Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4MicroElecCapture.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // G4MicroElecCapture.cc,
 28 //                 2011/08/29 A.Valentin, M. Raine are with CEA [a]
 29 //                 2020/05/20 P. Caron, C. Inguimbert are with ONERA [b] 
 30 //                            Q. Gibaru is with CEA [a], ONERA [b] and CNES [c]
 31 //                            M. Raine and D. Lambert are with CEA [a]
 32 //
 33 // A part of this work has been funded by the French space agency(CNES[c])
 34 // [a] CEA, DAM, DIF - 91297 ARPAJON, France
 35 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France
 36 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France
 37 //
 38 // Based on the following publications
 39 // - A.Valentin, M. Raine, 
 40 //   Inelastic cross-sections of low energy electrons in silicon
 41 //   for the simulation of heavy ion tracks with the Geant4-DNA toolkit,
 42 //   NSS Conf. Record 2010, pp. 80-85
 43 //   https://doi.org/10.1109/NSSMIC.2010.5873720
 44 //
 45 // - A.Valentin, M. Raine, M.Gaillardin, P.Paillet
 46 //   Geant4 physics processes for microdosimetry simulation:
 47 //   very low energy electromagnetic models for electrons in Silicon,
 48 //   https://doi.org/10.1016/j.nimb.2012.06.007
 49 //   NIM B, vol. 288, pp. 66-73, 2012, part A
 50 //   heavy ions in Si, NIM B, vol. 287, pp. 124-129, 2012, part B
 51 //   https://doi.org/10.1016/j.nimb.2012.07.028
 52 //
 53 // - M. Raine, M. Gaillardin, P. Paillet
 54 //   Geant4 physics processes for silicon microdosimetry simulation: 
 55 //   Improvements and extension of the energy-range validity up to 10 GeV/nucleon
 56 //   NIM B, vol. 325, pp. 97-100, 2014
 57 //   https://doi.org/10.1016/j.nimb.2014.01.014
 58 //
 59 // - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine
 60 //   Electron emission yield for low energy electrons: 
 61 //   Monte Carlo simulation and experimental comparison for Al, Ag, and Si
 62 //   Journal of Applied Physics 121 (2017) 215107. 
 63 //   https://doi.org/10.1063/1.4984761
 64 //
 65 // - P. Caron,
 66 //   Study of Electron-Induced Single-Event Upset in Integrated Memory Devices
 67 //   PHD, 16th October 2019
 68 //
 69 // - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech, 
 70 //   Geant4 physics processes for microdosimetry and secondary electron emission simulation : 
 71 //   Extension of MicroElec to very low energies and new materials
 72 //   NIM B, 2020, in review.
 73 //
 74 //----------------------------------------------------------------------------
 75 //
 76 // ClassName: G4MicroElecCapture derivated from G4ElectronCapture (V Ivanchenko)
 77 //
 78 // Description: The process to kill particles to save CPU
 79 //
 80 // Author: C. Inguimbert 31 january 2022 derivated from G4ElectronCapture (V.Ivanchenko 31 August 2010)
 81 //
 82 //----------------------------------------------------------------------------
 83 //
 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 85 
 86 #include "G4MicroElecCapture.hh"
 87 #include "G4SystemOfUnits.hh"
 88 #include "G4ParticleDefinition.hh"
 89 #include "G4Step.hh"
 90 #include "G4PhysicalConstants.hh"
 91 #include "G4Track.hh"
 92 #include "G4Region.hh"
 93 #include "G4RegionStore.hh"
 94 #include "G4Electron.hh"
 95 #include "G4Pow.hh"
 96 
 97 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 98 
 99 G4MicroElecCapture::G4MicroElecCapture(const G4String& regName, G4double ekinlim)
100   : G4VDiscreteProcess("MicroElecCapture", fElectromagnetic), kinEnergyThreshold(ekinlim),
101     regionName(regName), region(0)
102 {
103   if(regName == "" || regName == "world")
104   { 
105     regionName = "DefaultRegionForTheWorld";
106   }
107   isInitialised = false;
108   pParticleChange = &fParticleChange;
109 }
110 
111 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
112 
113 G4MicroElecCapture::~G4MicroElecCapture() 
114 {
115   for (auto pos = tableWF.cbegin(); pos != tableWF.cend(); ++pos)
116   {
117     G4MicroElecMaterialStructure* table = pos->second;
118     delete table;
119   }
120 }
121 
122 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
123 
124 void G4MicroElecCapture::SetKinEnergyLimit(G4double val)
125 {
126   kinEnergyThreshold = val;
127 }
128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
129 
130 void G4MicroElecCapture::BuildPhysicsTable(const G4ParticleDefinition&)
131 {
132   region = (G4RegionStore::GetInstance())->GetRegion(regionName);
133  // if(region && verboseLevel > 0) {
134   G4cout << "### G4MicroElecCapture: Tracking cut E(MeV) = " 
135          << kinEnergyThreshold/MeV << " is assigned to " << regionName 
136          << G4endl;
137 }
138 
139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
140 
141 G4bool G4MicroElecCapture::IsApplicable(const G4ParticleDefinition&)
142 {
143   return true;
144 }
145 
146 void G4MicroElecCapture::Initialise()
147 {
148   if (isInitialised) { return; }
149 
150   G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable();
151   G4int numOfCouples = (G4int)theCoupleTable->GetTableSize();
152   G4cout << numOfCouples << G4endl;
153 
154   for (G4int i = 0; i < numOfCouples; ++i)
155   {
156     const G4Material* material = theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
157 
158     G4cout << "G4Capture, Material " << i + 1 << " / "
159            << numOfCouples << " : " << material->GetName() << G4endl;
160     if (material->GetName() == "Vacuum")
161     {
162       tableWF[material->GetName()] = 0;
163       continue;
164     }
165     G4String mat = material->GetName();
166     G4MicroElecMaterialStructure* str = new G4MicroElecMaterialStructure(mat);
167     tableWF[mat] = str;
168   }
169   isInitialised = true;
170 }
171 
172 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
173 
174 G4VParticleChange* G4MicroElecCapture::PostStepDoIt(const G4Track& aTrack, 
175                                                     const G4Step&)
176 {
177   if (!isInitialised) { Initialise(); }
178 
179   G4String mat = aTrack.GetMaterial()->GetName();
180   G4int Ztarget = ((*(aTrack.GetMaterial()->GetElementVector()))[0])->GetZasInt();
181   G4int Atarget = ((*(aTrack.GetMaterial()->GetElementVector()))[0])->GetAtomicMassAmu();
182   G4double Nbelements = aTrack.GetMaterial()->GetNumberOfElements();
183   G4double moleculeMass = aTrack.GetMaterial()->GetMassOfMolecule() / amu;
184   auto FractionMass = aTrack.GetMaterial()->GetFractionVector();
185   G4int Zinc = aTrack.GetParticleDefinition()->GetAtomicNumber();
186   G4int Ainc = aTrack.GetParticleDefinition()->GetAtomicMass();
187   G4String IncPartName = aTrack.GetParticleDefinition()->GetParticleName();
188   G4double NIEdep = 0.0;
189 
190   for (G4int i = 0; i < Nbelements; ++i)
191   {
192     Ztarget = ((*(aTrack.GetMaterial()->GetElementVector()))[i])->GetZasInt();
193     Atarget = ((*(aTrack.GetMaterial()->GetElementVector()))[i])->GetAtomicMassAmu();
194     NIEdep = NIEdep + moleculeMass*FractionMass[i] / Atarget*G_Lindhard_Rob(aTrack.GetKineticEnergy(), Zinc, Ainc, Ztarget, Atarget);
195   }
196 
197   WorkFunctionTable::iterator matWF;
198   matWF = tableWF.find(mat);
199 
200   if (matWF == tableWF.end())
201   {
202     G4String str = "Material ";
203     str += mat + " not found!";
204     G4Exception("G4MicroElecCapture::PostStepGPIL", "em0002",
205                 FatalException, str);
206     return nullptr;
207   }
208   else
209   {
210     G4MicroElecMaterialStructure* str = matWF->second;
211     pParticleChange->Initialize(aTrack);
212     pParticleChange->ProposeTrackStatus(fStopAndKill);
213 
214     G4double InitE = str->GetEnergyGap() + str->GetInitialEnergy();
215 
216     if (IncPartName == "e-")
217     {
218       // metals = Non ionizing deposited energy = 0.0
219       if (((str->GetEnergyGap()) / eV)<(0.001))
220       {
221         pParticleChange->ProposeNonIonizingEnergyDeposit(0.0);
222         pParticleChange->ProposeLocalEnergyDeposit(aTrack.GetKineticEnergy());
223       }
224       else // MicroElec materials Non ionizing deposited energy different from zero
225       {
226         G4int c = (G4int)((aTrack.GetKineticEnergy()) / (InitE));
227         pParticleChange->ProposeNonIonizingEnergyDeposit(aTrack.GetKineticEnergy() - InitE*c);
228         pParticleChange->ProposeLocalEnergyDeposit(aTrack.GetKineticEnergy());
229       }
230     }
231     else
232     {
233       if ((IncPartName == "Genericion") || (IncPartName == "alpha")
234        || (IncPartName == "He3") || (IncPartName == "deuteron")
235        || (IncPartName == "triton") || (IncPartName == "proton"))
236       {
237         pParticleChange->ProposeNonIonizingEnergyDeposit(NIEdep);
238         pParticleChange->ProposeLocalEnergyDeposit(aTrack.GetKineticEnergy());
239       }
240       else
241       {
242         pParticleChange->ProposeNonIonizingEnergyDeposit(0.0);
243         pParticleChange->ProposeLocalEnergyDeposit(aTrack.GetKineticEnergy());
244       }
245     }
246   } // matWF == tableWF.end())
247     
248   fParticleChange.SetProposedKineticEnergy(0.0);
249   return pParticleChange;
250 }
251 
252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
253 
254 G4double G4MicroElecCapture::GetMeanFreePath(const G4Track& aTrack, G4double,
255                                              G4ForceCondition*)
256 {                     
257   G4String material = aTrack.GetMaterial()->GetName();
258   // test particle type in order to applied the capture to both electrons, protons and heavy ions
259   G4double mfp = DBL_MAX;
260   G4double ekin = aTrack.GetKineticEnergy(); 
261   
262   if (ekin < 500*eV && aTrack.GetParticleDefinition()->GetParticleName() == "e-")
263   {
264     if (material != "G4_ALUMINUM_OXIDE" && material != "G4_SILICON_DIOXIDE"
265      && material != "G4_BORON_NITRIDE")
266     {
267       return DBL_MAX;
268     }
269     G4double    S = 0;
270     G4double    y = 0;
271     if (material == "G4_ALUMINUM_OXIDE")
272     {
273       S = 1 * (1 / nm);
274       y = 0.25 * (1 / eV);
275     }
276     if (material == "G4_SILICON_DIOXIDE")
277     {
278       S = 0.3 * (1 / nm);
279       y = 0.2 * (1 / eV);
280     }
281     if (material == "G4_BORON_NITRIDE")
282     {
283       S = 0 * (1 / nm);
284       y = 1 * (1 / eV);
285     }
286 
287     // VI: added numerical protection against extrime value of G4Exp argument
288     y *= ekin;
289     if (S > 0.0 && y < 100.0) { mfp = G4Exp(y) / S; }
290   }
291   return mfp;
292 }    
293 
294 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
295 
296 G4double G4MicroElecCapture::G_Lindhard_Rob(G4double Trecoil, G4int Zrecoil, G4int Arecoil, G4int Zcible, G4int Acible)
297 {
298   G4double Lind =0.0;
299 
300   if (Arecoil <= 0 || Zrecoil == 0)
301   {
302     Lind = 0.0;
303   }
304   else
305   {
306     G4double El = 30.724 * Zcible * Zrecoil
307                 * std::pow((G4Pow::GetInstance()->Z23(Zcible) + G4Pow::GetInstance()->Z23(Zrecoil)), 0.5)
308                 * (Arecoil + Acible) / Acible;
309 
310     // multiplication by 1e6 to change El from eV to MeV
311     G4double e = Trecoil / (El * CLHEP::eV);
312     G4double Fl = (0.0793 * G4Pow::GetInstance()->Z23(Zrecoil) * std::pow(Zcible, 0.5) * std::pow((Arecoil + Acible), 1.5))
313                 / (std::pow((G4Pow::GetInstance()->Z23(Zcible) + G4Pow::GetInstance()->Z23(Zrecoil)), 3. / 4.) * std::pow(Arecoil, 3. / 2.) * std::pow(Acible, 1. / 2.));
314 
315     Lind = 1. / (1 + Fl * (3.4008 * std::pow(e, 1. / 6.) + 0.40244 * std::pow(e, 3. / 4.) + e));
316 
317     // to get the energie that go into displacement
318     Lind = Lind * Trecoil;
319   }
320   return Lind;                                                                   
321 }
322