Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4LivermoreIonisationModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // Author: Luciano Pandola
 28 //         on base of G4LowEnergyIonisation developed by A.Forti and V.Ivanchenko
 29 //
 30 // History:
 31 // --------
 32 // 12 Jan 2009   L Pandola    Migration from process to model 
 33 // 03 Mar 2009   L Pandola    Bug fix (release memory in the destructor)
 34 // 15 Apr 2009   V Ivanchenko Cleanup initialisation and generation of secondaries:
 35 //                  - apply internal high-energy limit only in constructor 
 36 //                  - do not apply low-energy limit (default is 0)
 37 //                  - simplify sampling of deexcitation by using cut in energy
 38 //                  - set activation of Auger "false"
 39 //                  - remove initialisation of element selectors
 40 // 19 May 2009   L Pandola    Explicitely set to zero pointers deleted in 
 41 //                            Initialise(), since they might be checked later on
 42 // 23 Oct 2009   L Pandola
 43 //                  - atomic deexcitation managed via G4VEmModel::DeexcitationFlag() is
 44 //                    set as "true" (default would be false)
 45 // 12 Oct 2010   L Pandola
 46 //                  - add debugging information about energy in 
 47 //                    SampleDeexcitationAlongStep()
 48 //                  - generate fluorescence SampleDeexcitationAlongStep() only above 
 49 //                    the cuts.
 50 // 01 Jun 2011   V Ivanchenko general cleanup - all old deexcitation code removed
 51 //
 52 
 53 #include "G4LivermoreIonisationModel.hh"
 54 #include "G4PhysicalConstants.hh"
 55 #include "G4SystemOfUnits.hh"
 56 #include "G4ParticleDefinition.hh"
 57 #include "G4MaterialCutsCouple.hh"
 58 #include "G4ProductionCutsTable.hh"
 59 #include "G4DynamicParticle.hh"
 60 #include "G4Element.hh"
 61 #include "G4ParticleChangeForLoss.hh"
 62 #include "G4Electron.hh"
 63 #include "G4CrossSectionHandler.hh"
 64 #include "G4VEMDataSet.hh"
 65 #include "G4eIonisationCrossSectionHandler.hh"
 66 #include "G4eIonisationSpectrum.hh"
 67 #include "G4VEnergySpectrum.hh"
 68 #include "G4SemiLogInterpolation.hh"
 69 #include "G4AtomicTransitionManager.hh"
 70 #include "G4AtomicShell.hh"
 71 #include "G4DeltaAngle.hh"
 72 
 73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 74 
 75 
 76 G4LivermoreIonisationModel::G4LivermoreIonisationModel(const G4ParticleDefinition*,
 77                    const G4String& nam) : 
 78   G4VEmModel(nam), fParticleChange(nullptr), 
 79   crossSectionHandler(nullptr), energySpectrum(nullptr), 
 80   isInitialised(false)
 81 {
 82   fIntrinsicLowEnergyLimit = 12.*eV;
 83   fIntrinsicHighEnergyLimit = 100.0*GeV;
 84 
 85   verboseLevel = 0;
 86   SetAngularDistribution(new G4DeltaAngle());
 87 
 88   transitionManager = G4AtomicTransitionManager::Instance();
 89 }
 90 
 91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 92 
 93 G4LivermoreIonisationModel::~G4LivermoreIonisationModel()
 94 {
 95   delete energySpectrum;
 96   delete crossSectionHandler;
 97 }
 98 
 99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100 
101 void G4LivermoreIonisationModel::Initialise(const G4ParticleDefinition* particle,
102               const G4DataVector& cuts)
103 {
104   //Check that the Livermore Ionisation is NOT attached to e+
105   if (particle != G4Electron::Electron())
106     {
107       G4Exception("G4LivermoreIonisationModel::Initialise",
108       "em0002",FatalException,
109       "Livermore Ionisation Model is applicable only to electrons");
110     }
111   transitionManager->Initialise();
112 
113   //Read energy spectrum
114   if (energySpectrum) 
115     {
116       delete energySpectrum;
117       energySpectrum = nullptr;
118     }
119   energySpectrum = new G4eIonisationSpectrum();
120   if (verboseLevel > 3)
121     G4cout << "G4VEnergySpectrum is initialized" << G4endl;
122 
123   //Initialize cross section handler
124   if (crossSectionHandler) 
125     {
126       delete crossSectionHandler;
127       crossSectionHandler = nullptr;
128     }
129 
130   const size_t nbins = 20;
131   G4double emin = LowEnergyLimit();
132   G4double emax = HighEnergyLimit();
133   G4int ndec = G4int(std::log10(emax/emin) + 0.5);
134   if(ndec <= 0) { ndec = 1; }
135 
136   G4VDataSetAlgorithm* interpolation = new G4SemiLogInterpolation();
137   crossSectionHandler = 
138     new G4eIonisationCrossSectionHandler(energySpectrum,interpolation,
139            emin,emax,nbins*ndec);
140   crossSectionHandler->Clear();
141   crossSectionHandler->LoadShellData("ioni/ion-ss-cs-");
142   //This is used to retrieve cross section values later on
143   G4VEMDataSet* emdata = 
144     crossSectionHandler->BuildMeanFreePathForMaterials(&cuts);
145   //The method BuildMeanFreePathForMaterials() is required here only to force 
146   //the building of an internal table: the output pointer can be deleted
147   delete emdata;  
148 
149   if (verboseLevel > 0)
150     {
151       G4cout << "Livermore Ionisation model is initialized " << G4endl
152        << "Energy range: "
153        << LowEnergyLimit() / keV << " keV - "
154        << HighEnergyLimit() / GeV << " GeV"
155        << G4endl;
156     }
157 
158   if (verboseLevel > 3)
159     {
160       G4cout << "Cross section data: " << G4endl; 
161       crossSectionHandler->PrintData();
162       G4cout << "Parameters: " << G4endl;
163       energySpectrum->PrintData();
164     }
165 
166   if(isInitialised) { return; }
167   fParticleChange = GetParticleChangeForLoss();
168   isInitialised = true; 
169 }
170 
171 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
172 
173 G4double 
174 G4LivermoreIonisationModel::ComputeCrossSectionPerAtom(
175                             const G4ParticleDefinition*,
176           G4double energy,
177           G4double Z, G4double,
178           G4double cutEnergy, 
179           G4double)
180 {
181   G4int iZ = G4int(Z);
182   if (!crossSectionHandler)
183     {
184       G4Exception("G4LivermoreIonisationModel::ComputeCrossSectionPerAtom",
185       "em1007",FatalException,
186       "The cross section handler is not correctly initialized");
187       return 0;
188     }
189   
190   //The cut is already included in the crossSectionHandler
191   G4double cs = 
192     crossSectionHandler->GetCrossSectionAboveThresholdForElement(energy,
193                  cutEnergy,
194                  iZ);
195 
196   if (verboseLevel > 1)
197     {
198       G4cout << "G4LivermoreIonisationModel " << G4endl;
199       G4cout << "Cross section for delta emission > " 
200        << cutEnergy/keV << " keV at " 
201        << energy/keV << " keV and Z = " << iZ << " --> " 
202        << cs/barn << " barn" << G4endl;
203     }
204   return cs;
205 }
206 
207 
208 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
209 
210 G4double 
211 G4LivermoreIonisationModel::ComputeDEDXPerVolume(const G4Material* material,
212              const G4ParticleDefinition*,
213              G4double kineticEnergy,
214              G4double cutEnergy)
215 {
216   G4double sPower = 0.0;
217 
218   const G4ElementVector* theElementVector = material->GetElementVector();
219   size_t NumberOfElements = material->GetNumberOfElements() ;
220   const G4double* theAtomicNumDensityVector =
221                     material->GetAtomicNumDensityVector();
222 
223   // loop for elements in the material
224   for (size_t iel=0; iel<NumberOfElements; iel++ ) 
225     {
226       G4int iZ = (G4int)((*theElementVector)[iel]->GetZ());
227       G4int nShells = transitionManager->NumberOfShells(iZ);
228       for (G4int n=0; n<nShells; n++) 
229   {
230     G4double e = energySpectrum->AverageEnergy(iZ, 0.0,cutEnergy,
231                  kineticEnergy, n);
232     G4double cs= crossSectionHandler->FindValue(iZ,kineticEnergy, n);
233     sPower   += e * cs * theAtomicNumDensityVector[iel];
234   }
235       G4double esp = energySpectrum->Excitation(iZ,kineticEnergy);
236       sPower   += esp * theAtomicNumDensityVector[iel];
237     }
238 
239   if (verboseLevel > 2)
240     {
241       G4cout << "G4LivermoreIonisationModel " << G4endl;
242       G4cout << "Stopping power < " << cutEnergy/keV 
243        << " keV at " << kineticEnergy/keV << " keV = " 
244        << sPower/(keV/mm) << " keV/mm" << G4endl;
245     }
246   
247   return sPower;
248 }
249 
250 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
251 
252 void G4LivermoreIonisationModel::SampleSecondaries(
253                                  std::vector<G4DynamicParticle*>* fvect,
254          const G4MaterialCutsCouple* couple,
255          const G4DynamicParticle* aDynamicParticle,
256          G4double cutE,
257          G4double maxE)
258 {
259   
260   G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
261 
262   if (kineticEnergy <= fIntrinsicLowEnergyLimit)
263     {
264       fParticleChange->SetProposedKineticEnergy(0.);
265       fParticleChange->ProposeLocalEnergyDeposit(kineticEnergy);
266       return;
267     }
268 
269    // Select atom and shell
270   G4int Z = crossSectionHandler->SelectRandomAtom(couple, kineticEnergy);
271   G4int shellIndex = crossSectionHandler->SelectRandomShell(Z, kineticEnergy);
272   const G4AtomicShell* shell = transitionManager->Shell(Z,shellIndex);
273   G4double bindingEnergy = shell->BindingEnergy();
274 
275   // Sample delta energy using energy interval for delta-electrons 
276   G4double energyMax = 
277     std::min(maxE,energySpectrum->MaxEnergyOfSecondaries(kineticEnergy));
278   G4double energyDelta = energySpectrum->SampleEnergy(Z, cutE, energyMax,
279                   kineticEnergy, shellIndex);
280 
281   if (energyDelta == 0.) //nothing happens
282     { return; }
283 
284   const G4ParticleDefinition* electron = G4Electron::Electron();
285   G4DynamicParticle* delta = new G4DynamicParticle(electron, 
286     GetAngularDistribution()->SampleDirectionForShell(aDynamicParticle, energyDelta,
287                   Z, shellIndex,
288                                                       couple->GetMaterial()),
289                                                       energyDelta);
290 
291   fvect->push_back(delta);
292 
293   // Change kinematics of primary particle
294   G4ThreeVector direction = aDynamicParticle->GetMomentumDirection();
295   G4double totalMomentum = std::sqrt(kineticEnergy*(kineticEnergy + 2*electron_mass_c2));
296 
297   G4ThreeVector finalP = totalMomentum*direction - delta->GetMomentum();
298   finalP               = finalP.unit();
299 
300   //This is the amount of energy available for fluorescence
301   G4double theEnergyDeposit = bindingEnergy;
302 
303   // fill ParticleChange
304   // changed energy and momentum of the actual particle
305   G4double finalKinEnergy = kineticEnergy - energyDelta - theEnergyDeposit;
306   if(finalKinEnergy < 0.0) 
307     {
308       theEnergyDeposit += finalKinEnergy;
309       finalKinEnergy    = 0.0;
310     } 
311   else 
312     {
313       fParticleChange->ProposeMomentumDirection(finalP);
314     }
315   fParticleChange->SetProposedKineticEnergy(finalKinEnergy);
316 
317   if (theEnergyDeposit < 0)
318     {
319       G4cout <<  "G4LivermoreIonisationModel: Negative energy deposit: "
320        << theEnergyDeposit/eV << " eV" << G4endl;
321       theEnergyDeposit = 0.0;
322     }
323 
324   //Assign local energy deposit
325   fParticleChange->ProposeLocalEnergyDeposit(theEnergyDeposit);
326 
327   if (verboseLevel > 1)
328     {
329       G4cout << "-----------------------------------------------------------" << G4endl;
330       G4cout << "Energy balance from G4LivermoreIonisation" << G4endl;
331       G4cout << "Incoming primary energy: " << kineticEnergy/keV << " keV" << G4endl;
332       G4cout << "-----------------------------------------------------------" << G4endl;
333       G4cout << "Outgoing primary energy: " << finalKinEnergy/keV << " keV" << G4endl;
334       G4cout << "Delta ray " << energyDelta/keV << " keV" << G4endl;
335       G4cout << "Fluorescence: " << (bindingEnergy-theEnergyDeposit)/keV << " keV" << G4endl;
336       G4cout << "Local energy deposit " << theEnergyDeposit/keV << " keV" << G4endl;
337       G4cout << "Total final state: " << (finalKinEnergy+energyDelta+bindingEnergy)
338             << " keV" << G4endl;
339       G4cout << "-----------------------------------------------------------" << G4endl;
340     }
341   return;
342 }
343 
344 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
345 
346