnergyPoints);
1169 
1170   const std::size_t nip = 51; //hard-coded in Penelope
1171 
1172   for (std::size_t ie=0;ie<fLogEnergyGridPMax.size();++ie)
1173     {
1174       G4double energy = G4Exp(fLogEnergyGridPMax[ie]);
1175       G4double Qm = 2.0*energy/electron_mass_c2; //this is non-dimensional now
1176       G4double Qm2 = Qm*Qm;
1177       G4double firstQ2 = theTable->GetX(0);
1178       G4double lastQ2 = theTable->GetX(tablePoints-1);
1179       G4double thePMax = 0;
1180 
1181       if (Qm2 > firstQ2)
1182   {
1183     if (Qm2 < lastQ2)
1184       {
1185         //bisection to look for the index of Qm
1186         std::size_t lowerBound = 0;
1187         std::size_t upperBound = tablePoints-1;
1188         while (lowerBound <= upperBound)
1189     {
1190       std::size_t midBin = (lowerBound + upperBound)/2;
1191       if( Qm2 < theTable->GetX(midBin))
1192         { upperBound = midBin-1; }
1193       else
1194         { lowerBound = midBin+1; }
1195     }
1196         //upperBound is the output (but also lowerBounf --> should be the same!)
1197         G4double Q1 = theTable->GetX(upperBound);
1198         G4double Q2 = Qm2;
1199         G4double DQ = (Q2-Q1)/((G4double)(nip-1));
1200         G4double theA = theTable->GetA(upperBound);
1201         G4double theB = theTable->GetB(upperBound);
1202         G4double thePAC = theTable->GetPAC(upperBound);
1203         G4DataVector* fun = new G4DataVector();
1204         for (std::size_t k=0;k<nip;++k)
1205     {
1206       G4double qi = Q1 + k*DQ;
1207       G4double tau = (qi-Q1)/
1208         (theTable->GetX(upperBound+1)-Q1);
1209       G4double con1 = 2.0*theB*tau;
1210       G4double ci = 1.0+theA+theB;
1211       G4double con2 = ci-theA*tau;
1212       G4double etap = 0;
1213       if (std::fabs(con1) > 1.0e-16*std::fabs(con2))
1214         etap = con2*(1.0-std::sqrt(1.0-2.0*tau*con1/(con2*con2)))/con1;
1215       else
1216         etap = tau/con2;
1217       G4double theFun = (theTable->GetPAC(upperBound+1)-thePAC)*
1218         (1.0+(theA+theB*etap)*etap)*(1.0+(theA+theB*etap)*etap)/
1219         ((1.0-theB*etap*etap)*ci*(theTable->GetX(upperBound+1)-Q1));
1220       fun->push_back(theFun);
1221     }
1222         //Now intergrate numerically the fun Cavalieri-Simpson's method
1223         G4DataVector* sum = new G4DataVector;
1224         G4double CONS = DQ*(1./12.);
1225         G4double HCONS = 0.5*CONS;
1226         sum->push_back(0.);
1227         G4double secondPoint = (*sum)[0] +
1228     (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*CONS;
1229         sum->push_back(secondPoint);
1230         for (std::size_t hh=2;hh<nip-1;++hh)
1231     {
1232       G4double previous = (*sum)[hh-1];
1233       G4double next = previous+(13.0*((*fun)[hh-1]+(*fun)[hh])-
1234               (*fun)[hh+1]-(*fun)[hh-2])*HCONS;
1235       sum->push_back(next);
1236     }
1237         G4double last = (*sum)[nip-2]+(5.0*(*fun)[nip-1]+8.0*(*fun)[nip-2]-
1238                (*fun)[nip-3])*CONS;
1239         sum->push_back(last);
1240         thePMax = thePAC + (*sum)[sum->size()-1]; //last point
1241         delete fun;
1242         delete sum;
1243       }
1244     else
1245       {
1246         thePMax = 1.0;
1247       }
1248   }
1249       else
1250   {
1251     thePMax = theTable->GetPAC(0);
1252   }
1253 
1254       //Write number in the table
1255       theVec->PutValue(ie,energy,thePMax);
1256   }
1257 
1258   fPMaxTable->insert(std::make_pair(mat,theVec));
1259   return;
1260 }
1261 
1262 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1263 
1264 void G4PenelopeRayleighModel::DumpFormFactorTable(const G4Material* mat)
1265 {
1266   G4cout << "*****************************************************************" << G4endl;
1267   G4cout << "G4PenelopeRayleighModel: Form Factor Table for " << mat->GetName() << G4endl;
1268   //try to use the same format as Penelope-Fortran, namely Q (/m_e*c) and F
1269   G4cout <<  "Q/(m_e*c)                 F(Q)     " << G4endl;
1270   G4cout << "*****************************************************************" << G4endl;
1271   if (!fLogFormFactorTable->count(mat))
1272     BuildFormFactorTable(mat);
1273 
1274   G4PhysicsFreeVector* theVec = fLogFormFactorTable->find(mat)->second;
1275   for (std::size_t i=0;i<theVec->GetVectorLength();++i)
1276     {
1277       G4double logQ2 = theVec->GetLowEdgeEnergy(i);
1278       G4double Q = G4Exp(0.5*logQ2);
1279       G4double logF2 = (*theVec)[i];
1280       G4double F = G4Exp(0.5*logF2);
1281       G4cout << Q << "              " << F << G4endl;
1282     }
1283   //DONE
1284   return;
1285 }
1286 
1287 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...
1288 
1289 void G4PenelopeRayleighModel::SetParticle(const G4ParticleDefinition* p)
1290 {
1291   if(!fParticle) {
1292     fParticle = p;
1293   }
1294 }
1295