Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/materials/src/G4MicroElecMaterialStructure.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // G4MicroElecMaterialStructure.cc, 2011/08/29 A.Valentin, M. Raine are with CEA [a]
 28 //                          2020/05/20 P. Caron, C. Inguimbert are with ONERA [b] 
 29 //                   Q. Gibaru is with CEA [a], ONERA [b] and CNES [c]
 30 //                    M. Raine and D. Lambert are with CEA [a]
 31 //
 32 // A part of this work has been funded by the French space agency(CNES[c])
 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France
 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France
 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France
 36 //
 37 // Based on the following publications
 38 //  - A.Valentin, M. Raine, 
 39 //    Inelastic cross-sections of low energy electrons in silicon
 40 //        for the simulation of heavy ion tracks with the Geant4-DNA toolkit,
 41 //        NSS Conf. Record 2010, pp. 80-85
 42 //             https://doi.org/10.1109/NSSMIC.2010.5873720
 43 //
 44 //      - A.Valentin, M. Raine, M.Gaillardin, P.Paillet
 45 //        Geant4 physics processes for microdosimetry simulation:
 46 //        very low energy electromagnetic models for electrons in Silicon,
 47 //             https://doi.org/10.1016/j.nimb.2012.06.007
 48 //        NIM B, vol. 288, pp. 66-73, 2012, part A
 49 //        heavy ions in Si, NIM B, vol. 287, pp. 124-129, 2012, part B
 50 //             https://doi.org/10.1016/j.nimb.2012.07.028
 51 //
 52 //  - M. Raine, M. Gaillardin, P. Paillet
 53 //        Geant4 physics processes for silicon microdosimetry simulation: 
 54 //        Improvements and extension of the energy-range validity up to 10 GeV/nucleon
 55 //        NIM B, vol. 325, pp. 97-100, 2014
 56 //             https://doi.org/10.1016/j.nimb.2014.01.014
 57 //
 58 //      - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine
 59 //        Electron emission yield for low energy electrons: 
 60 //        Monte Carlo simulation and experimental comparison for Al, Ag, and Si
 61 //        Journal of Applied Physics 121 (2017) 215107. 
 62 //               https://doi.org/10.1063/1.4984761
 63 //
 64 //      - P. Caron,
 65 //        Study of Electron-Induced Single-Event Upset in Integrated Memory Devices
 66 //        PHD, 16th October 2019
 67 //
 68 //  - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech, 
 69 //        Geant4 physics processes for microdosimetry and secondary electron emission simulation : 
 70 //        Extension of MicroElec to very low energies and new materials
 71 //        NIM B, 2020, in review.
 72 //
 73 //
 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 75 
 76 #include "G4MicroElecMaterialStructure.hh"
 77 #include "G4EnvironmentUtils.hh"
 78 #include "G4SystemOfUnits.hh"
 79 
 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 81 
 82 G4MicroElecMaterialStructure::G4MicroElecMaterialStructure(const G4String& matName)
 83 {
 84   materialName = matName;
 85   if (matName == "Vacuum" || matName == "uum") {
 86     workFunction = 0;
 87     initialEnergy = 0;
 88   }
 89   else {
 90     ReadMaterialFile();
 91   }
 92   nLevels = (G4int)energyConstant.size();
 93 }
 94 
 95 
 96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 97 void G4MicroElecMaterialStructure::ReadMaterialFile() 
 98 {
 99   const char* path = G4FindDataDir("G4LEDATA");
100 
101   if (materialName[0] == 'G' && materialName[1] == '4') {
102     //in the case the NIST database is used
103     materialName.erase(0, 1);
104     materialName.erase(0, 1);
105     materialName.erase(0, 1);
106   }
107   
108   std::ostringstream fileName;
109   fileName << path << "/microelec/Structure/Data_" + materialName + ".dat";
110   std::ifstream fichier(fileName.str().c_str());
111   
112   int varLength = 0;
113   G4String nameParameter;
114   
115   G4String unitName;  
116   G4double unitValue;
117   G4double data;
118   G4String filler;  
119   G4String type;
120   
121   if (fichier)
122     {
123       fichier >> filler >> type;
124       materialName = filler;
125       if (type == "Compound") {isCompound = true; Z = 0; }
126       else { isCompound = false; Z = std::stoi(type); }
127       while(!fichier.eof()) {
128   
129   getline(fichier, filler);
130   std::stringstream line(filler);
131   
132   if (filler[0] == '#' || filler.empty()) {continue;}
133   
134   line >> varLength;
135   line >> nameParameter;
136   line >> unitName;
137   unitValue = ConvertUnit(unitName);
138   
139   for (int i = 0; i < varLength; i++)
140     {
141       line >> data; data = data*unitValue;
142 
143       if(nameParameter == "WorkFunction")
144       {
145         workFunction = data;
146       }
147       if(nameParameter == "EnergyGap")
148       {
149         energyGap = data;
150       }
151 
152       if(nameParameter == "EnergyPeak")
153       {
154         energyConstant.push_back(data);
155       }
156       if(nameParameter == "EnergyLimit")
157       {
158         LimitEnergy.push_back(data);
159       }
160       if(nameParameter == "EADL")
161       {
162         EADL_Enumerator.push_back(data);
163       }
164 
165       if (nameParameter == "WeaklyBoundShell")
166         {if (data == 0) { isShellWeaklyBoundVector.push_back(false); }
167     else {isShellWeaklyBoundVector.push_back(true);}}
168 
169         if(nameParameter == "WeaklyBoundInitialEnergy")
170         {
171           initialEnergy = data;
172         }
173 
174         if(nameParameter == "ShellAtomicNumber")
175         {
176           compoundShellZ.push_back(data);
177         }
178 
179         if(nameParameter == "DielectricModelLowEnergyLimit_e")
180         {
181           flimitInelastic[0] = data;
182         }
183         if(nameParameter == "DielectricModelHighEnergyLimit_e")
184         {
185           flimitInelastic[1] = data;
186         }
187         if(nameParameter == "DielectricModelLowEnergyLimit_p")
188         {
189           flimitInelastic[2] = data;
190         }
191         if(nameParameter == "DielectricModelHighEnergyLimit_p")
192         {
193           flimitInelastic[3] = data;
194         }
195 
196         if(nameParameter == "ElasticModelLowEnergyLimit")
197         {
198           flimitElastic[0] = data;
199         }
200         if(nameParameter == "ElasticModelHighEnergyLimit")
201         {
202           flimitElastic[1] = data;
203         }
204     }
205       }
206       fichier.close();  // on ferme le fichier
207     }
208   else {
209     G4String str = "file ";
210     str += fileName.str() + " not found!";
211     G4Exception("G4MicroElecMaterialStructure::ReadMaterialFile", "em0002", FatalException, str);
212   }
213 }
214 
215 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
216 
217 G4double G4MicroElecMaterialStructure::Energy(G4int level)
218 {
219   return (level >= 0 && level < nLevels) ? energyConstant[level] : 0.0;
220 }
221 
222 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
223 
224 G4double G4MicroElecMaterialStructure::GetZ(G4int Shell)
225 {
226   if (Shell >= 0 && Shell < nLevels) {
227     if(!isCompound)
228     {
229       return Z;
230     }
231     else
232     {
233       return compoundShellZ[Shell];
234     }
235   }
236   else
237   {
238     return 0;
239   }
240 }
241 
242 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
243 
244 G4double G4MicroElecMaterialStructure::ConvertUnit(const G4String& unitName)
245 {
246   G4double unitValue = 0;
247   if(unitName == "meV")
248   {
249     unitValue = 1e-3 * CLHEP::eV;
250   }
251   else if(unitName == "eV")
252   {
253     unitValue = CLHEP::eV;
254   }
255   else if(unitName == "keV")
256   {
257     unitValue = CLHEP::keV;
258   }
259   else if(unitName == "MeV")
260   {
261     unitValue = CLHEP::MeV;
262   }
263   else if(unitName == "noUnit")
264   {
265     unitValue = 1;
266   }
267 
268   return unitValue;
269 }
270 
271 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
272 
273 G4double G4MicroElecMaterialStructure::GetLimitEnergy(G4int level)
274 {
275   G4double E = LimitEnergy[level];
276   if (IsShellWeaklyBound(level)) { E = energyGap+ initialEnergy; }
277   return E;
278 }
279 
280 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
281 
282 G4double G4MicroElecMaterialStructure::GetInelasticModelLowLimit(G4int pdg)
283 {
284   G4double res = 0.0;
285   if(pdg == 11)
286   {
287     res = flimitInelastic[0];
288   }
289   else if(pdg == 2212)
290   {
291     res = flimitInelastic[2];
292   }
293   return res;
294 }
295 
296 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
297 
298 G4double G4MicroElecMaterialStructure::GetInelasticModelHighLimit(G4int pdg)
299 {
300   G4double res = 0.0;
301   if(pdg == 11)
302   {
303     res = flimitInelastic[1];
304   }
305   else if(pdg == 2212)
306   {
307     res = flimitInelastic[3];
308   }
309   return res;
310 }
311 
312 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
313 
314 G4bool G4MicroElecMaterialStructure::IsShellWeaklyBound(G4int level)
315 {
316   return isShellWeaklyBoundVector[level];
317 }
318 
319 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
320 
321