Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4PionRadiativeDecayChannel class implementation 27 // GEANT 4 class header file 28 // 29 // Author: P.Gumplinger, 30 July 2007 30 // Reference: M. Blecher, TRIUMF/PIENU Technote 31 // "Inclusion of pi->enug in the Monte Carlo" 32 // -------------------------------------------------------------------- 33 34 #include "G4PionRadiativeDecayChannel.hh" 35 36 #include "G4DecayProducts.hh" 37 #include "G4LorentzVector.hh" 38 #include "G4PhysicalConstants.hh" 39 #include "G4SystemOfUnits.hh" 40 #include "Randomize.hh" 41 42 namespace 43 { 44 const G4double beta = 3.6612e-03; 45 const G4double cib = 1.16141e-03; 46 const G4double csdp = 3.45055e-02; 47 const G4double csdm = 5.14122e-03; 48 const G4double cif = 4.63543e-05; 49 const G4double cig = 1.78928e-05; 50 const G4double xl = 2. * 0.1 * MeV / 139.57 * MeV; 51 const G4double yl = ((1. - xl) + std::sqrt((1 - xl) * (1 - xl) + 4 * beta * beta)) / 2.; 52 53 const G4double xu = 1. - (yl - std::sqrt(yl * yl - 4. * beta * beta)) / 2.; 54 const G4double yu = 1. + beta * beta; 55 56 inline G4double D2W(const G4double x, const G4double y) 57 { 58 return cib * (1. - y) * (1. + ((1. - x) * (1. - x))) / ((x * x) * (x + y - 1.)) 59 + csdp * (1. - x) * ((x + y - 1.) * (x + y - 1.)) + csdm * (1. - x) * ((1. - y) * (1. - y)) 60 + cif * (x - 1.) * (1. - y) / x + cig * (1. - y) * (1. - x + (x * x) / (x + y - 1.)) / x; 61 } 62 63 const G4double d2wmax = D2W(xl, yl); 64 } // namespace 65 66 G4PionRadiativeDecayChannel::G4PionRadiativeDecayChannel(const G4String& theParentName, 67 G4double theBR) 68 : G4VDecayChannel("Radiative Pion Decay", 1) 69 { 70 // set names for daughter particles 71 if (theParentName == "pi+") { 72 SetBR(theBR); 73 SetParent("pi+"); 74 SetNumberOfDaughters(3); 75 SetDaughter(0, "e+"); 76 SetDaughter(1, "gamma"); 77 SetDaughter(2, "nu_e"); 78 } 79 else if (theParentName == "pi-") { 80 SetBR(theBR); 81 SetParent("pi-"); 82 SetNumberOfDaughters(3); 83 SetDaughter(0, "e-"); 84 SetDaughter(1, "gamma"); 85 SetDaughter(2, "anti_nu_e"); 86 } 87 else { 88 #ifdef G4VERBOSE 89 if (GetVerboseLevel() > 0) { 90 G4cout << "G4RadiativePionDecayChannel::G4PionRadiativeDecayChannel()" << G4endl; 91 G4cout << "Parent particle is not charged pion: "; 92 G4cout << theParentName << G4endl; 93 } 94 #endif 95 } 96 } 97 98 G4PionRadiativeDecayChannel& 99 G4PionRadiativeDecayChannel::operator=(const G4PionRadiativeDecayChannel& right) 100 { 101 if (this != &right) { 102 kinematics_name = right.kinematics_name; 103 verboseLevel = right.verboseLevel; 104 rbranch = right.rbranch; 105 106 // copy parent name 107 parent_name = new G4String(*right.parent_name); 108 109 // clear daughters_name array 110 ClearDaughtersName(); 111 112 // recreate array 113 numberOfDaughters = right.numberOfDaughters; 114 if (numberOfDaughters > 0) { 115 if (daughters_name != nullptr) ClearDaughtersName(); 116 daughters_name = new G4String*[numberOfDaughters]; 117 // copy daughters name 118 for (G4int index = 0; index < numberOfDaughters; ++index) { 119 daughters_name[index] = new G4String(*right.daughters_name[index]); 120 } 121 } 122 } 123 return *this; 124 } 125 126 G4DecayProducts* G4PionRadiativeDecayChannel::DecayIt(G4double) 127 { 128 #ifdef G4VERBOSE 129 if (GetVerboseLevel() > 1) G4cout << "G4PionRadiativeDecayChannel::DecayIt "; 130 #endif 131 132 CheckAndFillParent(); 133 CheckAndFillDaughters(); 134 135 // parent mass 136 G4double parentmass = G4MT_parent->GetPDGMass(); 137 138 G4double EMPI = parentmass; 139 140 // daughters'mass 141 const G4int N_DAUGHTER = 3; 142 G4double daughtermass[N_DAUGHTER]; 143 // G4double sumofdaughtermass = 0.0; 144 for (G4int index = 0; index < N_DAUGHTER; ++index) { 145 daughtermass[index] = G4MT_daughters[index]->GetPDGMass(); 146 // sumofdaughtermass += daughtermass[index]; 147 } 148 149 G4double EMASS = daughtermass[0]; 150 151 // create parent G4DynamicParticle at rest 152 G4ThreeVector dummy; 153 auto parentparticle = new G4DynamicParticle(G4MT_parent, dummy, 0.0); 154 // create G4Decayproducts 155 auto products = new G4DecayProducts(*parentparticle); 156 delete parentparticle; 157 158 G4double x, y; 159 160 const std::size_t MAX_LOOP = 1000; 161 162 for (std::size_t loop_counter1 = 0; loop_counter1 < MAX_LOOP; ++loop_counter1) { 163 for (std::size_t loop_counter2 = 0; loop_counter2 < MAX_LOOP; ++loop_counter2) { 164 x = xl + G4UniformRand() * (xu - xl); 165 y = yl + G4UniformRand() * (yu - yl); 166 if (x + y > 1.) break; 167 } 168 G4double d2w = D2W(x, y); 169 if (d2w > G4UniformRand() * d2wmax) break; 170 } 171 172 // Calculate the angle between positron and photon (cosine) 173 // 174 G4double cthetaGE = 175 (y * (x - 2.) + 2. * (1. - x + beta * beta)) / (x * std::sqrt(y * y - 4. * beta * beta)); 176 177 G4double G = x * EMPI / 2.; 178 G4double E = y * EMPI / 2.; 179 180 if (E < EMASS) E = EMASS; 181 182 // calculate daughter momentum 183 G4double daughtermomentum[2]; 184 185 daughtermomentum[0] = std::sqrt(E * E - EMASS * EMASS); 186 187 G4double cthetaE = 2. * G4UniformRand() - 1.; 188 G4double sthetaE = std::sqrt(1. - cthetaE * cthetaE); 189 190 G4double phiE = twopi * G4UniformRand() * rad; 191 G4double cphiE = std::cos(phiE); 192 G4double sphiE = std::sin(phiE); 193 194 // Coordinates of the decay positron 195 // 196 G4double px = sthetaE * cphiE; 197 G4double py = sthetaE * sphiE; 198 G4double pz = cthetaE; 199 200 G4ThreeVector direction0(px, py, pz); 201 202 auto daughterparticle0 = 203 new G4DynamicParticle(G4MT_daughters[0], daughtermomentum[0] * direction0); 204 205 products->PushProducts(daughterparticle0); 206 207 daughtermomentum[1] = G; 208 209 G4double sthetaGE = std::sqrt(1. - cthetaGE * cthetaGE); 210 211 G4double phiGE = twopi * G4UniformRand() * rad; 212 G4double cphiGE = std::cos(phiGE); 213 G4double sphiGE = std::sin(phiGE); 214 215 // Coordinates of the decay gamma with respect to the decay positron 216 // 217 px = sthetaGE * cphiGE; 218 py = sthetaGE * sphiGE; 219 pz = cthetaGE; 220 221 G4ThreeVector direction1(px, py, pz); 222 223 direction1.rotateUz(direction0); 224 225 auto daughterparticle1 = 226 new G4DynamicParticle(G4MT_daughters[1], daughtermomentum[1] * direction1); 227 228 products->PushProducts(daughterparticle1); 229 230 // output message 231 #ifdef G4VERBOSE 232 if (GetVerboseLevel() > 1) { 233 G4cout << "G4PionRadiativeDecayChannel::DecayIt() -"; 234 G4cout << " create decay products in rest frame " << G4endl; 235 products->DumpInfo(); 236 } 237 #endif 238 239 return products; 240 } 241