Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 //--------------------------------------------------------------------------- 28 // 29 // ClassName: G4HadronPhysicsINCLXX 30 // 31 // Author: 2011 P. Kaitaniemi 32 // 33 // Modified: 34 // 11.11.2022 A.Ribon: Extended to light hypernuclei and anti-hypernuclei projectiles 35 // 07.05.2020 A.Ribon: Use eventually QGSP for hyperons (and anti-hyperons) 36 // at high energies 37 // 05.05.2020 A.Ribon: Use eventually QGSP for antibaryons at high energies 38 // 22.05.2014 D. Mancusi: Extend INCL++ to 20 GeV 39 // 19.03.2013 A.Ribon: Replace LEP with FTFP and BERT 40 // 08.03.2013 D. Mancusi: Fix a problem with overlapping model ranges 41 // 01.03.2013 D. Mancusi: Rename to G4HadronPhysicsINCLXX and introduce 42 // parameters for FTFP and NeutronHP 43 // 31.10.2012 A.Ribon: Use G4MiscBuilder 44 // 23.03.2012 D. Mancusi: Extended INCL++ to incident heavy ions up to 16O 45 // 27.11.2011 P.Kaitaniemi: Created physics list for INCL++ using QGSP_INCL_ABLA as a template 46 // 47 //---------------------------------------------------------------------------- 48 // 49 #include <iomanip> 50 51 #include "G4HadronPhysicsINCLXX.hh" 52 53 #include "globals.hh" 54 #include "G4ios.hh" 55 #include "G4SystemOfUnits.hh" 56 #include "G4ParticleDefinition.hh" 57 #include "G4ParticleTable.hh" 58 59 #include "G4PionBuilder.hh" 60 #include "G4KaonBuilder.hh" 61 #include "G4QGSPPionBuilder.hh" 62 #include "G4FTFPPionBuilder.hh" 63 #include "G4QGSPKaonBuilder.hh" 64 #include "G4FTFPKaonBuilder.hh" 65 #include "G4INCLXXPionBuilder.hh" 66 #include "G4BertiniKaonBuilder.hh" 67 68 #include "G4ProtonBuilder.hh" 69 #include "G4QGSPProtonBuilder.hh" 70 #include "G4FTFPProtonBuilder.hh" 71 #include "G4INCLXXProtonBuilder.hh" 72 73 #include "G4NeutronBuilder.hh" 74 #include "G4QGSPNeutronBuilder.hh" 75 #include "G4FTFPNeutronBuilder.hh" 76 #include "G4INCLXXNeutronBuilder.hh" 77 #include "G4NeutronPHPBuilder.hh" 78 79 #include "G4NeutronRadCapture.hh" 80 #include "G4NeutronCaptureXS.hh" 81 #include "G4NeutronInelasticXS.hh" 82 #include "G4ParticleHPCaptureData.hh" 83 #include "G4LFission.hh" 84 85 #include "G4PhysListUtil.hh" 86 #include "G4HadParticles.hh" 87 #include "G4HadronicParameters.hh" 88 #include "G4HadronicBuilder.hh" 89 90 // factory 91 #include "G4PhysicsConstructorFactory.hh" 92 // 93 G4_DECLARE_PHYSCONSTR_FACTORY(G4HadronPhysicsINCLXX); 94 95 G4HadronPhysicsINCLXX::G4HadronPhysicsINCLXX(G4int verb) 96 : G4HadronPhysicsINCLXX("hInelastic INCLXX") 97 { 98 G4HadronicParameters::Instance()->SetVerboseLevel(verb); 99 } 100 101 G4HadronPhysicsINCLXX::G4HadronPhysicsINCLXX(const G4String& name, const G4bool quasiElastic, const G4bool neutronHP, const G4bool ftfp) 102 : G4HadronPhysicsFTFP_BERT(name, quasiElastic), 103 withNeutronHP(neutronHP), 104 withFTFP(ftfp) 105 { 106 QuasiElastic = withFTFP ? false : true; 107 minBERT_neutron = withNeutronHP ? 19.9*MeV : 0.0; 108 } 109 110 void G4HadronPhysicsINCLXX::Neutron() 111 { 112 G4HadronicParameters* param = G4HadronicParameters::Instance(); 113 G4bool useFactorXS = param->ApplyFactorXS(); 114 //General schema: 115 // 1) Create a builder 116 // 2) Call AddBuilder 117 // 3) Configure the builder, possibly with sub-builders 118 // 4) Call builder->Build() 119 auto neu = new G4NeutronBuilder( withNeutronHP ); 120 AddBuilder(neu); 121 G4PhysicsBuilderInterface* string = nullptr; 122 if(withFTFP) { 123 string = new G4FTFPNeutronBuilder(QuasiElastic); 124 } else { 125 string = new G4QGSPNeutronBuilder(QuasiElastic); 126 } 127 string->SetMinEnergy(15.*GeV); 128 AddBuilder(string); 129 neu->RegisterMe(string); 130 131 auto inclxxn = new G4INCLXXNeutronBuilder; 132 inclxxn->SetMaxEnergy(20.*GeV); 133 AddBuilder(inclxxn); 134 neu->RegisterMe(inclxxn); 135 136 if(withNeutronHP) { 137 inclxxn->UsePreCompound(false); 138 inclxxn->SetMinEnergy(minBERT_neutron); 139 auto hpn = new G4NeutronPHPBuilder; 140 AddBuilder(hpn); 141 neu->RegisterMe(hpn); 142 } else { 143 inclxxn->UsePreCompound(true); 144 inclxxn->SetMinPreCompoundEnergy(0.0*MeV); 145 inclxxn->SetMaxPreCompoundEnergy(2.0*MeV); 146 inclxxn->SetMinEnergy(1.0*MeV); 147 } 148 149 neu->Build(); 150 151 const G4ParticleDefinition* neutron = G4Neutron::Neutron(); 152 G4HadronicProcess* inel = G4PhysListUtil::FindInelasticProcess(neutron); 153 if(nullptr != inel) { 154 if( useFactorXS ) inel->MultiplyCrossSectionBy( param->XSFactorNucleonInelastic() ); 155 } 156 G4HadronicProcess* capture = G4PhysListUtil::FindCaptureProcess(neutron); 157 if (nullptr != capture) { 158 G4NeutronRadCapture* theNeutronRadCapture = new G4NeutronRadCapture(); 159 theNeutronRadCapture->SetMinEnergy( minBERT_neutron ); 160 capture->RegisterMe( theNeutronRadCapture ); 161 } 162 G4HadronicProcess* fission = G4PhysListUtil::FindFissionProcess(neutron); 163 if (nullptr != fission) { 164 G4LFission* theNeutronLEPFission = new G4LFission(); 165 theNeutronLEPFission->SetMinEnergy( minBERT_neutron ); 166 theNeutronLEPFission->SetMaxEnergy( G4HadronicParameters::Instance()->GetMaxEnergy() ); 167 fission->RegisterMe( theNeutronLEPFission ); 168 } 169 } 170 171 void G4HadronPhysicsINCLXX::Proton() 172 { 173 G4HadronicParameters* param = G4HadronicParameters::Instance(); 174 G4bool useFactorXS = param->ApplyFactorXS(); 175 176 auto pro =new G4ProtonBuilder; 177 AddBuilder(pro); 178 G4PhysicsBuilderInterface* string = nullptr; 179 if(withFTFP) { 180 string = new G4FTFPProtonBuilder(QuasiElastic); 181 } else { 182 string = new G4QGSPProtonBuilder(QuasiElastic); 183 } 184 string->SetMinEnergy(15.*GeV); 185 AddBuilder(string); 186 pro->RegisterMe(string); 187 188 auto inclxxp = new G4INCLXXProtonBuilder; 189 AddBuilder(inclxxp); 190 inclxxp->SetMinEnergy(1.0*MeV); 191 inclxxp->SetMaxEnergy(20.0*GeV); 192 pro->RegisterMe(inclxxp); 193 pro->Build(); 194 195 const G4ParticleDefinition* proton = G4Proton::Proton(); 196 G4HadronicProcess* inel = G4PhysListUtil::FindInelasticProcess(proton); 197 if(nullptr != inel) { 198 if( useFactorXS ) inel->MultiplyCrossSectionBy( param->XSFactorNucleonInelastic() ); 199 } 200 } 201 202 void G4HadronPhysicsINCLXX::Pion() 203 { 204 G4HadronicParameters* param = G4HadronicParameters::Instance(); 205 G4bool useFactorXS = param->ApplyFactorXS(); 206 207 auto pi = new G4PionBuilder; 208 AddBuilder(pi); 209 G4PhysicsBuilderInterface* string = nullptr; 210 if(withFTFP) { 211 string = new G4FTFPPionBuilder(QuasiElastic); 212 } else { 213 string = new G4QGSPPionBuilder(QuasiElastic); 214 } 215 string->SetMinEnergy(15.*GeV); 216 AddBuilder(string); 217 pi->RegisterMe(string); 218 219 auto inclxx = new G4INCLXXPionBuilder; 220 inclxx->SetMinEnergy(0.0*GeV); 221 inclxx->SetMaxEnergy(20.*GeV); 222 AddBuilder(inclxx); 223 pi->RegisterMe(inclxx); 224 225 pi->Build(); 226 227 if( useFactorXS ) { 228 const G4ParticleDefinition* pion = G4PionPlus::PionPlus(); 229 G4HadronicProcess* inel = G4PhysListUtil::FindInelasticProcess(pion); 230 if(nullptr != inel) { 231 inel->MultiplyCrossSectionBy( param->XSFactorPionInelastic() ); 232 } 233 pion = G4PionMinus::PionMinus(); 234 inel = G4PhysListUtil::FindInelasticProcess(pion); 235 if(nullptr != inel) { 236 inel->MultiplyCrossSectionBy( param->XSFactorPionInelastic() ); 237 } 238 } 239 } 240 241 void G4HadronPhysicsINCLXX::Kaon() 242 { 243 G4HadronicParameters* param = G4HadronicParameters::Instance(); 244 G4bool useFactorXS = param->ApplyFactorXS(); 245 246 auto k = new G4KaonBuilder; 247 AddBuilder(k); 248 G4PhysicsBuilderInterface* string = nullptr; 249 if(withFTFP) { 250 string = new G4FTFPKaonBuilder(QuasiElastic); 251 } else { 252 string = new G4QGSPKaonBuilder(QuasiElastic); 253 } 254 string->SetMinEnergy(14.*GeV); 255 AddBuilder(string); 256 k->RegisterMe(string); 257 258 auto bert = new G4BertiniKaonBuilder; 259 bert->SetMinEnergy(0.0*GeV); 260 bert->SetMaxEnergy(15.0*GeV); 261 AddBuilder(bert); 262 k->RegisterMe(bert); 263 264 k->Build(); 265 266 if( useFactorXS ) { 267 G4ParticleTable* table = G4ParticleTable::GetParticleTable(); 268 for( auto & pdg : G4HadParticles::GetKaons() ) { 269 auto part = table->FindParticle( pdg ); 270 if ( part == nullptr ) { continue; } 271 G4HadronicProcess* inel = G4PhysListUtil::FindInelasticProcess(part); 272 if(nullptr != inel) { 273 inel->MultiplyCrossSectionBy( param->XSFactorHadronInelastic() ); 274 } 275 } 276 } 277 } 278 279 void G4HadronPhysicsINCLXX::Others() 280 { 281 G4HadronicParameters* param = G4HadronicParameters::Instance(); 282 283 // high energy particles 284 if( param->GetMaxEnergy() > param->EnergyThresholdForHeavyHadrons() ) { 285 286 // anti light ions 287 G4HadronicBuilder::BuildAntiLightIonsINCLXX(); 288 289 if ( param->EnableHyperNuclei() ) { 290 // INCLXX is currently capable of handling light hypernuclei projectiles, 291 // but not light anti-hypernuclei projectiles, therefore FTFP must be used 292 // for the latter. 293 // Note that the QGSP string model cannot currently handle nuclear projectiles 294 // of any kind, so only the FTFP string model can be used together with INCLXX 295 // for the simulation of nuclear interactions light hypernuclei. 296 G4HadronicBuilder::BuildHyperAntiNucleiFTFP_BERT(); 297 G4HadronicBuilder::BuildHyperNucleiFTFP_INCLXX(); 298 } 299 300 if(withFTFP) { 301 // hyperons 302 G4HadronicBuilder::BuildHyperonsFTFP_BERT(); 303 304 // b-, c- baryons and mesons 305 if( param->EnableBCParticles() ) { 306 G4HadronicBuilder::BuildBCHadronsFTFP_BERT(); 307 } 308 } else { 309 // hyperons 310 G4HadronicBuilder::BuildHyperonsQGSP_FTFP_BERT(true); 311 312 // b-, c- baryons and mesons 313 if( param->EnableBCParticles() ) { 314 G4HadronicBuilder::BuildBCHadronsQGSP_FTFP_BERT(true); 315 } 316 } 317 } 318 } 319 320 G4HadronPhysicsINCLXX::~G4HadronPhysicsINCLXX() 321 {} 322 323 void G4HadronPhysicsINCLXX::ConstructProcess() 324 { 325 if(G4Threading::IsMasterThread() && 326 G4HadronicParameters::Instance()->GetVerboseLevel() > 0) { 327 DumpBanner(); 328 } 329 CreateModels(); 330 } 331 332