Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration and of QinetiQ Ltd, * 20 // * subject to DEFCON 705 IPR conditions. * 21 // * By using, copying, modifying or distributing the software (or * 22 // * any work based on the software) you agree to acknowledge its * 23 // * use in resulting scientific publications, and indicate your * 24 // * acceptance of all terms of the Geant4 Software license. * 25 // ******************************************************************** 26 // 27 // G4TessellatedGeometryAlgorithms implementation 28 // 29 // 07 August 2007, P R Truscott, QinetiQ Ltd, UK - Created, with member 30 // functions based on the work of Rickard Holmberg. 31 // 12 October 2012, M Gayer, CERN, - Reviewed optimized implementation. 32 // -------------------------------------------------------------------- 33 34 #include "G4TessellatedGeometryAlgorithms.hh" 35 36 #include <cfloat> 37 38 /////////////////////////////////////////////////////////////////////////////// 39 // 40 // IntersectLineAndTriangle2D 41 // 42 // Determines whether there is an intersection between a line defined 43 // by r = p + s.v and a triangle defined by verticies p0, p0+e0 and p0+e1. 44 // 45 // Here: 46 // p = 2D vector 47 // s = scaler on [0,infinity) 48 // v = 2D vector 49 // p0, e0 and e1 are 2D vectors 50 // Information about where the intersection occurs is returned in the 51 // variable location. 52 // 53 // This is based on the work of Rickard Holmberg. 54 // 55 G4bool G4TessellatedGeometryAlgorithms::IntersectLineAndTriangle2D ( 56 const G4TwoVector& p, const G4TwoVector& v, 57 const G4TwoVector& p0, const G4TwoVector& e0, const G4TwoVector& e1, 58 G4TwoVector location[2]) 59 { 60 G4TwoVector loc0[2]; 61 G4int e0i = IntersectLineAndLineSegment2D (p,v,p0,e0,loc0); 62 if (e0i == 2) 63 { 64 location[0] = loc0[0]; 65 location[1] = loc0[1]; 66 return true; 67 } 68 69 G4TwoVector loc1[2]; 70 G4int e1i = IntersectLineAndLineSegment2D (p,v,p0,e1,loc1); 71 if (e1i == 2) 72 { 73 location[0] = loc1[0]; 74 location[1] = loc1[1]; 75 return true; 76 } 77 78 if ((e0i == 1) && (e1i == 1)) 79 { 80 if ((loc0[0]-p).mag2() < (loc1[0]-p).mag2()) 81 { 82 location[0] = loc0[0]; 83 location[1] = loc1[0]; 84 } 85 else 86 { 87 location[0] = loc1[0]; 88 location[1] = loc0[0]; 89 } 90 return true; 91 } 92 93 G4TwoVector p1 = p0 + e0; 94 G4TwoVector DE = e1 - e0; 95 G4TwoVector loc2[2]; 96 G4int e2i = IntersectLineAndLineSegment2D (p,v,p1,DE,loc2); 97 if (e2i == 2) 98 { 99 location[0] = loc2[0]; 100 location[1] = loc2[1]; 101 return true; 102 } 103 104 if ((e0i == 0) && (e1i == 0) && (e2i == 0)) return false; 105 106 if ((e0i == 1) && (e2i == 1)) 107 { 108 if ((loc0[0]-p).mag2() < (loc2[0]-p).mag2()) 109 { 110 location[0] = loc0[0]; 111 location[1] = loc2[0]; 112 } 113 else 114 { 115 location[0] = loc2[0]; 116 location[1] = loc0[0]; 117 } 118 return true; 119 } 120 121 if ((e1i == 1) && (e2i == 1)) 122 { 123 if ((loc1[0]-p).mag2() < (loc2[0]-p).mag2()) 124 { 125 location[0] = loc1[0]; 126 location[1] = loc2[0]; 127 } 128 else 129 { 130 location[0] = loc2[0]; 131 location[1] = loc1[0]; 132 } 133 return true; 134 } 135 136 return false; 137 } 138 139 /////////////////////////////////////////////////////////////////////////////// 140 // 141 // IntersectLineAndLineSegment2D 142 // 143 // Determines whether there is an intersection between a line defined 144 // by r = p0 + s.d0 and a line-segment with endpoints p1 and p1+d1. 145 // Here: 146 // p0 = 2D vector 147 // s = scaler on [0,infinity) 148 // d0 = 2D vector 149 // p1 and d1 are 2D vectors 150 // 151 // This function returns: 152 // 0 - if there is no intersection; 153 // 1 - if there is a unique intersection; 154 // 2 - if the line and line-segments overlap, and the intersection is a 155 // segment itself. 156 // Information about where the intersection occurs is returned in the 157 // as ??. 158 // 159 // This is based on the work of Rickard Holmberg as well as material published 160 // by Philip J Schneider and David H Eberly, "Geometric Tools for Computer 161 // Graphics," ISBN 1-55860-694-0, pp 244-245, 2003. 162 // 163 G4int G4TessellatedGeometryAlgorithms::IntersectLineAndLineSegment2D ( 164 const G4TwoVector& p0, const G4TwoVector& d0, 165 const G4TwoVector& p1, const G4TwoVector& d1, G4TwoVector location[2]) 166 { 167 G4TwoVector e = p1 - p0; 168 G4double kross = cross(d0,d1); 169 G4double sqrKross = kross * kross; 170 G4double sqrLen0 = d0.mag2(); 171 G4double sqrLen1 = d1.mag2(); 172 location[0] = G4TwoVector(0.0,0.0); 173 location[1] = G4TwoVector(0.0,0.0); 174 175 if (sqrKross > DBL_EPSILON * DBL_EPSILON * sqrLen0 * sqrLen1) 176 { 177 // 178 // The line and line segment are not parallel. Determine if the intersection 179 // is in positive s where r=p0 + s*d0, and for 0<=t<=1 where r=p1 + t*d1. 180 // 181 G4double ss = cross(e,d1)/kross; 182 if (ss < 0) return 0; // Intersection does not occur for positive ss 183 G4double t = cross(e,d0)/kross; 184 if (t < 0 || t > 1) return 0; // Intersection does not occur on line-segment 185 // 186 // Intersection of lines is a single point on the forward-propagating line 187 // defined by r=p0 + ss*d0, and the line segment defined by r=p1 + t*d1. 188 // 189 location[0] = p0 + ss*d0; 190 return 1; 191 } 192 // 193 // Line and line segment are parallel. Determine whether they overlap or not. 194 // 195 G4double sqrLenE = e.mag2(); 196 kross = cross(e,d0); 197 sqrKross = kross * kross; 198 if (sqrKross > DBL_EPSILON * DBL_EPSILON * sqrLen0 * sqrLenE) 199 { 200 return 0; //Lines are different. 201 } 202 // 203 // Lines are the same. Test for overlap. 204 // 205 G4double s0 = d0.dot(e)/sqrLen0; 206 G4double s1 = s0 + d0.dot(d1)/sqrLen0; 207 G4double smin = 0.0; 208 G4double smax = 0.0; 209 210 if (s0 < s1) {smin = s0; smax = s1;} 211 else {smin = s1; smax = s0;} 212 213 if (smax < 0.0) return 0; 214 else if (smin < 0.0) 215 { 216 location[0] = p0; 217 location[1] = p0 + smax*d0; 218 return 2; 219 } 220 else 221 { 222 location[0] = p0 + smin*d0; 223 location[1] = p0 + smax*d0; 224 return 2; 225 } 226 } 227 228 /////////////////////////////////////////////////////////////////////////////// 229 // 230 // CrossProduct 231 // 232 // This is just a ficticious "cross-product" function for two 2D vectors... 233 // "ficticious" because such an operation is not relevant to 2D space compared 234 // with 3D space. 235 // 236 G4double G4TessellatedGeometryAlgorithms::cross(const G4TwoVector& v1, 237 const G4TwoVector& v2) 238 { 239 return v1.x()*v2.y() - v1.y()*v2.x(); 240 } 241