Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4TessellatedGeometryAlgorithms.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration and of QinetiQ Ltd,   *
 20 // * subject to DEFCON 705 IPR conditions.                            *
 21 // * By using,  copying,  modifying or  distributing the software (or *
 22 // * any work based  on the software)  you  agree  to acknowledge its *
 23 // * use  in  resulting  scientific  publications,  and indicate your *
 24 // * acceptance of all terms of the Geant4 Software license.          *
 25 // ********************************************************************
 26 //
 27 // G4TessellatedGeometryAlgorithms implementation
 28 //
 29 // 07 August 2007, P R Truscott, QinetiQ Ltd, UK - Created, with member
 30 //                 functions based on the work of Rickard Holmberg.
 31 // 12 October 2012, M Gayer, CERN, - Reviewed optimized implementation.
 32 // --------------------------------------------------------------------
 33 
 34 #include "G4TessellatedGeometryAlgorithms.hh"
 35 
 36 #include <cfloat> 
 37 
 38 ///////////////////////////////////////////////////////////////////////////////
 39 //
 40 // IntersectLineAndTriangle2D
 41 //
 42 // Determines whether there is an intersection between a line defined
 43 // by r = p + s.v and a triangle defined by verticies p0, p0+e0 and p0+e1.
 44 //
 45 // Here:
 46 //        p = 2D vector
 47 //        s = scaler on [0,infinity)
 48 //        v = 2D vector
 49 //        p0, e0 and e1 are 2D vectors
 50 // Information about where the intersection occurs is returned in the
 51 // variable location.
 52 //
 53 // This is based on the work of Rickard Holmberg.
 54 //
 55 G4bool G4TessellatedGeometryAlgorithms::IntersectLineAndTriangle2D (
 56   const G4TwoVector& p,  const G4TwoVector& v,
 57   const G4TwoVector& p0, const G4TwoVector& e0, const G4TwoVector& e1,
 58   G4TwoVector location[2])
 59 {
 60   G4TwoVector loc0[2];
 61   G4int e0i = IntersectLineAndLineSegment2D (p,v,p0,e0,loc0);
 62   if (e0i == 2)
 63   {
 64     location[0] = loc0[0];
 65     location[1] = loc0[1];
 66     return true;
 67   }
 68 
 69   G4TwoVector loc1[2];
 70   G4int e1i = IntersectLineAndLineSegment2D (p,v,p0,e1,loc1);
 71   if (e1i == 2)
 72   {
 73     location[0] = loc1[0];
 74     location[1] = loc1[1];
 75     return true;
 76   }
 77 
 78   if ((e0i == 1) && (e1i == 1))
 79   {
 80     if ((loc0[0]-p).mag2() < (loc1[0]-p).mag2())
 81     {
 82       location[0] = loc0[0];
 83       location[1] = loc1[0];
 84     }
 85     else
 86     {
 87       location[0] = loc1[0];
 88       location[1] = loc0[0];
 89     }
 90     return true;
 91   }
 92 
 93   G4TwoVector p1 = p0 + e0;
 94   G4TwoVector DE = e1 - e0;
 95   G4TwoVector loc2[2];
 96   G4int e2i = IntersectLineAndLineSegment2D (p,v,p1,DE,loc2);
 97   if (e2i == 2)
 98   {
 99     location[0] = loc2[0];
100     location[1] = loc2[1];
101     return true;
102   }
103 
104   if ((e0i == 0) && (e1i == 0) && (e2i == 0)) return false;
105 
106   if ((e0i == 1) && (e2i == 1))
107   {
108     if ((loc0[0]-p).mag2() < (loc2[0]-p).mag2())
109     {
110       location[0] = loc0[0];
111       location[1] = loc2[0];
112     }
113     else
114     {
115       location[0] = loc2[0];
116       location[1] = loc0[0];
117     }
118     return true;
119   }
120 
121   if ((e1i == 1) && (e2i == 1))
122   {
123     if ((loc1[0]-p).mag2() < (loc2[0]-p).mag2())
124     {
125       location[0] = loc1[0];
126       location[1] = loc2[0];
127     }
128     else
129     {
130       location[0] = loc2[0];
131       location[1] = loc1[0];
132     }
133     return true;
134   }
135 
136   return false;
137 }
138 
139 ///////////////////////////////////////////////////////////////////////////////
140 //
141 // IntersectLineAndLineSegment2D
142 //
143 // Determines whether there is an intersection between a line defined
144 // by r = p0 + s.d0 and a line-segment with endpoints p1 and p1+d1.
145 // Here:
146 //        p0 = 2D vector
147 //        s  = scaler on [0,infinity)
148 //        d0 = 2D vector
149 //        p1 and d1 are 2D vectors
150 //
151 // This function returns:
152 // 0 - if there is no intersection;
153 // 1 - if there is a unique intersection;
154 // 2 - if the line and line-segments overlap, and the intersection is a
155 //     segment itself.
156 // Information about where the intersection occurs is returned in the
157 // as ??.
158 //
159 // This is based on the work of Rickard Holmberg as well as material published
160 // by Philip J Schneider and David H Eberly, "Geometric Tools for Computer
161 // Graphics," ISBN 1-55860-694-0, pp 244-245, 2003.
162 //
163 G4int G4TessellatedGeometryAlgorithms::IntersectLineAndLineSegment2D (
164   const G4TwoVector& p0, const G4TwoVector& d0,
165   const G4TwoVector& p1, const G4TwoVector& d1, G4TwoVector location[2])
166 {
167   G4TwoVector e     = p1 - p0;
168   G4double kross    = cross(d0,d1);
169   G4double sqrKross = kross * kross;
170   G4double sqrLen0  = d0.mag2();
171   G4double sqrLen1  = d1.mag2();
172   location[0]       = G4TwoVector(0.0,0.0);
173   location[1]       = G4TwoVector(0.0,0.0);
174 
175   if (sqrKross > DBL_EPSILON * DBL_EPSILON * sqrLen0 * sqrLen1)
176   {
177     //
178     // The line and line segment are not parallel. Determine if the intersection
179     // is in positive s where r=p0 + s*d0, and for 0<=t<=1 where r=p1 + t*d1.
180     //
181     G4double ss = cross(e,d1)/kross;
182     if (ss < 0)         return 0; // Intersection does not occur for positive ss
183     G4double t = cross(e,d0)/kross;
184     if (t < 0 || t > 1) return 0; // Intersection does not occur on line-segment
185     //
186     // Intersection of lines is a single point on the forward-propagating line
187     // defined by r=p0 + ss*d0, and the line segment defined by  r=p1 + t*d1.
188     //
189     location[0] = p0 + ss*d0;
190     return 1;
191   }
192   //
193   // Line and line segment are parallel. Determine whether they overlap or not.
194   //
195   G4double sqrLenE = e.mag2();
196   kross            = cross(e,d0);
197   sqrKross         = kross * kross;
198   if (sqrKross > DBL_EPSILON * DBL_EPSILON * sqrLen0 * sqrLenE)
199   {
200     return 0; //Lines are different.
201   }
202   //
203   // Lines are the same.  Test for overlap.
204   //
205   G4double s0   = d0.dot(e)/sqrLen0;
206   G4double s1   = s0 + d0.dot(d1)/sqrLen0;
207   G4double smin = 0.0;
208   G4double smax = 0.0;
209 
210   if (s0 < s1) {smin = s0; smax = s1;}
211   else         {smin = s1; smax = s0;}
212 
213   if (smax < 0.0) return 0;
214   else if (smin < 0.0)
215   {
216     location[0] = p0;
217     location[1] = p0 + smax*d0;
218     return 2;
219   }
220   else
221   {
222     location[0] = p0 + smin*d0;
223     location[1] = p0 + smax*d0;
224     return 2;
225   }
226 }
227 
228 ///////////////////////////////////////////////////////////////////////////////
229 //
230 // CrossProduct
231 //
232 // This is just a ficticious "cross-product" function for two 2D vectors...
233 // "ficticious" because such an operation is not relevant to 2D space compared
234 // with 3D space.
235 //
236 G4double G4TessellatedGeometryAlgorithms::cross(const G4TwoVector& v1,
237                                                 const G4TwoVector& v2)
238 {
239   return v1.x()*v2.y() - v1.y()*v2.x();
240 }
241