Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4TriangularFacet.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4TriangularFacet implementation
 27 //
 28 // 31.10.2004, P R Truscott, QinetiQ Ltd, UK - Created.
 29 // 01.08.2007, P R Truscott, QinetiQ Ltd, UK
 30 //                  Significant modification to correct for errors and enhance
 31 //                  based on patches/observations kindly provided by Rickard
 32 //                  Holmberg.
 33 // 12.10.2012, M Gayer, CERN
 34 //                  New implementation reducing memory requirements by 50%,
 35 //                  and considerable CPU speedup together with the new
 36 //                  implementation of G4TessellatedSolid.
 37 // 23.02.2016, E Tcherniaev, CERN
 38 //                  Improved test to detect degenerate (too small or
 39 //                  too narrow) triangles.
 40 // --------------------------------------------------------------------
 41 
 42 #include "G4TriangularFacet.hh"
 43 
 44 #include "Randomize.hh"
 45 #include "G4TessellatedGeometryAlgorithms.hh"
 46 
 47 using namespace std;
 48 
 49 ///////////////////////////////////////////////////////////////////////////////
 50 //
 51 // Definition of triangular facet using absolute vectors to fVertices.
 52 // From this for first vector is retained to define the facet location and
 53 // two relative vectors (E0 and E1) define the sides and orientation of 
 54 // the outward surface normal.
 55 //
 56 G4TriangularFacet::G4TriangularFacet (const G4ThreeVector& vt0,
 57                                       const G4ThreeVector& vt1,
 58                                       const G4ThreeVector& vt2,
 59                                             G4FacetVertexType vertexType)
 60 {
 61   fVertices = new vector<G4ThreeVector>(3);
 62 
 63   SetVertex(0, vt0);
 64   if (vertexType == ABSOLUTE)
 65   {
 66     SetVertex(1, vt1);
 67     SetVertex(2, vt2);
 68     fE1 = vt1 - vt0;
 69     fE2 = vt2 - vt0;
 70   }
 71   else
 72   {
 73     SetVertex(1, vt0 + vt1);
 74     SetVertex(2, vt0 + vt2);
 75     fE1 = vt1;
 76     fE2 = vt2;
 77   }
 78 
 79   G4ThreeVector E1xE2 = fE1.cross(fE2);
 80   fArea = 0.5 * E1xE2.mag();
 81   for (G4int i = 0; i < 3; ++i) fIndices[i] = -1;
 82 
 83   fIsDefined = true;
 84   G4double delta = kCarTolerance; // Set tolerance for checking
 85 
 86   // Check length of edges
 87   //
 88   G4double leng1 = fE1.mag();
 89   G4double leng2 = (fE2-fE1).mag();
 90   G4double leng3 = fE2.mag();
 91   if (leng1 <= delta || leng2 <= delta || leng3 <= delta) 
 92   {
 93     fIsDefined = false;
 94   }
 95 
 96   // Check min height of triangle
 97   //
 98   if (fIsDefined)
 99   {
100     if (2.*fArea/std::max(std::max(leng1,leng2),leng3) <= delta)
101     {
102       fIsDefined = false;
103     } 
104   }
105 
106   // Define facet
107   //
108   if (!fIsDefined)
109   {
110     ostringstream message;
111     message << "Facet is too small or too narrow." << G4endl
112             << "Triangle area = " << fArea << G4endl
113             << "P0 = " << GetVertex(0) << G4endl
114             << "P1 = " << GetVertex(1) << G4endl
115             << "P2 = " << GetVertex(2) << G4endl
116             << "Side1 length (P0->P1) = " << leng1 << G4endl
117             << "Side2 length (P1->P2) = " << leng2 << G4endl
118             << "Side3 length (P2->P0) = " << leng3;
119     G4Exception("G4TriangularFacet::G4TriangularFacet()",
120     "GeomSolids1001", JustWarning, message);
121     fSurfaceNormal.set(0,0,0);
122     fA = fB = fC = 0.0;
123     fDet = 0.0;
124     fCircumcentre = vt0 + 0.5*fE1 + 0.5*fE2;
125     fArea = fRadius = 0.0;
126   }
127   else
128   { 
129     fSurfaceNormal = E1xE2.unit();
130     fA   = fE1.mag2();
131     fB   = fE1.dot(fE2);
132     fC   = fE2.mag2();
133     fDet = std::fabs(fA*fC - fB*fB);
134 
135     fCircumcentre = 
136       vt0 + (E1xE2.cross(fE1)*fC + fE2.cross(E1xE2)*fA) / (2.*E1xE2.mag2());
137     fRadius = (fCircumcentre - vt0).mag();
138   }
139 }
140 
141 ///////////////////////////////////////////////////////////////////////////////
142 //
143 G4TriangularFacet::G4TriangularFacet ()
144 {
145   fVertices = new vector<G4ThreeVector>(3);
146   G4ThreeVector zero(0,0,0);
147   SetVertex(0, zero);
148   SetVertex(1, zero);
149   SetVertex(2, zero);
150   for (G4int i = 0; i < 3; ++i) fIndices[i] = -1;
151   fIsDefined = false;
152   fSurfaceNormal.set(0,0,0);
153   fA = fB = fC = 0;
154   fE1 = zero;
155   fE2 = zero;
156   fDet = 0.0;
157   fArea = fRadius = 0.0;
158 }
159 
160 ///////////////////////////////////////////////////////////////////////////////
161 //
162 G4TriangularFacet::~G4TriangularFacet ()
163 {
164   SetVertices(nullptr);
165 }
166 
167 ///////////////////////////////////////////////////////////////////////////////
168 //
169 void G4TriangularFacet::CopyFrom (const G4TriangularFacet& rhs)
170 {
171   auto p = (char *) &rhs;
172   copy(p, p + sizeof(*this), (char *)this);
173 
174   if (fIndices[0] < 0 && fVertices == nullptr)
175   {
176     fVertices = new vector<G4ThreeVector>(3);
177     for (G4int i = 0; i < 3; ++i) (*fVertices)[i] = (*rhs.fVertices)[i];
178   }
179 }
180 
181 ///////////////////////////////////////////////////////////////////////////////
182 //
183 void G4TriangularFacet::MoveFrom (G4TriangularFacet& rhs)
184 {
185   fSurfaceNormal = std::move(rhs.fSurfaceNormal);
186   fArea = rhs.fArea;
187   fCircumcentre = std::move(rhs.fCircumcentre);
188   fRadius = rhs.fRadius;
189   fIndices = rhs.fIndices;
190   fA = rhs.fA; fB = rhs.fB; fC = rhs.fC;
191   fDet = rhs.fDet;
192   fSqrDist = rhs.fSqrDist;
193   fE1 = std::move(rhs.fE1); fE2 = std::move(rhs.fE2);
194   fIsDefined = rhs.fIsDefined;
195   fVertices = rhs.fVertices;
196   rhs.fVertices = nullptr;
197 }
198 
199 ///////////////////////////////////////////////////////////////////////////////
200 //
201 G4TriangularFacet::G4TriangularFacet (const G4TriangularFacet& rhs)
202   : G4VFacet(rhs)
203 {
204   CopyFrom(rhs);
205 }
206 
207 ///////////////////////////////////////////////////////////////////////////////
208 //
209 G4TriangularFacet::G4TriangularFacet (G4TriangularFacet&& rhs) noexcept
210   : G4VFacet(rhs)
211 {
212   MoveFrom(rhs);
213 }
214 
215 ///////////////////////////////////////////////////////////////////////////////
216 //
217 G4TriangularFacet&
218 G4TriangularFacet::operator=(const G4TriangularFacet& rhs)
219 {
220   SetVertices(nullptr);
221 
222   if (this != &rhs)
223   {
224     delete fVertices;
225     CopyFrom(rhs);
226   }
227 
228   return *this;
229 }
230 
231 ///////////////////////////////////////////////////////////////////////////////
232 //
233 G4TriangularFacet&
234 G4TriangularFacet::operator=(G4TriangularFacet&& rhs) noexcept
235 {
236   SetVertices(nullptr);
237 
238   if (this != &rhs)
239   {
240     delete fVertices;
241     MoveFrom(rhs);
242   }
243 
244   return *this;
245 }
246 
247 ///////////////////////////////////////////////////////////////////////////////
248 //
249 // GetClone
250 //
251 // Simple member function to generate fA duplicate of the triangular facet.
252 //
253 G4VFacet* G4TriangularFacet::GetClone ()
254 {
255   auto fc = new G4TriangularFacet (GetVertex(0), GetVertex(1),
256                                    GetVertex(2), ABSOLUTE);
257   return fc;
258 }
259 
260 ///////////////////////////////////////////////////////////////////////////////
261 //
262 // GetFlippedFacet
263 //
264 // Member function to generate an identical facet, but with the normal vector
265 // pointing at 180 degrees.
266 //
267 G4TriangularFacet* G4TriangularFacet::GetFlippedFacet ()
268 {
269   auto flipped = new G4TriangularFacet (GetVertex(0), GetVertex(1),
270                                         GetVertex(2), ABSOLUTE);
271   return flipped;
272 }
273 
274 ///////////////////////////////////////////////////////////////////////////////
275 //
276 // Distance (G4ThreeVector)
277 //
278 // Determines the vector between p and the closest point on the facet to p.
279 // This is based on the algorithm published in "Geometric Tools for Computer
280 // Graphics," Philip J Scheider and David H Eberly, Elsevier Science (USA),
281 // 2003.  at the time of writing, the algorithm is also available in fA
282 // technical note "Distance between point and triangle in 3D," by David Eberly
283 // at http://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
284 //
285 // The by-product is the square-distance fSqrDist, which is retained
286 // in case needed by the other "Distance" member functions.
287 //
288 G4ThreeVector G4TriangularFacet::Distance (const G4ThreeVector& p)
289 {
290   G4ThreeVector D  = GetVertex(0) - p;
291   G4double d = fE1.dot(D);
292   G4double e = fE2.dot(D);
293   G4double f = D.mag2();
294   G4double q = fB*e - fC*d;
295   G4double t = fB*d - fA*e;
296   fSqrDist = 0.;
297 
298   if (q+t <= fDet)
299   {
300     if (q < 0.0)
301     {
302       if (t < 0.0)
303       {
304         //
305         // We are in region 4.
306         //
307         if (d < 0.0)
308         {
309           t = 0.0;
310           if (-d >= fA) {q = 1.0; fSqrDist = fA + 2.0*d + f;}
311           else         {q = -d/fA; fSqrDist = d*q + f;}
312         }
313         else
314         {
315           q = 0.0;
316           if       (e >= 0.0) {t = 0.0; fSqrDist = f;}
317           else if (-e >= fC)   {t = 1.0; fSqrDist = fC + 2.0*e + f;}
318           else                {t = -e/fC; fSqrDist = e*t + f;}
319         }
320       }
321       else
322       {
323         //
324         // We are in region 3.
325         //
326         q = 0.0;
327         if      (e >= 0.0) {t = 0.0; fSqrDist = f;}
328         else if (-e >= fC)  {t = 1.0; fSqrDist = fC + 2.0*e + f;}
329         else               {t = -e/fC; fSqrDist = e*t + f;}
330       }
331     }
332     else if (t < 0.0)
333     {
334       //
335       // We are in region 5.
336       //
337       t = 0.0;
338       if      (d >= 0.0) {q = 0.0; fSqrDist = f;}
339       else if (-d >= fA)  {q = 1.0; fSqrDist = fA + 2.0*d + f;}
340       else               {q = -d/fA; fSqrDist = d*q + f;}
341     }
342     else
343     {
344       //
345       // We are in region 0.
346       //
347       G4double dist = fSurfaceNormal.dot(D);
348       fSqrDist = dist*dist;
349       return fSurfaceNormal*dist;
350     }
351   }
352   else
353   {
354     if (q < 0.0)
355     {
356       //
357       // We are in region 2.
358       //
359       G4double tmp0 = fB + d;
360       G4double tmp1 = fC + e;
361       if (tmp1 > tmp0)
362       {
363         G4double numer = tmp1 - tmp0;
364         G4double denom = fA - 2.0*fB + fC;
365         if (numer >= denom) {q = 1.0; t = 0.0; fSqrDist = fA + 2.0*d + f;}
366         else
367         {
368           q       = numer/denom;
369           t       = 1.0 - q;
370           fSqrDist = q*(fA*q + fB*t +2.0*d) + t*(fB*q + fC*t + 2.0*e) + f;
371         }
372       }
373       else
374       {
375         q = 0.0;
376         if      (tmp1 <= 0.0) {t = 1.0; fSqrDist = fC + 2.0*e + f;}
377         else if (e >= 0.0)    {t = 0.0; fSqrDist = f;}
378         else                  {t = -e/fC; fSqrDist = e*t + f;}
379       }
380     }
381     else if (t < 0.0)
382     {
383       //
384       // We are in region 6.
385       //
386       G4double tmp0 = fB + e;
387       G4double tmp1 = fA + d;
388       if (tmp1 > tmp0)
389       {
390         G4double numer = tmp1 - tmp0;
391         G4double denom = fA - 2.0*fB + fC;
392         if (numer >= denom) {t = 1.0; q = 0.0; fSqrDist = fC + 2.0*e + f;}
393         else
394         {
395           t       = numer/denom;
396           q       = 1.0 - t;
397           fSqrDist = q*(fA*q + fB*t +2.0*d) + t*(fB*q + fC*t + 2.0*e) + f;
398         }
399       }
400       else
401       {
402         t = 0.0;
403         if      (tmp1 <= 0.0) {q = 1.0; fSqrDist = fA + 2.0*d + f;}
404         else if (d >= 0.0)    {q = 0.0; fSqrDist = f;}
405         else                  {q = -d/fA; fSqrDist = d*q + f;}
406       }
407     }
408     else
409       //
410       // We are in region 1.
411       //
412     {
413       G4double numer = fC + e - fB - d;
414       if (numer <= 0.0)
415       {
416         q       = 0.0;
417         t       = 1.0;
418         fSqrDist = fC + 2.0*e + f;
419       }
420       else
421       {
422         G4double denom = fA - 2.0*fB + fC;
423         if (numer >= denom) {q = 1.0; t = 0.0; fSqrDist = fA + 2.0*d + f;}
424         else
425         {
426           q       = numer/denom;
427           t       = 1.0 - q;
428           fSqrDist = q*(fA*q + fB*t + 2.0*d) + t*(fB*q + fC*t + 2.0*e) + f;
429         }
430       }
431     }
432   } 
433   //
434   //
435   // Do fA check for rounding errors in the distance-squared.  It appears that
436   // the conventional methods for calculating fSqrDist breaks down when very
437   // near to or at the surface (as required by transport).
438   // We'll therefore also use the magnitude-squared of the vector displacement.
439   // (Note that I've also tried to get around this problem by using the
440   // existing equations for
441   //
442   //    fSqrDist = function(fA,fB,fC,d,q,t)
443   //
444   // and use fA more accurate addition process which minimises errors and
445   // breakdown of cummutitivity [where (A+B)+C != A+(B+C)] but this still
446   // doesn't work.
447   // Calculation from u = D + q*fE1 + t*fE2 is less efficient, but appears
448   // more robust.
449   //
450   if (fSqrDist < 0.0) fSqrDist = 0.;
451   G4ThreeVector u = D + q*fE1 + t*fE2;
452   G4double u2 = u.mag2();
453   //
454   // The following (part of the roundoff error check) is from Oliver Merle'q
455   // updates.
456   //
457   if (fSqrDist > u2) fSqrDist = u2;
458 
459   return u;
460 }
461 
462 ///////////////////////////////////////////////////////////////////////////////
463 //
464 // Distance (G4ThreeVector, G4double)
465 //
466 // Determines the closest distance between point p and the facet.  This makes
467 // use of G4ThreeVector G4TriangularFacet::Distance, which stores the
468 // square of the distance in variable fSqrDist.  If approximate methods show 
469 // the distance is to be greater than minDist, then forget about further
470 // computation and return fA very large number.
471 //
472 G4double G4TriangularFacet::Distance (const G4ThreeVector& p,
473                                             G4double minDist)
474 {
475   //
476   // Start with quicky test to determine if the surface of the sphere enclosing
477   // the triangle is any closer to p than minDist.  If not, then don't bother
478   // about more accurate test.
479   //
480   G4double dist = kInfinity;
481   if ((p-fCircumcentre).mag()-fRadius < minDist)
482   {
483     //
484     // It's possible that the triangle is closer than minDist,
485     // so do more accurate assessment.
486     //
487     dist = Distance(p).mag();
488   }
489   return dist;
490 }
491 
492 ///////////////////////////////////////////////////////////////////////////////
493 //
494 // Distance (G4ThreeVector, G4double, G4bool)
495 //
496 // Determine the distance to point p.  kInfinity is returned if either:
497 // (1) outgoing is TRUE and the dot product of the normal vector to the facet
498 //     and the displacement vector from p to the triangle is negative.
499 // (2) outgoing is FALSE and the dot product of the normal vector to the facet
500 //     and the displacement vector from p to the triangle is positive.
501 // If approximate methods show the distance is to be greater than minDist, then
502 // forget about further computation and return fA very large number.
503 //
504 // This method has been heavily modified thanks to the valuable comments and 
505 // corrections of Rickard Holmberg.
506 //
507 G4double G4TriangularFacet::Distance (const G4ThreeVector& p,
508                                             G4double minDist,
509                                       const G4bool outgoing)
510 {
511   //
512   // Start with quicky test to determine if the surface of the sphere enclosing
513   // the triangle is any closer to p than minDist.  If not, then don't bother
514   // about more accurate test.
515   //
516   G4double dist = kInfinity;
517   if ((p-fCircumcentre).mag()-fRadius < minDist)
518   {
519     //
520     // It's possible that the triangle is closer than minDist,
521     // so do more accurate assessment.
522     //
523     G4ThreeVector v  = Distance(p);
524     G4double dist1 = sqrt(fSqrDist);
525     G4double dir = v.dot(fSurfaceNormal);
526     G4bool wrongSide = (dir > 0.0 && !outgoing) || (dir < 0.0 && outgoing);
527     if (dist1 <= kCarTolerance)
528     {
529       //
530       // Point p is very close to triangle.  Check if it's on the wrong side,
531       // in which case return distance of 0.0 otherwise .
532       //
533       if (wrongSide) dist = 0.0;
534       else dist = dist1;
535     }
536     else if (!wrongSide) dist = dist1;
537   }
538   return dist;
539 }
540 
541 ///////////////////////////////////////////////////////////////////////////////
542 //
543 // Extent
544 //
545 // Calculates the furthest the triangle extends in fA particular direction
546 // defined by the vector axis.
547 //
548 G4double G4TriangularFacet::Extent (const G4ThreeVector axis)
549 {
550   G4double ss = GetVertex(0).dot(axis);
551   G4double sp = GetVertex(1).dot(axis);
552   if (sp > ss) ss = sp;
553   sp = GetVertex(2).dot(axis);
554   if (sp > ss) ss = sp;
555   return ss;
556 }
557 
558 ///////////////////////////////////////////////////////////////////////////////
559 //
560 // Intersect
561 //
562 // Member function to find the next intersection when going from p in the
563 // direction of v.  If:
564 // (1) "outgoing" is TRUE, only consider the face if we are going out through
565 //     the face.
566 // (2) "outgoing" is FALSE, only consider the face if we are going in through
567 //     the face.
568 // Member functions returns TRUE if there is an intersection, FALSE otherwise.
569 // Sets the distance (distance along w), distFromSurface (orthogonal distance)
570 // and normal.
571 //
572 // Also considers intersections that happen with negative distance for small
573 // distances of distFromSurface = 0.5*kCarTolerance in the wrong direction.
574 // This is to detect kSurface without doing fA full Inside(p) in
575 // G4TessellatedSolid::Distance(p,v) calculation.
576 //
577 // This member function is thanks the valuable work of Rickard Holmberg.  PT.
578 // However, "gotos" are the Work of the Devil have been exorcised with
579 // extreme prejudice!!
580 //
581 // IMPORTANT NOTE:  These calculations are predicated on v being fA unit
582 // vector.  If G4TessellatedSolid or other classes call this member function
583 // with |v| != 1 then there will be errors.
584 //
585 G4bool G4TriangularFacet::Intersect (const G4ThreeVector& p,
586                                      const G4ThreeVector& v,
587                                            G4bool outgoing,
588                                            G4double& distance,
589                                            G4double& distFromSurface,
590                                            G4ThreeVector& normal)
591 {
592   //
593   // Check whether the direction of the facet is consistent with the vector v
594   // and the need to be outgoing or ingoing.  If inconsistent, disregard and
595   // return false.
596   //
597   G4double w = v.dot(fSurfaceNormal);
598   if ((outgoing && w < -dirTolerance) || (!outgoing && w > dirTolerance))
599   {
600     distance = kInfinity;
601     distFromSurface = kInfinity;
602     normal.set(0,0,0);
603     return false;
604   } 
605   //
606   // Calculate the orthogonal distance from p to the surface containing the
607   // triangle.  Then determine if we're on the right or wrong side of the
608   // surface (at fA distance greater than kCarTolerance to be consistent with
609   // "outgoing".
610   //
611   const G4ThreeVector& p0 = GetVertex(0);
612   G4ThreeVector D  = p0 - p;
613   distFromSurface  = D.dot(fSurfaceNormal);
614   G4bool wrongSide = (outgoing && distFromSurface < -0.5*kCarTolerance) ||
615     (!outgoing && distFromSurface >  0.5*kCarTolerance);
616  
617   if (wrongSide)
618   {
619     distance = kInfinity;
620     distFromSurface = kInfinity;
621     normal.set(0,0,0);
622     return false;
623   }
624 
625   wrongSide = (outgoing && distFromSurface < 0.0)
626            || (!outgoing && distFromSurface > 0.0);
627   if (wrongSide)
628   {
629     //
630     // We're slightly on the wrong side of the surface.  Check if we're close
631     // enough using fA precise distance calculation.
632     //
633     G4ThreeVector u = Distance(p);
634     if (fSqrDist <= kCarTolerance*kCarTolerance)
635     {
636       //
637       // We're very close.  Therefore return fA small negative number
638       // to pretend we intersect.
639       //
640       // distance = -0.5*kCarTolerance
641       distance = 0.0;
642       normal = fSurfaceNormal;
643       return true;
644     }
645     else
646     {
647       //
648       // We're close to the surface containing the triangle, but sufficiently
649       // far from the triangle, and on the wrong side compared to the directions
650       // of the surface normal and v.  There is no intersection.
651       //
652       distance = kInfinity;
653       distFromSurface = kInfinity;
654       normal.set(0,0,0);
655       return false;
656     }
657   }
658   if (w < dirTolerance && w > -dirTolerance)
659   {
660     //
661     // The ray is within the plane of the triangle. Project the problem into 2D
662     // in the plane of the triangle. First try to create orthogonal unit vectors
663     // mu and nu, where mu is fE1/|fE1|.  This is kinda like
664     // the original algorithm due to Rickard Holmberg, but with better
665     // mathematical justification than the original method ... however,
666     // beware Rickard's was less time-consuming.
667     //
668     // Note that vprime is not fA unit vector.  We need to keep it unnormalised
669     // since the values of distance along vprime (s0 and s1) for intersection
670     // with the triangle will be used to determine if we cut the plane at the
671     // same time.
672     //
673     G4ThreeVector mu = fE1.unit();
674     G4ThreeVector nu = fSurfaceNormal.cross(mu);
675     G4TwoVector pprime(p.dot(mu), p.dot(nu));
676     G4TwoVector vprime(v.dot(mu), v.dot(nu));
677     G4TwoVector P0prime(p0.dot(mu), p0.dot(nu));
678     G4TwoVector E0prime(fE1.mag(), 0.0);
679     G4TwoVector E1prime(fE2.dot(mu), fE2.dot(nu));
680     G4TwoVector loc[2];
681     if (G4TessellatedGeometryAlgorithms::IntersectLineAndTriangle2D(pprime,
682                                     vprime, P0prime, E0prime, E1prime, loc))
683     {
684       //
685       // There is an intersection between the line and triangle in 2D.
686       // Now check which part of the line intersects with the plane
687       // containing the triangle in 3D.
688       //
689       G4double vprimemag = vprime.mag();
690       G4double s0        = (loc[0] - pprime).mag()/vprimemag;
691       G4double s1        = (loc[1] - pprime).mag()/vprimemag;
692       G4double normDist0 = fSurfaceNormal.dot(s0*v) - distFromSurface;
693       G4double normDist1 = fSurfaceNormal.dot(s1*v) - distFromSurface;
694 
695       if ((normDist0 < 0.0 && normDist1 < 0.0)
696        || (normDist0 > 0.0 && normDist1 > 0.0)
697        || (normDist0 == 0.0 && normDist1 == 0.0) ) 
698       {
699         distance        = kInfinity;
700         distFromSurface = kInfinity;
701         normal.set(0,0,0);
702         return false;
703       }
704       else
705       {
706         G4double dnormDist = normDist1 - normDist0;
707         if (fabs(dnormDist) < DBL_EPSILON)
708         {
709           distance = s0;
710           normal   = fSurfaceNormal;
711           if (!outgoing) distFromSurface = -distFromSurface;
712           return true;
713         }
714         else
715         {
716           distance = s0 - normDist0*(s1-s0)/dnormDist;
717           normal   = fSurfaceNormal;
718           if (!outgoing) distFromSurface = -distFromSurface;
719           return true;
720         }
721       }
722     }
723     else
724     {
725       distance = kInfinity;
726       distFromSurface = kInfinity;
727       normal.set(0,0,0);
728       return false;
729     }
730   }
731   //
732   //
733   // Use conventional algorithm to determine the whether there is an
734   // intersection.  This involves determining the point of intersection of the
735   // line with the plane containing the triangle, and then calculating if the
736   // point is within the triangle.
737   //
738   distance = distFromSurface / w;
739   G4ThreeVector pp = p + v*distance;
740   G4ThreeVector DD = p0 - pp;
741   G4double d = fE1.dot(DD);
742   G4double e = fE2.dot(DD);
743   G4double ss = fB*e - fC*d;
744   G4double t = fB*d - fA*e;
745 
746   G4double sTolerance = (fabs(fB)+ fabs(fC) + fabs(d) + fabs(e))*kCarTolerance;
747   G4double tTolerance = (fabs(fA)+ fabs(fB) + fabs(d) + fabs(e))*kCarTolerance;
748   G4double detTolerance = (fabs(fA)+ fabs(fC) + 2*fabs(fB) )*kCarTolerance;
749 
750   //if (ss < 0.0 || t < 0.0 || ss+t > fDet)
751   if (ss < -sTolerance || t < -tTolerance || ( ss+t - fDet ) > detTolerance)
752   {
753     //
754     // The intersection is outside of the triangle.
755     //
756     distance = distFromSurface = kInfinity;
757     normal.set(0,0,0);
758     return false;
759   }
760   else
761   {
762     //
763     // There is an intersection.  Now we only need to set the surface normal.
764     //
765     normal = fSurfaceNormal;
766     if (!outgoing) distFromSurface = -distFromSurface;
767     return true;
768   }
769 }
770 
771 ////////////////////////////////////////////////////////////////////////
772 //
773 // GetPointOnFace
774 //
775 // Auxiliary method, returns a uniform random point on the facet
776 //
777 G4ThreeVector G4TriangularFacet::GetPointOnFace() const
778 {
779   G4double u = G4UniformRand();
780   G4double v = G4UniformRand();
781   if (u+v > 1.) { u = 1. - u; v = 1. - v; }
782   return GetVertex(0) + u*fE1 + v*fE2;
783 }
784 
785 ////////////////////////////////////////////////////////////////////////
786 //
787 // GetArea
788 //
789 // Auxiliary method for returning the surface fArea
790 //
791 G4double G4TriangularFacet::GetArea() const
792 {
793   return fArea;
794 }
795 
796 ////////////////////////////////////////////////////////////////////////
797 //
798 G4GeometryType G4TriangularFacet::GetEntityType () const
799 {
800   return "G4TriangularFacet";
801 }
802 
803 ////////////////////////////////////////////////////////////////////////
804 //
805 G4ThreeVector G4TriangularFacet::GetSurfaceNormal () const
806 {
807   return fSurfaceNormal;
808 }
809 
810 ////////////////////////////////////////////////////////////////////////
811 //
812 void G4TriangularFacet::SetSurfaceNormal (const G4ThreeVector& normal)
813 {
814   fSurfaceNormal = normal;
815 }
816