Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // Author: Luciano Pandola 28 // 29 // History: 30 // -------- 31 // 03 Dec 2009 L Pandola First implementation 32 // 25 May 2011 L.Pandola Renamed (make v2008 as default Penelope) 33 // 19 Sep 2013 L.Pandola Migration to MT 34 // 35 36 #include "G4PenelopeRayleighModel.hh" 37 #include "G4PhysicalConstants.hh" 38 #include "G4SystemOfUnits.hh" 39 #include "G4PenelopeSamplingData.hh" 40 #include "G4ParticleDefinition.hh" 41 #include "G4MaterialCutsCouple.hh" 42 #include "G4ProductionCutsTable.hh" 43 #include "G4DynamicParticle.hh" 44 #include "G4PhysicsTable.hh" 45 #include "G4ElementTable.hh" 46 #include "G4Element.hh" 47 #include "G4PhysicsFreeVector.hh" 48 #include "G4AutoLock.hh" 49 #include "G4Exp.hh" 50 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 52 53 const G4int G4PenelopeRayleighModel::fMaxZ; 54 G4PhysicsFreeVector* G4PenelopeRayleighModel::fLogAtomicCrossSection[] = {nullptr}; 55 G4PhysicsFreeVector* G4PenelopeRayleighModel::fAtomicFormFactor[] = {nullptr}; 56 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 58 59 G4PenelopeRayleighModel::G4PenelopeRayleighModel(const G4ParticleDefinition* part, 60 const G4String& nam) 61 :G4VEmModel(nam),fParticleChange(nullptr),fParticle(nullptr), 62 fLogFormFactorTable(nullptr),fPMaxTable(nullptr),fSamplingTable(nullptr), 63 fIsInitialised(false),fLocalTable(false) 64 { 65 fIntrinsicLowEnergyLimit = 100.0*eV; 66 fIntrinsicHighEnergyLimit = 100.0*GeV; 67 // SetLowEnergyLimit(fIntrinsicLowEnergyLimit); 68 SetHighEnergyLimit(fIntrinsicHighEnergyLimit); 69 70 if (part) 71 SetParticle(part); 72 73 // 74 fVerboseLevel= 0; 75 // Verbosity scale: 76 // 0 = nothing 77 // 1 = warning for energy non-conservation 78 // 2 = details of energy budget 79 // 3 = calculation of cross sections, file openings, sampling of atoms 80 // 4 = entering in methods 81 82 //build the energy grid. It is the same for all materials 83 G4double logenergy = G4Log(fIntrinsicLowEnergyLimit/2.); 84 G4double logmaxenergy = G4Log(1.5*fIntrinsicHighEnergyLimit); 85 //finer grid below 160 keV 86 G4double logtransitionenergy = G4Log(160*keV); 87 G4double logfactor1 = G4Log(10.)/250.; 88 G4double logfactor2 = logfactor1*10; 89 fLogEnergyGridPMax.push_back(logenergy); 90 do{ 91 if (logenergy < logtransitionenergy) 92 logenergy += logfactor1; 93 else 94 logenergy += logfactor2; 95 fLogEnergyGridPMax.push_back(logenergy); 96 }while (logenergy < logmaxenergy); 97 } 98 99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 100 101 G4PenelopeRayleighModel::~G4PenelopeRayleighModel() 102 { 103 if (IsMaster() || fLocalTable) 104 { 105 106 for(G4int i=0; i<=fMaxZ; ++i) 107 { 108 if(fLogAtomicCrossSection[i]) 109 { 110 delete fLogAtomicCrossSection[i]; 111 fLogAtomicCrossSection[i] = nullptr; 112 } 113 if(fAtomicFormFactor[i]) 114 { 115 delete fAtomicFormFactor[i]; 116 fAtomicFormFactor[i] = nullptr; 117 } 118 } 119 ClearTables(); 120 } 121 } 122 123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 void G4PenelopeRayleighModel::ClearTables() 125 { 126 if (fLogFormFactorTable) 127 { 128 for (auto& item : (*fLogFormFactorTable)) 129 if (item.second) delete item.second; 130 delete fLogFormFactorTable; 131 fLogFormFactorTable = nullptr; //zero explicitly 132 } 133 if (fPMaxTable) 134 { 135 for (auto& item : (*fPMaxTable)) 136 if (item.second) delete item.second; 137 delete fPMaxTable; 138 fPMaxTable = nullptr; //zero explicitly 139 } 140 if (fSamplingTable) 141 { 142 for (auto& item : (*fSamplingTable)) 143 if (item.second) delete item.second; 144 delete fSamplingTable; 145 fSamplingTable = nullptr; //zero explicitly 146 } 147 return; 148 } 149 150 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 151 152 void G4PenelopeRayleighModel::Initialise(const G4ParticleDefinition* part, 153 const G4DataVector& ) 154 { 155 if (fVerboseLevel > 3) 156 G4cout << "Calling G4PenelopeRayleighModel::Initialise()" << G4endl; 157 158 SetParticle(part); 159 160 //Only the master model creates/fills/destroys the tables 161 if (IsMaster() && part == fParticle) 162 { 163 //clear tables depending on materials, not the atomic ones 164 ClearTables(); 165 166 if (fVerboseLevel > 3) 167 G4cout << "Calling G4PenelopeRayleighModel::Initialise() [master]" << G4endl; 168 169 //create new tables 170 if (!fLogFormFactorTable) 171 fLogFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 172 if (!fPMaxTable) 173 fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 174 if (!fSamplingTable) 175 fSamplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>; 176 177 G4ProductionCutsTable* theCoupleTable = 178 G4ProductionCutsTable::GetProductionCutsTable(); 179 180 for (G4int i=0;i<(G4int)theCoupleTable->GetTableSize();++i) 181 { 182 const G4Material* material = 183 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial(); 184 const G4ElementVector* theElementVector = material->GetElementVector(); 185 186 for (std::size_t j=0;j<material->GetNumberOfElements();++j) 187 { 188 G4int iZ = theElementVector->at(j)->GetZasInt(); 189 //read data files only in the master 190 if (!fLogAtomicCrossSection[iZ]) 191 ReadDataFile(iZ); 192 } 193 194 //1) If the table has not been built for the material, do it! 195 if (!fLogFormFactorTable->count(material)) 196 BuildFormFactorTable(material); 197 198 //2) retrieve or build the sampling table 199 if (!(fSamplingTable->count(material))) 200 InitializeSamplingAlgorithm(material); 201 202 //3) retrieve or build the pMax data 203 if (!fPMaxTable->count(material)) 204 GetPMaxTable(material); 205 } 206 207 if (fVerboseLevel > 1) { 208 G4cout << "Penelope Rayleigh model v2008 is initialized " << G4endl 209 << "Energy range: " 210 << LowEnergyLimit() / keV << " keV - " 211 << HighEnergyLimit() / GeV << " GeV" 212 << G4endl; 213 } 214 } 215 216 if(fIsInitialised) return; 217 fParticleChange = GetParticleChangeForGamma(); 218 fIsInitialised = true; 219 } 220 221 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 222 223 void G4PenelopeRayleighModel::InitialiseLocal(const G4ParticleDefinition* part, 224 G4VEmModel *masterModel) 225 { 226 if (fVerboseLevel > 3) 227 G4cout << "Calling G4PenelopeRayleighModel::InitialiseLocal()" << G4endl; 228 // 229 //Check that particle matches: one might have multiple master models (e.g. 230 //for e+ and e-). 231 // 232 if (part == fParticle) 233 { 234 //Get the const table pointers from the master to the workers 235 const G4PenelopeRayleighModel* theModel = 236 static_cast<G4PenelopeRayleighModel*> (masterModel); 237 238 //Copy pointers to the data tables 239 for(G4int i=0; i<=fMaxZ; ++i) 240 { 241 fLogAtomicCrossSection[i] = theModel->fLogAtomicCrossSection[i]; 242 fAtomicFormFactor[i] = theModel->fAtomicFormFactor[i]; 243 } 244 fLogFormFactorTable = theModel->fLogFormFactorTable; 245 fPMaxTable = theModel->fPMaxTable; 246 fSamplingTable = theModel->fSamplingTable; 247 248 //copy the G4DataVector with the grid 249 fLogQSquareGrid = theModel->fLogQSquareGrid; 250 251 //Same verbosity for all workers, as the master 252 fVerboseLevel = theModel->fVerboseLevel; 253 } 254 255 return; 256 } 257 258 259 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 260 namespace { G4Mutex PenelopeRayleighModelMutex = G4MUTEX_INITIALIZER; } 261 G4double G4PenelopeRayleighModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 262 G4double energy, 263 G4double Z, 264 G4double, 265 G4double, 266 G4double) 267 { 268 // Cross section of Rayleigh scattering in Penelope v2008 is calculated by the EPDL97 269 // tabulation, Cuellen et al. (1997), with non-relativistic form factors from Hubbel 270 // et al. J. Phys. Chem. Ref. Data 4 (1975) 471; Erratum ibid. 6 (1977) 615. 271 272 if (fVerboseLevel > 3) 273 G4cout << "Calling CrossSectionPerAtom() of G4PenelopeRayleighModel" << G4endl; 274 275 G4int iZ = G4int(Z); 276 277 if (!fLogAtomicCrossSection[iZ]) 278 { 279 //If we are here, it means that Initialize() was inkoved, but the MaterialTable was 280 //not filled up. This can happen in a UnitTest or via G4EmCalculator 281 if (fVerboseLevel > 0) 282 { 283 //Issue a G4Exception (warning) only in verbose mode 284 G4ExceptionDescription ed; 285 ed << "Unable to retrieve the cross section table for Z=" << iZ << G4endl; 286 ed << "This can happen only in Unit Tests or via G4EmCalculator" << G4endl; 287 G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()", 288 "em2040",JustWarning,ed); 289 } 290 //protect file reading via autolock 291 G4AutoLock lock(&PenelopeRayleighModelMutex); 292 ReadDataFile(iZ); 293 lock.unlock(); 294 } 295 296 G4double cross = 0; 297 G4PhysicsFreeVector* atom = fLogAtomicCrossSection[iZ]; 298 if (!atom) 299 { 300 G4ExceptionDescription ed; 301 ed << "Unable to find Z=" << iZ << " in the atomic cross section table" << G4endl; 302 G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()", 303 "em2041",FatalException,ed); 304 return 0; 305 } 306 G4double logene = G4Log(energy); 307 G4double logXS = atom->Value(logene); 308 cross = G4Exp(logXS); 309 310 if (fVerboseLevel > 2) 311 { 312 G4cout << "Rayleigh cross section at " << energy/keV << " keV for Z=" << Z << 313 " = " << cross/barn << " barn" << G4endl; 314 } 315 return cross; 316 } 317 318 319 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 320 void G4PenelopeRayleighModel::BuildFormFactorTable(const G4Material* material) 321 { 322 /* 323 1) get composition and equivalent molecular density 324 */ 325 std::size_t nElements = material->GetNumberOfElements(); 326 const G4ElementVector* elementVector = material->GetElementVector(); 327 const G4double* fractionVector = material->GetFractionVector(); 328 329 std::vector<G4double> *StechiometricFactors = new std::vector<G4double>; 330 for (std::size_t i=0;i<nElements;++i) 331 { 332 G4double fraction = fractionVector[i]; 333 G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole); 334 StechiometricFactors->push_back(fraction/atomicWeigth); 335 } 336 //Find max 337 G4double MaxStechiometricFactor = 0.; 338 for (std::size_t i=0;i<nElements;++i) 339 { 340 if ((*StechiometricFactors)[i] > MaxStechiometricFactor) 341 MaxStechiometricFactor = (*StechiometricFactors)[i]; 342 } 343 if (MaxStechiometricFactor<1e-16) 344 { 345 G4ExceptionDescription ed; 346 ed << "Inconsistent data of atomic composition for " << 347 material->GetName() << G4endl; 348 G4Exception("G4PenelopeRayleighModel::BuildFormFactorTable()", 349 "em2042",FatalException,ed); 350 } 351 //Normalize 352 for (std::size_t i=0;i<nElements;++i) 353 (*StechiometricFactors)[i] /= MaxStechiometricFactor; 354 355 /* 356 CREATE THE FORM FACTOR TABLE 357 */ 358 G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector(fLogQSquareGrid.size(),/*spline=*/true); 359 360 for (std::size_t k=0;k<fLogQSquareGrid.size();++k) 361 { 362 G4double ff2 = 0; //squared form factor 363 for (std::size_t i=0;i<nElements;++i) 364 { 365 G4int iZ = (*elementVector)[i]->GetZasInt(); 366 G4PhysicsFreeVector* theAtomVec = fAtomicFormFactor[iZ]; 367 G4double f = (*theAtomVec)[k]; //the q-grid is always the same 368 ff2 += f*f*(*StechiometricFactors)[i]; 369 } 370 if (ff2) 371 theFFVec->PutValue(k,fLogQSquareGrid[k],G4Log(ff2)); //NOTICE: THIS IS log(Q^2) vs. log(F^2) 372 } 373 theFFVec->FillSecondDerivatives(); //vector is filled! 374 fLogFormFactorTable->insert(std::make_pair(material,theFFVec)); 375 376 delete StechiometricFactors; 377 return; 378 } 379 380 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 381 382 void G4PenelopeRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* , 383 const G4MaterialCutsCouple* couple, 384 const G4DynamicParticle* aDynamicGamma, 385 G4double, 386 G4double) 387 { 388 // Sampling of the Rayleigh final state (namely, scattering angle of the photon) 389 // from the Penelope2008 model. The scattering angle is sampled from the atomic 390 // cross section dOmega/d(cosTheta) from Born ("Atomic Phyisics", 1969), disregarding 391 // anomalous scattering effects. The Form Factor F(Q) function which appears in the 392 // analytical cross section is retrieved via the method GetFSquared(); atomic data 393 // are tabulated for F(Q). Form factor for compounds is calculated according to 394 // the additivity rule. The sampling from the F(Q) is made via a Rational Inverse 395 // Transform with Aliasing (RITA) algorithm; RITA parameters are calculated once 396 // for each material and managed by G4PenelopeSamplingData objects. 397 // The sampling algorithm (rejection method) has efficiency 67% at low energy, and 398 // increases with energy. For E=100 keV the efficiency is 100% and 86% for 399 // hydrogen and uranium, respectively. 400 401 if (fVerboseLevel > 3) 402 G4cout << "Calling SamplingSecondaries() of G4PenelopeRayleighModel" << G4endl; 403 404 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy(); 405 406 if (photonEnergy0 <= fIntrinsicLowEnergyLimit) 407 { 408 fParticleChange->ProposeTrackStatus(fStopAndKill); 409 fParticleChange->SetProposedKineticEnergy(0.); 410 fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0); 411 return ; 412 } 413 414 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection(); 415 416 const G4Material* theMat = couple->GetMaterial(); 417 418 //1) Verify if tables are ready 419 //Either Initialize() was not called, or we are in a slave and InitializeLocal() was 420 //not invoked 421 if (!fPMaxTable || !fSamplingTable || !fLogFormFactorTable) 422 { 423 //create a **thread-local** version of the table. Used only for G4EmCalculator and 424 //Unit Tests 425 fLocalTable = true; 426 if (!fLogFormFactorTable) 427 fLogFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 428 if (!fPMaxTable) 429 fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 430 if (!fSamplingTable) 431 fSamplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>; 432 } 433 434 if (!fSamplingTable->count(theMat)) 435 { 436 //If we are here, it means that Initialize() was inkoved, but the MaterialTable was 437 //not filled up. This can happen in a UnitTest 438 if (fVerboseLevel > 0) 439 { 440 //Issue a G4Exception (warning) only in verbose mode 441 G4ExceptionDescription ed; 442 ed << "Unable to find the fSamplingTable data for " << 443 theMat->GetName() << G4endl; 444 ed << "This can happen only in Unit Tests" << G4endl; 445 G4Exception("G4PenelopeRayleighModel::SampleSecondaries()", 446 "em2019",JustWarning,ed); 447 } 448 const G4ElementVector* theElementVector = theMat->GetElementVector(); 449 //protect file reading via autolock 450 G4AutoLock lock(&PenelopeRayleighModelMutex); 451 for (std::size_t j=0;j<theMat->GetNumberOfElements();++j) 452 { 453 G4int iZ = theElementVector->at(j)->GetZasInt(); 454 if (!fLogAtomicCrossSection[iZ]) 455 { 456 lock.lock(); 457 ReadDataFile(iZ); 458 lock.unlock(); 459 } 460 } 461 lock.lock(); 462 //1) If the table has not been built for the material, do it! 463 if (!fLogFormFactorTable->count(theMat)) 464 BuildFormFactorTable(theMat); 465 466 //2) retrieve or build the sampling table 467 if (!(fSamplingTable->count(theMat))) 468 InitializeSamplingAlgorithm(theMat); 469 470 //3) retrieve or build the pMax data 471 if (!fPMaxTable->count(theMat)) 472 GetPMaxTable(theMat); 473 lock.unlock(); 474 } 475 476 //Ok, restart the job 477 G4PenelopeSamplingData* theDataTable = fSamplingTable->find(theMat)->second; 478 G4PhysicsFreeVector* thePMax = fPMaxTable->find(theMat)->second; 479 480 G4double cosTheta = 1.0; 481 482 //OK, ready to go! 483 G4double qmax = 2.0*photonEnergy0/electron_mass_c2; //this is non-dimensional now 484 485 if (qmax < 1e-10) //very low momentum transfer 486 { 487 G4bool loopAgain=false; 488 do 489 { 490 loopAgain = false; 491 cosTheta = 1.0-2.0*G4UniformRand(); 492 G4double G = 0.5*(1+cosTheta*cosTheta); 493 if (G4UniformRand()>G) 494 loopAgain = true; 495 }while(loopAgain); 496 } 497 else //larger momentum transfer 498 { 499 std::size_t nData = theDataTable->GetNumberOfStoredPoints(); 500 G4double LastQ2inTheTable = theDataTable->GetX(nData-1); 501 G4double q2max = std::min(qmax*qmax,LastQ2inTheTable); 502 503 G4bool loopAgain = false; 504 G4double MaxPValue = thePMax->Value(photonEnergy0); 505 G4double xx=0; 506 507 //Sampling by rejection method. The rejection function is 508 //G = 0.5*(1+cos^2(theta)) 509 // 510 do{ 511 loopAgain = false; 512 G4double RandomMax = G4UniformRand()*MaxPValue; 513 xx = theDataTable->SampleValue(RandomMax); 514 //xx is a random value of q^2 in (0,q2max),sampled according to 515 //F(Q^2) via the RITA algorithm 516 if (xx > q2max) 517 loopAgain = true; 518 cosTheta = 1.0-2.0*xx/q2max; 519 G4double G = 0.5*(1+cosTheta*cosTheta); 520 if (G4UniformRand()>G) 521 loopAgain = true; 522 }while(loopAgain); 523 } 524 525 G4double sinTheta = std::sqrt(1-cosTheta*cosTheta); 526 527 // Scattered photon angles. ( Z - axis along the parent photon) 528 G4double phi = twopi * G4UniformRand() ; 529 G4double dirX = sinTheta*std::cos(phi); 530 G4double dirY = sinTheta*std::sin(phi); 531 G4double dirZ = cosTheta; 532 533 // Update G4VParticleChange for the scattered photon 534 G4ThreeVector photonDirection1(dirX, dirY, dirZ); 535 536 photonDirection1.rotateUz(photonDirection0); 537 fParticleChange->ProposeMomentumDirection(photonDirection1) ; 538 fParticleChange->SetProposedKineticEnergy(photonEnergy0) ; 539 540 return; 541 } 542 543 544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 546 void G4PenelopeRayleighModel::ReadDataFile(const G4int Z) 547 { 548 if (fVerboseLevel > 2) 549 { 550 G4cout << "G4PenelopeRayleighModel::ReadDataFile()" << G4endl; 551 G4cout << "Going to read Rayleigh data files for Z=" << Z << G4endl; 552 } 553 const char* path = G4FindDataDir("G4LEDATA"); 554 if(!path) 555 { 556 G4String excep = "G4LEDATA environment variable not set!"; 557 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 558 "em0006",FatalException,excep); 559 return; 560 } 561 562 /* 563 Read first the cross section file 564 */ 565 std::ostringstream ost; 566 if (Z>9) 567 ost << path << "/penelope/rayleigh/pdgra" << Z << ".p08"; 568 else 569 ost << path << "/penelope/rayleigh/pdgra0" << Z << ".p08"; 570 std::ifstream file(ost.str().c_str()); 571 if (!file.is_open()) 572 { 573 G4String excep = "Data file " + G4String(ost.str()) + " not found!"; 574 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 575 "em0003",FatalException,excep); 576 } 577 G4int readZ =0; 578 std::size_t nPoints= 0; 579 file >> readZ >> nPoints; 580 //check the right file is opened. 581 if (readZ != Z || nPoints <= 0 || nPoints >= 5000) 582 { 583 G4ExceptionDescription ed; 584 ed << "Corrupted data file for Z=" << Z << G4endl; 585 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 586 "em0005",FatalException,ed); 587 return; 588 } 589 590 fLogAtomicCrossSection[Z] = new G4PhysicsFreeVector((std::size_t)nPoints); 591 G4double ene=0,f1=0,f2=0,xs=0; 592 for (std::size_t i=0;i<nPoints;++i) 593 { 594 file >> ene >> f1 >> f2 >> xs; 595 //dimensional quantities 596 ene *= eV; 597 xs *= cm2; 598 fLogAtomicCrossSection[Z]->PutValue(i,G4Log(ene),G4Log(xs)); 599 if (file.eof() && i != (nPoints-1)) //file ended too early 600 { 601 G4ExceptionDescription ed ; 602 ed << "Corrupted data file for Z=" << Z << G4endl; 603 ed << "Found less than " << nPoints << "entries " <<G4endl; 604 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 605 "em0005",FatalException,ed); 606 } 607 } 608 file.close(); 609 610 /* 611 Then read the form factor file 612 */ 613 std::ostringstream ost2; 614 if (Z>9) 615 ost2 << path << "/penelope/rayleigh/pdaff" << Z << ".p08"; 616 else 617 ost2 << path << "/penelope/rayleigh/pdaff0" << Z << ".p08"; 618 file.open(ost2.str().c_str()); 619 if (!file.is_open()) 620 { 621 G4String excep = "Data file " + G4String(ost2.str()) + " not found!"; 622 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 623 "em0003",FatalException,excep); 624 } 625 file >> readZ >> nPoints; 626 //check the right file is opened. 627 if (readZ != Z || nPoints <= 0 || nPoints >= 5000) 628 { 629 G4ExceptionDescription ed; 630 ed << "Corrupted data file for Z=" << Z << G4endl; 631 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 632 "em0005",FatalException,ed); 633 return; 634 } 635 fAtomicFormFactor[Z] = new G4PhysicsFreeVector((std::size_t)nPoints); 636 G4double q=0,ff=0,incoh=0; 637 G4bool fillQGrid = false; 638 //fill this vector only the first time. 639 if (!fLogQSquareGrid.size()) 640 fillQGrid = true; 641 for (std::size_t i=0;i<nPoints;++i) 642 { 643 file >> q >> ff >> incoh; 644 //q and ff are dimensionless (q is in units of (m_e*c) 645 fAtomicFormFactor[Z]->PutValue(i,q,ff); 646 if (fillQGrid) 647 { 648 fLogQSquareGrid.push_back(2.0*G4Log(q)); 649 } 650 if (file.eof() && i != (nPoints-1)) //file ended too early 651 { 652 G4ExceptionDescription ed; 653 ed << "Corrupted data file for Z=" << Z << G4endl; 654 ed << "Found less than " << nPoints << "entries " <<G4endl; 655 G4Exception("G4PenelopeRayleighModel::ReadDataFile()", 656 "em0005",FatalException,ed); 657 } 658 } 659 file.close(); 660 return; 661 } 662 663 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 664 665 G4double G4PenelopeRayleighModel::GetFSquared(const G4Material* mat, const G4double QSquared) 666 { 667 G4double f2 = 0; 668 //Input value QSquared could be zero: protect the log() below against 669 //the FPE exception 670 //If Q<1e-10, set Q to 1e-10 671 G4double logQSquared = (QSquared>1e-10) ? G4Log(QSquared) : -23.; 672 //last value of the table 673 G4double maxlogQ2 = fLogQSquareGrid[fLogQSquareGrid.size()-1]; 674 675 //now it should be all right 676 G4PhysicsFreeVector* theVec = fLogFormFactorTable->find(mat)->second; 677 678 if (!theVec) 679 { 680 G4ExceptionDescription ed; 681 ed << "Unable to retrieve F squared table for " << mat->GetName() << G4endl; 682 G4Exception("G4PenelopeRayleighModel::GetFSquared()", 683 "em2046",FatalException,ed); 684 return 0; 685 } 686 if (logQSquared < -20) // Q < 1e-9 687 { 688 G4double logf2 = (*theVec)[0]; //first value of the table 689 f2 = G4Exp(logf2); 690 } 691 else if (logQSquared > maxlogQ2) 692 f2 =0; 693 else 694 { 695 //log(Q^2) vs. log(F^2) 696 G4double logf2 = theVec->Value(logQSquared); 697 f2 = G4Exp(logf2); 698 699 } 700 if (fVerboseLevel > 3) 701 { 702 G4cout << "G4PenelopeRayleighModel::GetFSquared() in " << mat->GetName() << G4endl; 703 G4cout << "Q^2 = " << QSquared << " (units of 1/(m_e*c); F^2 = " << f2 << G4endl; 704 } 705 return f2; 706 } 707 708 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 709 710 void G4PenelopeRayleighModel::InitializeSamplingAlgorithm(const G4Material* mat) 711 { 712 G4double q2min = 0; 713 G4double q2max = 0; 714 const std::size_t np = 150; //hard-coded in Penelope 715 //G4cout << "Init N= " << fLogQSquareGrid.size() << G4endl; 716 for (std::size_t i=1;i<fLogQSquareGrid.size();++i) 717 { 718 G4double Q2 = G4Exp(fLogQSquareGrid[i]); 719 if (GetFSquared(mat,Q2) > 1e-35) 720 { 721 q2max = G4Exp(fLogQSquareGrid[i-1]); 722 } 723 //G4cout << "Q2= " << Q2 << " q2max= " << q2max << G4endl; 724 } 725 726 std::size_t nReducedPoints = np/4; 727 728 //check for errors 729 if (np < 16) 730 { 731 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 732 "em2047",FatalException, 733 "Too few points to initialize the sampling algorithm"); 734 } 735 if (q2min > (q2max-1e-10)) 736 { 737 G4cout << "q2min= " << q2min << " q2max= " << q2max << G4endl; 738 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 739 "em2048",FatalException, 740 "Too narrow grid to initialize the sampling algorithm"); 741 } 742 743 //This is subroutine RITAI0 of Penelope 744 //Create an object of type G4PenelopeRayleighSamplingData --> store in a map::Material* 745 746 //temporary vectors --> Then everything is stored in G4PenelopeSamplingData 747 G4DataVector* x = new G4DataVector(); 748 749 /******************************************************************************* 750 Start with a grid of NUNIF points uniformly spaced in the interval q2min,q2max 751 ********************************************************************************/ 752 std::size_t NUNIF = std::min(std::max(((std::size_t)8),nReducedPoints),np/2); 753 const G4int nip = 51; //hard-coded in Penelope 754 755 G4double dx = (q2max-q2min)/((G4double) NUNIF-1); 756 x->push_back(q2min); 757 for (std::size_t i=1;i<NUNIF-1;++i) 758 { 759 G4double app = q2min + i*dx; 760 x->push_back(app); //increase 761 } 762 x->push_back(q2max); 763 764 if (fVerboseLevel> 3) 765 G4cout << "Vector x has " << x->size() << " points, while NUNIF = " << NUNIF << G4endl; 766 767 //Allocate temporary storage vectors 768 G4DataVector* area = new G4DataVector(); 769 G4DataVector* a = new G4DataVector(); 770 G4DataVector* b = new G4DataVector(); 771 G4DataVector* c = new G4DataVector(); 772 G4DataVector* err = new G4DataVector(); 773 774 for (std::size_t i=0;i<NUNIF-1;++i) //build all points but the last 775 { 776 //Temporary vectors for this loop 777 G4DataVector* pdfi = new G4DataVector(); 778 G4DataVector* pdfih = new G4DataVector(); 779 G4DataVector* sumi = new G4DataVector(); 780 781 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1)); 782 G4double pdfmax = 0; 783 for (G4int k=0;k<nip;k++) 784 { 785 G4double xik = (*x)[i]+k*dxi; 786 G4double pdfk = std::max(GetFSquared(mat,xik),0.); 787 pdfi->push_back(pdfk); 788 pdfmax = std::max(pdfmax,pdfk); 789 if (k < (nip-1)) 790 { 791 G4double xih = xik + 0.5*dxi; 792 G4double pdfIK = std::max(GetFSquared(mat,xih),0.); 793 pdfih->push_back(pdfIK); 794 pdfmax = std::max(pdfmax,pdfIK); 795 } 796 } 797 798 //Simpson's integration 799 G4double cons = dxi*0.5*(1./3.); 800 sumi->push_back(0.); 801 for (G4int k=1;k<nip;k++) 802 { 803 G4double previous = (*sumi)[k-1]; 804 G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]); 805 sumi->push_back(next); 806 } 807 808 G4double lastIntegral = (*sumi)[sumi->size()-1]; 809 area->push_back(lastIntegral); 810 //Normalize cumulative function 811 G4double factor = 1.0/lastIntegral; 812 for (std::size_t k=0;k<sumi->size();++k) 813 (*sumi)[k] *= factor; 814 815 //When the PDF vanishes at one of the interval end points, its value is modified 816 if ((*pdfi)[0] < 1e-35) 817 (*pdfi)[0] = 1e-5*pdfmax; 818 if ((*pdfi)[pdfi->size()-1] < 1e-35) 819 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 820 821 G4double pli = (*pdfi)[0]*factor; 822 G4double pui = (*pdfi)[pdfi->size()-1]*factor; 823 G4double B_temp = 1.0-1.0/(pli*pui*dx*dx); 824 G4double A_temp = (1.0/(pli*dx))-1.0-B_temp; 825 G4double C_temp = 1.0+A_temp+B_temp; 826 if (C_temp < 1e-35) 827 { 828 a->push_back(0.); 829 b->push_back(0.); 830 c->push_back(1.); 831 } 832 else 833 { 834 a->push_back(A_temp); 835 b->push_back(B_temp); 836 c->push_back(C_temp); 837 } 838 839 //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation 840 //and the true pdf, extended over the interval (X(I),X(I+1)) 841 G4int icase = 1; //loop code 842 G4bool reLoop = false; 843 err->push_back(0.); 844 do 845 { 846 reLoop = false; 847 (*err)[i] = 0.; //zero variable 848 for (G4int k=0;k<nip;k++) 849 { 850 G4double rr = (*sumi)[k]; 851 G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/ 852 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i])); 853 if (k == 0 || k == nip-1) 854 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]); 855 else 856 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 857 } 858 (*err)[i] *= dxi; 859 860 //If err(I) is too large, the pdf is approximated by a uniform distribution 861 if ((*err)[i] > 0.1*(*area)[i] && icase == 1) 862 { 863 (*b)[i] = 0; 864 (*a)[i] = 0; 865 (*c)[i] = 1.; 866 icase = 2; 867 reLoop = true; 868 } 869 }while(reLoop); 870 delete pdfi; 871 delete pdfih; 872 delete sumi; 873 } //end of first loop over i 874 875 //Now assign last point 876 (*x)[x->size()-1] = q2max; 877 a->push_back(0.); 878 b->push_back(0.); 879 c->push_back(0.); 880 err->push_back(0.); 881 area->push_back(0.); 882 883 if (x->size() != NUNIF || a->size() != NUNIF || 884 err->size() != NUNIF || area->size() != NUNIF) 885 { 886 G4ExceptionDescription ed; 887 ed << "Problem in building the Table for Sampling: array dimensions do not match" << G4endl; 888 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 889 "em2049",FatalException,ed); 890 } 891 892 /******************************************************************************* 893 New grid points are added by halving the sub-intervals with the largest absolute error 894 This is done up to np=150 points in the grid 895 ********************************************************************************/ 896 do 897 { 898 G4double maxError = 0.0; 899 std::size_t iErrMax = 0; 900 for (std::size_t i=0;i<err->size()-2;++i) 901 { 902 //maxError is the lagest of the interval errors err[i] 903 if ((*err)[i] > maxError) 904 { 905 maxError = (*err)[i]; 906 iErrMax = i; 907 } 908 } 909 910 //OK, now I have to insert one new point in the position iErrMax 911 G4double newx = 0.5*((*x)[iErrMax]+(*x)[iErrMax+1]); 912 913 x->insert(x->begin()+iErrMax+1,newx); 914 //Add place-holders in the other vectors 915 area->insert(area->begin()+iErrMax+1,0.); 916 a->insert(a->begin()+iErrMax+1,0.); 917 b->insert(b->begin()+iErrMax+1,0.); 918 c->insert(c->begin()+iErrMax+1,0.); 919 err->insert(err->begin()+iErrMax+1,0.); 920 921 //Now calculate the other parameters 922 for (std::size_t i=iErrMax;i<=iErrMax+1;++i) 923 { 924 //Temporary vectors for this loop 925 G4DataVector* pdfi = new G4DataVector(); 926 G4DataVector* pdfih = new G4DataVector(); 927 G4DataVector* sumi = new G4DataVector(); 928 929 G4double dxLocal = (*x)[i+1]-(*x)[i]; 930 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1)); 931 G4double pdfmax = 0; 932 for (G4int k=0;k<nip;k++) 933 { 934 G4double xik = (*x)[i]+k*dxi; 935 G4double pdfk = std::max(GetFSquared(mat,xik),0.); 936 pdfi->push_back(pdfk); 937 pdfmax = std::max(pdfmax,pdfk); 938 if (k < (nip-1)) 939 { 940 G4double xih = xik + 0.5*dxi; 941 G4double pdfIK = std::max(GetFSquared(mat,xih),0.); 942 pdfih->push_back(pdfIK); 943 pdfmax = std::max(pdfmax,pdfIK); 944 } 945 } 946 947 //Simpson's integration 948 G4double cons = dxi*0.5*(1./3.); 949 sumi->push_back(0.); 950 for (G4int k=1;k<nip;k++) 951 { 952 G4double previous = (*sumi)[k-1]; 953 G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]); 954 sumi->push_back(next); 955 } 956 G4double lastIntegral = (*sumi)[sumi->size()-1]; 957 (*area)[i] = lastIntegral; 958 959 //Normalize cumulative function 960 G4double factor = 1.0/lastIntegral; 961 for (std::size_t k=0;k<sumi->size();++k) 962 (*sumi)[k] *= factor; 963 964 //When the PDF vanishes at one of the interval end points, its value is modified 965 if ((*pdfi)[0] < 1e-35) 966 (*pdfi)[0] = 1e-5*pdfmax; 967 if ((*pdfi)[pdfi->size()-1] < 1e-35) 968 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax; 969 970 G4double pli = (*pdfi)[0]*factor; 971 G4double pui = (*pdfi)[pdfi->size()-1]*factor; 972 G4double B_temp = 1.0-1.0/(pli*pui*dxLocal*dxLocal); 973 G4double A_temp = (1.0/(pli*dxLocal))-1.0-B_temp; 974 G4double C_temp = 1.0+A_temp+B_temp; 975 if (C_temp < 1e-35) 976 { 977 (*a)[i]= 0.; 978 (*b)[i] = 0.; 979 (*c)[i] = 1; 980 } 981 else 982 { 983 (*a)[i]= A_temp; 984 (*b)[i] = B_temp; 985 (*c)[i] = C_temp; 986 } 987 //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation 988 //and the true pdf, extended over the interval (X(I),X(I+1)) 989 G4int icase = 1; //loop code 990 G4bool reLoop = false; 991 do 992 { 993 reLoop = false; 994 (*err)[i] = 0.; //zero variable 995 for (G4int k=0;k<nip;k++) 996 { 997 G4double rr = (*sumi)[k]; 998 G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/ 999 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i])); 1000 if (k == 0 || k == nip-1) 1001 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]); 1002 else 1003 (*err)[i] += std::fabs(pap-(*pdfi)[k]); 1004 } 1005 (*err)[i] *= dxi; 1006 1007 //If err(I) is too large, the pdf is approximated by a uniform distribution 1008 if ((*err)[i] > 0.1*(*area)[i] && icase == 1) 1009 { 1010 (*b)[i] = 0; 1011 (*a)[i] = 0; 1012 (*c)[i] = 1.; 1013 icase = 2; 1014 reLoop = true; 1015 } 1016 }while(reLoop); 1017 delete pdfi; 1018 delete pdfih; 1019 delete sumi; 1020 } 1021 }while(x->size() < np); 1022 1023 if (x->size() != np || a->size() != np || 1024 err->size() != np || area->size() != np) 1025 { 1026 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 1027 "em2050",FatalException, 1028 "Problem in building the extended Table for Sampling: array dimensions do not match "); 1029 } 1030 1031 /******************************************************************************* 1032 Renormalization 1033 ********************************************************************************/ 1034 G4double ws = 0; 1035 for (std::size_t i=0;i<np-1;++i) 1036 ws += (*area)[i]; 1037 ws = 1.0/ws; 1038 G4double errMax = 0; 1039 for (std::size_t i=0;i<np-1;++i) 1040 { 1041 (*area)[i] *= ws; 1042 (*err)[i] *= ws; 1043 errMax = std::max(errMax,(*err)[i]); 1044 } 1045 1046 //Vector with the normalized cumulative distribution 1047 G4DataVector* PAC = new G4DataVector(); 1048 PAC->push_back(0.); 1049 for (std::size_t i=0;i<np-1;++i) 1050 { 1051 G4double previous = (*PAC)[i]; 1052 PAC->push_back(previous+(*area)[i]); 1053 } 1054 (*PAC)[PAC->size()-1] = 1.; 1055 1056 /******************************************************************************* 1057 Pre-calculated limits for the initial binary search for subsequent sampling 1058 ********************************************************************************/ 1059 std::vector<std::size_t> *ITTL = new std::vector<std::size_t>; 1060 std::vector<std::size_t> *ITTU = new std::vector<std::size_t>; 1061 1062 //Just create place-holders 1063 for (std::size_t i=0;i<np;++i) 1064 { 1065 ITTL->push_back(0); 1066 ITTU->push_back(0); 1067 } 1068 1069 G4double bin = 1.0/(np-1); 1070 (*ITTL)[0]=0; 1071 for (std::size_t i=1;i<(np-1);++i) 1072 { 1073 G4double ptst = i*bin; 1074 G4bool found = false; 1075 for (std::size_t j=(*ITTL)[i-1];j<np && !found;++j) 1076 { 1077 if ((*PAC)[j] > ptst) 1078 { 1079 (*ITTL)[i] = j-1; 1080 (*ITTU)[i-1] = j; 1081 found = true; 1082 } 1083 } 1084 } 1085 (*ITTU)[ITTU->size()-2] = ITTU->size()-1; 1086 (*ITTU)[ITTU->size()-1] = ITTU->size()-1; 1087 (*ITTL)[ITTL->size()-1] = ITTU->size()-2; 1088 1089 if (ITTU->size() != np || ITTU->size() != np) 1090 { 1091 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()", 1092 "em2051",FatalException, 1093 "Problem in building the Limit Tables for Sampling: array dimensions do not match"); 1094 } 1095 1096 /******************************************************************************** 1097 Copy tables 1098 ********************************************************************************/ 1099 G4PenelopeSamplingData* theTable = new G4PenelopeSamplingData(np); 1100 for (std::size_t i=0;i<np;++i) 1101 { 1102 theTable->AddPoint((*x)[i],(*PAC)[i],(*a)[i],(*b)[i],(*ITTL)[i],(*ITTU)[i]); 1103 } 1104 1105 if (fVerboseLevel > 2) 1106 { 1107 G4cout << "*************************************************************************" << 1108 G4endl; 1109 G4cout << "Sampling table for Penelope Rayleigh scattering in " << mat->GetName() << G4endl; 1110 theTable->DumpTable(); 1111 } 1112 fSamplingTable->insert(std::make_pair(mat,theTable)); 1113 1114 //Clean up temporary vectors 1115 delete x; 1116 delete a; 1117 delete b; 1118 delete c; 1119 delete err; 1120 delete area; 1121 delete PAC; 1122 delete ITTL; 1123 delete ITTU; 1124 1125 //DONE! 1126 return; 1127 } 1128 1129 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1130 1131 void G4PenelopeRayleighModel::GetPMaxTable(const G4Material* mat) 1132 { 1133 if (!fPMaxTable) 1134 { 1135 G4cout << "G4PenelopeRayleighModel::BuildPMaxTable" << G4endl; 1136 G4cout << "Going to instanziate the fPMaxTable !" << G4endl; 1137 G4cout << "That should _not_ be here! " << G4endl; 1138 fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>; 1139 } 1140 //check if the table is already there 1141 if (fPMaxTable->count(mat)) 1142 return; 1143 1144 //otherwise build it 1145 if (!fSamplingTable) 1146 { 1147 G4Exception("G4PenelopeRayleighModel::GetPMaxTable()", 1148 "em2052",FatalException, 1149 "SamplingTable is not properly instantiated"); 1150 return; 1151 } 1152 1153 //This should not be: the sampling table is built before the p-table 1154 if (!fSamplingTable->count(mat)) 1155 { 1156 G4ExceptionDescription ed; 1157 ed << "Sampling table for material " << mat->GetName() << " not found"; 1158 G4Exception("G4PenelopeRayleighModel::GetPMaxTable()", 1159 "em2052",FatalException, 1160 ed); 1161 return; 1162 } 1163 1164 G4PenelopeSamplingData *theTable = fSamplingTable->find(mat)->second; 1165 std::size_t tablePoints = theTable->GetNumberOfStoredPoints(); 1166 1167 std::size_t nOfEnergyPoints = fLogEnergyGridPMax.size(); 1168 G4PhysicsFreeVector* theVec = new G4PhysicsFreeVector(nOfEnergyPoints); 1169 1170 const std::size_t nip = 51; //hard-coded in Penelope 1171 1172 for (std::size_t ie=0;ie<fLogEnergyGridPMax.size();++ie) 1173 { 1174 G4double energy = G4Exp(fLogEnergyGridPMax[ie]); 1175 G4double Qm = 2.0*energy/electron_mass_c2; //this is non-dimensional now 1176 G4double Qm2 = Qm*Qm; 1177 G4double firstQ2 = theTable->GetX(0); 1178 G4double lastQ2 = theTable->GetX(tablePoints-1); 1179 G4double thePMax = 0; 1180 1181 if (Qm2 > firstQ2) 1182 { 1183 if (Qm2 < lastQ2) 1184 { 1185 //bisection to look for the index of Qm 1186 std::size_t lowerBound = 0; 1187 std::size_t upperBound = tablePoints-1; 1188 while (lowerBound <= upperBound) 1189 { 1190 std::size_t midBin = (lowerBound + upperBound)/2; 1191 if( Qm2 < theTable->GetX(midBin)) 1192 { upperBound = midBin-1; } 1193 else 1194 { lowerBound = midBin+1; } 1195 } 1196 //upperBound is the output (but also lowerBounf --> should be the same!) 1197 G4double Q1 = theTable->GetX(upperBound); 1198 G4double Q2 = Qm2; 1199 G4double DQ = (Q2-Q1)/((G4double)(nip-1)); 1200 G4double theA = theTable->GetA(upperBound); 1201 G4double theB = theTable->GetB(upperBound); 1202 G4double thePAC = theTable->GetPAC(upperBound); 1203 G4DataVector* fun = new G4DataVector(); 1204 for (std::size_t k=0;k<nip;++k) 1205 { 1206 G4double qi = Q1 + k*DQ; 1207 G4double tau = (qi-Q1)/ 1208 (theTable->GetX(upperBound+1)-Q1); 1209 G4double con1 = 2.0*theB*tau; 1210 G4double ci = 1.0+theA+theB; 1211 G4double con2 = ci-theA*tau; 1212 G4double etap = 0; 1213 if (std::fabs(con1) > 1.0e-16*std::fabs(con2)) 1214 etap = con2*(1.0-std::sqrt(1.0-2.0*tau*con1/(con2*con2)))/con1; 1215 else 1216 etap = tau/con2; 1217 G4double theFun = (theTable->GetPAC(upperBound+1)-thePAC)* 1218 (1.0+(theA+theB*etap)*etap)*(1.0+(theA+theB*etap)*etap)/ 1219 ((1.0-theB*etap*etap)*ci*(theTable->GetX(upperBound+1)-Q1)); 1220 fun->push_back(theFun); 1221 } 1222 //Now intergrate numerically the fun Cavalieri-Simpson's method 1223 G4DataVector* sum = new G4DataVector; 1224 G4double CONS = DQ*(1./12.); 1225 G4double HCONS = 0.5*CONS; 1226 sum->push_back(0.); 1227 G4double secondPoint = (*sum)[0] + 1228 (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*CONS; 1229 sum->push_back(secondPoint); 1230 for (std::size_t hh=2;hh<nip-1;++hh) 1231 { 1232 G4double previous = (*sum)[hh-1]; 1233 G4double next = previous+(13.0*((*fun)[hh-1]+(*fun)[hh])- 1234 (*fun)[hh+1]-(*fun)[hh-2])*HCONS; 1235 sum->push_back(next); 1236 } 1237 G4double last = (*sum)[nip-2]+(5.0*(*fun)[nip-1]+8.0*(*fun)[nip-2]- 1238 (*fun)[nip-3])*CONS; 1239 sum->push_back(last); 1240 thePMax = thePAC + (*sum)[sum->size()-1]; //last point 1241 delete fun; 1242 delete sum; 1243 } 1244 else 1245 { 1246 thePMax = 1.0; 1247 } 1248 } 1249 else 1250 { 1251 thePMax = theTable->GetPAC(0); 1252 } 1253 1254 //Write number in the table 1255 theVec->PutValue(ie,energy,thePMax); 1256 } 1257 1258 fPMaxTable->insert(std::make_pair(mat,theVec)); 1259 return; 1260 } 1261 1262 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1263 1264 void G4PenelopeRayleighModel::DumpFormFactorTable(const G4Material* mat) 1265 { 1266 G4cout << "*****************************************************************" << G4endl; 1267 G4cout << "G4PenelopeRayleighModel: Form Factor Table for " << mat->GetName() << G4endl; 1268 //try to use the same format as Penelope-Fortran, namely Q (/m_e*c) and F 1269 G4cout << "Q/(m_e*c) F(Q) " << G4endl; 1270 G4cout << "*****************************************************************" << G4endl; 1271 if (!fLogFormFactorTable->count(mat)) 1272 BuildFormFactorTable(mat); 1273 1274 G4PhysicsFreeVector* theVec = fLogFormFactorTable->find(mat)->second; 1275 for (std::size_t i=0;i<theVec->GetVectorLength();++i) 1276 { 1277 G4double logQ2 = theVec->GetLowEdgeEnergy(i); 1278 G4double Q = G4Exp(0.5*logQ2); 1279 G4double logF2 = (*theVec)[i]; 1280 G4double F = G4Exp(0.5*logF2); 1281 G4cout << Q << " " << F << G4endl; 1282 } 1283 //DONE 1284 return; 1285 } 1286 1287 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo... 1288 1289 void G4PenelopeRayleighModel::SetParticle(const G4ParticleDefinition* p) 1290 { 1291 if(!fParticle) { 1292 fParticle = p; 1293 } 1294 } 1295