Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4PolyconeSide.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // Implementation of G4PolyconeSide, the face representing
 27 // one conical side of a polycone
 28 //
 29 // Author: David C. Williams (davidw@scipp.ucsc.edu)
 30 // --------------------------------------------------------------------
 31 
 32 #include "G4PolyconeSide.hh"
 33 #include "meshdefs.hh"
 34 #include "G4PhysicalConstants.hh"
 35 #include "G4IntersectingCone.hh"
 36 #include "G4ClippablePolygon.hh"
 37 #include "G4AffineTransform.hh"
 38 #include "G4SolidExtentList.hh"
 39 #include "G4GeometryTolerance.hh"
 40 
 41 #include "Randomize.hh"
 42 
 43 // This new field helps to use the class G4PlSideManager.
 44 //
 45 G4PlSideManager G4PolyconeSide::subInstanceManager;
 46 
 47 // This macro changes the references to fields that are now encapsulated
 48 // in the class G4PlSideData.
 49 //
 50 #define G4MT_pcphix ((subInstanceManager.offset[instanceID]).fPhix)
 51 #define G4MT_pcphiy ((subInstanceManager.offset[instanceID]).fPhiy)
 52 #define G4MT_pcphiz ((subInstanceManager.offset[instanceID]).fPhiz)
 53 #define G4MT_pcphik ((subInstanceManager.offset[instanceID]).fPhik)
 54 
 55 // Returns the private data instance manager.
 56 //
 57 const G4PlSideManager& G4PolyconeSide::GetSubInstanceManager()
 58 {
 59   return subInstanceManager;
 60 }
 61 
 62 // Constructor
 63 //
 64 // Values for r1,z1 and r2,z2 should be specified in clockwise
 65 // order in (r,z).
 66 //
 67 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSideRZ* prevRZ,
 68                                 const G4PolyconeSideRZ* tail,
 69                                 const G4PolyconeSideRZ* head,
 70                                 const G4PolyconeSideRZ* nextRZ,
 71                                       G4double thePhiStart, 
 72                                       G4double theDeltaPhi, 
 73                                       G4bool thePhiIsOpen, 
 74                                       G4bool isAllBehind )
 75 {
 76   instanceID = subInstanceManager.CreateSubInstance();
 77 
 78   kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
 79   G4MT_pcphix = 0.0; G4MT_pcphiy = 0.0; G4MT_pcphiz = 0.0; G4MT_pcphik = 0.0;
 80 
 81   //
 82   // Record values
 83   //
 84   r[0] = tail->r; z[0] = tail->z;
 85   r[1] = head->r; z[1] = head->z;
 86   
 87   phiIsOpen = thePhiIsOpen;
 88   if (phiIsOpen)
 89   {
 90     deltaPhi = theDeltaPhi;
 91     startPhi = thePhiStart;
 92 
 93     //
 94     // Set phi values to our conventions
 95     //
 96     while (deltaPhi < 0.0)    // Loop checking, 13.08.2015, G.Cosmo
 97      deltaPhi += twopi;
 98     while (startPhi < 0.0)    // Loop checking, 13.08.2015, G.Cosmo
 99      startPhi += twopi;
100     
101     //
102     // Calculate corner coordinates
103     //
104     ncorners = 4;
105     corners = new G4ThreeVector[ncorners];
106     
107     corners[0] = G4ThreeVector( tail->r*std::cos(startPhi),
108                                 tail->r*std::sin(startPhi), tail->z );
109     corners[1] = G4ThreeVector( head->r*std::cos(startPhi),
110                                 head->r*std::sin(startPhi), head->z );
111     corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi),
112                                 tail->r*std::sin(startPhi+deltaPhi), tail->z );
113     corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi),
114                                 head->r*std::sin(startPhi+deltaPhi), head->z );
115   }
116   else
117   {
118     deltaPhi = twopi;
119     startPhi = 0.0;
120   }
121   
122   allBehind = isAllBehind;
123     
124   //
125   // Make our intersecting cone
126   //
127   cone = new G4IntersectingCone( r, z );
128   
129   //
130   // Calculate vectors in r,z space
131   //
132   rS = r[1]-r[0]; zS = z[1]-z[0];
133   length = std::sqrt( rS*rS + zS*zS);
134   rS /= length; zS /= length;
135   
136   rNorm = +zS;
137   zNorm = -rS;
138   
139   G4double lAdj;
140   
141   prevRS = r[0]-prevRZ->r;
142   prevZS = z[0]-prevRZ->z;
143   lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS );
144   prevRS /= lAdj;
145   prevZS /= lAdj;
146 
147   rNormEdge[0] = rNorm + prevZS;
148   zNormEdge[0] = zNorm - prevRS;
149   lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] );
150   rNormEdge[0] /= lAdj;
151   zNormEdge[0] /= lAdj;
152 
153   nextRS = nextRZ->r-r[1];
154   nextZS = nextRZ->z-z[1];
155   lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS );
156   nextRS /= lAdj;
157   nextZS /= lAdj;
158 
159   rNormEdge[1] = rNorm + nextZS;
160   zNormEdge[1] = zNorm - nextRS;
161   lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] );
162   rNormEdge[1] /= lAdj;
163   zNormEdge[1] /= lAdj;
164 }
165 
166 // Fake default constructor - sets only member data and allocates memory
167 //                            for usage restricted to object persistency.
168 //
169 G4PolyconeSide::G4PolyconeSide( __void__& )
170   : startPhi(0.), deltaPhi(0.),
171     rNorm(0.), zNorm(0.), rS(0.), zS(0.), length(0.),
172     prevRS(0.), prevZS(0.), nextRS(0.), nextZS(0.),
173     kCarTolerance(0.), instanceID(0)
174 {
175   r[0] = r[1] = 0.;
176   z[0] = z[1] = 0.;
177   rNormEdge[0]= rNormEdge[1] = 0.;
178   zNormEdge[0]= zNormEdge[1] = 0.;
179 }
180 
181 // Destructor
182 //  
183 G4PolyconeSide::~G4PolyconeSide()
184 {
185   delete cone;
186   if (phiIsOpen)  { delete [] corners; }
187 }
188 
189 // Copy constructor
190 //
191 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSide& source )
192 {
193   instanceID = subInstanceManager.CreateSubInstance();
194 
195   CopyStuff( source );
196 }
197 
198 // Assignment operator
199 //
200 G4PolyconeSide& G4PolyconeSide::operator=( const G4PolyconeSide& source )
201 {
202   if (this == &source)  { return *this; }
203 
204   delete cone;
205   if (phiIsOpen)  { delete [] corners; }
206   
207   CopyStuff( source );
208   
209   return *this;
210 }
211 
212 // CopyStuff
213 //
214 void G4PolyconeSide::CopyStuff( const G4PolyconeSide& source )
215 {
216   r[0]    = source.r[0];
217   r[1]    = source.r[1];
218   z[0]    = source.z[0];
219   z[1]    = source.z[1];
220   
221   startPhi  = source.startPhi;
222   deltaPhi  = source.deltaPhi;
223   phiIsOpen  = source.phiIsOpen;
224   allBehind  = source.allBehind;
225 
226   kCarTolerance = source.kCarTolerance;
227   fSurfaceArea = source.fSurfaceArea;
228   
229   cone    = new G4IntersectingCone( *source.cone );
230   
231   rNorm    = source.rNorm;
232   zNorm    = source.zNorm;
233   rS    = source.rS;
234   zS    = source.zS;
235   length    = source.length;
236   prevRS    = source.prevRS;
237   prevZS    = source.prevZS;
238   nextRS    = source.nextRS;
239   nextZS    = source.nextZS;
240   
241   rNormEdge[0]   = source.rNormEdge[0];
242   rNormEdge[1]  = source.rNormEdge[1];
243   zNormEdge[0]  = source.zNormEdge[0];
244   zNormEdge[1]  = source.zNormEdge[1];
245   
246   if (phiIsOpen)
247   {
248     ncorners = 4;
249     corners = new G4ThreeVector[ncorners];
250     
251     corners[0] = source.corners[0];
252     corners[1] = source.corners[1];
253     corners[2] = source.corners[2];
254     corners[3] = source.corners[3];
255   }
256 }
257 
258 // Intersect
259 //
260 G4bool G4PolyconeSide::Intersect( const G4ThreeVector& p,
261                                   const G4ThreeVector& v,  
262                                         G4bool outgoing,
263                                         G4double surfTolerance,
264                                         G4double& distance,
265                                         G4double& distFromSurface,
266                                         G4ThreeVector& normal,
267                                         G4bool& isAllBehind )
268 {
269   G4double s1=0., s2=0.;
270   G4double normSign = outgoing ? +1 : -1;
271   
272   isAllBehind = allBehind;
273 
274   //
275   // Check for two possible intersections
276   //
277   G4int nside = cone->LineHitsCone( p, v, &s1, &s2 );
278   if (nside == 0) return false;
279     
280   //
281   // Check the first side first, since it is (supposed to be) closest
282   //
283   G4ThreeVector hit = p + s1*v;
284   
285   if (PointOnCone( hit, normSign, p, v, normal ))
286   {
287     //
288     // Good intersection! What about the normal? 
289     //
290     if (normSign*v.dot(normal) > 0)
291     {
292       //
293       // We have a valid intersection, but it could very easily
294       // be behind the point. To decide if we tolerate this,
295       // we have to see if the point p is on the surface near
296       // the intersecting point.
297       //
298       // What does it mean exactly for the point p to be "near"
299       // the intersection? It means that if we draw a line from
300       // p to the hit, the line remains entirely within the
301       // tolerance bounds of the cone. To test this, we can
302       // ask if the normal is correct near p.
303       //
304       G4double pr = p.perp();
305       if (pr < DBL_MIN) pr = DBL_MIN;
306       G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
307       if (normSign*v.dot(pNormal) > 0)
308       {
309         //
310         // p and intersection in same hemisphere
311         //
312         G4double distOutside2;
313         distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
314         if (distOutside2 < surfTolerance*surfTolerance)
315         {
316           if (distFromSurface > -surfTolerance)
317           {
318             //
319             // We are just inside or away from the
320             // surface. Accept *any* value of distance.
321             //
322             distance = s1;
323             return true;
324           }
325         }
326       }
327       else 
328         distFromSurface = s1;
329       
330       //
331       // Accept positive distances
332       //
333       if (s1 > 0)
334       {
335         distance = s1;
336         return true;
337       }
338     }
339   }  
340   
341   if (nside==1) return false;
342   
343   //
344   // Well, try the second hit
345   //  
346   hit = p + s2*v;
347   
348   if (PointOnCone( hit, normSign, p, v, normal ))
349   {
350     //
351     // Good intersection! What about the normal? 
352     //
353     if (normSign*v.dot(normal) > 0)
354     {
355       G4double pr = p.perp();
356       if (pr < DBL_MIN) pr = DBL_MIN;
357       G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
358       if (normSign*v.dot(pNormal) > 0)
359       {
360         G4double distOutside2;
361         distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
362         if (distOutside2 < surfTolerance*surfTolerance)
363         {
364           if (distFromSurface > -surfTolerance)
365           {
366             distance = s2;
367             return true;
368           }
369         }
370       }
371       else 
372         distFromSurface = s2;
373       
374       if (s2 > 0)
375       {
376         distance = s2;
377         return true;
378       }
379     }
380   }  
381 
382   //
383   // Better luck next time
384   //
385   return false;
386 }
387 
388 // Distance
389 //
390 G4double G4PolyconeSide::Distance( const G4ThreeVector& p, G4bool outgoing )
391 {
392   G4double normSign = outgoing ? -1 : +1;
393   G4double distFrom, distOut2;
394   
395   //
396   // We have two tries for each hemisphere. Try the closest first.
397   //
398   distFrom = normSign*DistanceAway( p, false, distOut2 );
399   if (distFrom > -0.5*kCarTolerance )
400   {
401     //
402     // Good answer
403     //
404     if (distOut2 > 0) 
405       return std::sqrt( distFrom*distFrom + distOut2 );
406     else 
407       return std::fabs(distFrom);
408   }
409   
410   //
411   // Try second side. 
412   //
413   distFrom = normSign*DistanceAway( p,  true, distOut2 );
414   if (distFrom > -0.5*kCarTolerance)
415   {
416 
417     if (distOut2 > 0) 
418       return std::sqrt( distFrom*distFrom + distOut2 );
419     else
420       return std::fabs(distFrom);
421   }
422   
423   return kInfinity;
424 }
425 
426 // Inside
427 //
428 EInside G4PolyconeSide::Inside( const G4ThreeVector& p,
429                                       G4double tolerance, 
430                                       G4double* bestDistance )
431 {
432   G4double distFrom, distOut2, dist2;
433   G4double edgeRZnorm;
434      
435   distFrom =  DistanceAway( p, distOut2, &edgeRZnorm );
436   dist2 = distFrom*distFrom + distOut2;
437  
438   *bestDistance = std::sqrt( dist2);
439   
440   // Okay then, inside or out?
441   //
442   if ( (std::fabs(edgeRZnorm) < tolerance)
443     && (distOut2< tolerance*tolerance) )
444     return kSurface;
445   else if (edgeRZnorm < 0)
446     return kInside;
447   else
448     return kOutside;
449 }
450 
451 // Normal
452 //
453 G4ThreeVector G4PolyconeSide::Normal( const G4ThreeVector& p,
454                                             G4double* bestDistance )
455 {
456   if (p == G4ThreeVector(0.,0.,0.))  { return p; }
457 
458   G4double dFrom, dOut2;
459   
460   dFrom = DistanceAway( p, false, dOut2 );
461   
462   *bestDistance = std::sqrt( dFrom*dFrom + dOut2 );
463   
464   G4double rds = p.perp();
465   if (rds!=0.) { return {rNorm*p.x()/rds,rNorm*p.y()/rds,zNorm}; }
466   return G4ThreeVector( 0.,0., zNorm ).unit();
467 }
468 
469 // Extent
470 //
471 G4double G4PolyconeSide::Extent( const G4ThreeVector axis )
472 {
473   if (axis.perp2() < DBL_MIN)
474   {
475     //
476     // Special case
477     //
478     return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
479   }
480 
481   //
482   // Is the axis pointing inside our phi gap?
483   //
484   if (phiIsOpen)
485   {
486     G4double phi = GetPhi(axis);
487     while( phi < startPhi )    // Loop checking, 13.08.2015, G.Cosmo
488       phi += twopi;
489     
490     if (phi > deltaPhi+startPhi)
491     {
492       //
493       // Yeah, looks so. Make four three vectors defining the phi
494       // opening
495       //
496       G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi);
497       G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] );
498       G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] );
499       cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi);
500       G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] );
501       G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] );
502       
503       G4double ad = axis.dot(a),
504                bd = axis.dot(b),
505                cd = axis.dot(c),
506                dd = axis.dot(d);
507       
508       if (bd > ad) ad = bd;
509       if (cd > ad) ad = cd;
510       if (dd > ad) ad = dd;
511       
512       return ad;
513     }
514   }
515 
516   //
517   // Check either end
518   //
519   G4double aPerp = axis.perp();
520   
521   G4double a = aPerp*r[0] + axis.z()*z[0];
522   G4double b = aPerp*r[1] + axis.z()*z[1];
523   
524   if (b > a) a = b;
525   
526   return a;
527 }
528 
529 // CalculateExtent
530 //
531 // See notes in G4VCSGface
532 //
533 void G4PolyconeSide::CalculateExtent( const EAxis axis, 
534                                       const G4VoxelLimits& voxelLimit,
535                                       const G4AffineTransform& transform,
536                                             G4SolidExtentList& extentList )
537 {
538   G4ClippablePolygon polygon;
539   
540   //
541   // Here we will approximate (ala G4Cons) and divide our conical section
542   // into segments, like G4Polyhedra. When doing so, the radius
543   // is extented far enough such that the segments always lie
544   // just outside the surface of the conical section we are
545   // approximating.
546   //
547   
548   //
549   // Choose phi size of our segment(s) based on constants as
550   // defined in meshdefs.hh
551   //
552   G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1;
553   if (numPhi < kMinMeshSections) 
554     numPhi = kMinMeshSections;
555   else if (numPhi > kMaxMeshSections)
556     numPhi = kMaxMeshSections;
557     
558   G4double sigPhi = deltaPhi/numPhi;
559   
560   //
561   // Determine radius factor to keep segments outside
562   //
563   G4double rFudge = 1.0/std::cos(0.5*sigPhi);
564   
565   //
566   // Decide which radius to use on each end of the side,
567   // and whether a transition mesh is required
568   //
569   // {r0,z0}  - Beginning of this side
570   // {r1,z1}  - Ending of this side
571   // {r2,z0}  - Beginning of transition piece connecting previous
572   //            side (and ends at beginning of this side)
573   //
574   // So, order is 2 --> 0 --> 1.
575   //                    -------
576   //
577   // r2 < 0 indicates that no transition piece is required
578   //
579   G4double r0, r1, r2, z0, z1;
580   
581   r2 = -1;  // By default: no transition piece
582   
583   if (rNorm < -DBL_MIN)
584   {
585     //
586     // This side faces *inward*, and so our mesh has
587     // the same radius
588     //
589     r1 = r[1];
590     z1 = z[1];
591     z0 = z[0];
592     r0 = r[0];
593     
594     r2 = -1;
595     
596     if (prevZS > DBL_MIN)
597     {
598       //
599       // The previous side is facing outwards
600       //
601       if ( prevRS*zS - prevZS*rS > 0 )
602       {
603         //
604         // Transition was convex: build transition piece
605         //
606         if (r[0] > DBL_MIN) r2 = r[0]*rFudge;
607       }
608       else
609       {
610         //
611         // Transition was concave: short this side
612         //
613         FindLineIntersect( z0, r0, zS, rS,
614                            z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 );
615       }
616     }
617     
618     if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
619     {
620       //
621       // The next side is facing outwards, forming a 
622       // concave transition: short this side
623       //
624       FindLineIntersect( z1, r1, zS, rS,
625                          z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 );
626     }
627   }
628   else if (rNorm > DBL_MIN)
629   {
630     //
631     // This side faces *outward* and is given a boost to
632     // it radius
633     //
634     r0 = r[0]*rFudge;
635     z0 = z[0];
636     r1 = r[1]*rFudge;
637     z1 = z[1];
638     
639     if (prevZS < -DBL_MIN)
640     {
641       //
642       // The previous side is facing inwards
643       //
644       if ( prevRS*zS - prevZS*rS > 0 )
645       {
646         //
647         // Transition was convex: build transition piece
648         //
649         if (r[0] > DBL_MIN) r2 = r[0];
650       }
651       else
652       {
653         //
654         // Transition was concave: short this side
655         //
656         FindLineIntersect( z0, r0, zS, rS*rFudge,
657                            z0, r[0], prevZS, prevRS, z0, r0 );
658       }
659     }
660     
661     if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
662     {
663       //
664       // The next side is facing inwards, forming a 
665       // concave transition: short this side
666       //
667       FindLineIntersect( z1, r1, zS, rS*rFudge,
668                          z1, r[1], nextZS, nextRS, z1, r1 );
669     }
670   }
671   else
672   {
673     //
674     // This side is perpendicular to the z axis (is a disk)
675     //
676     // Whether or not r0 needs a rFudge factor depends
677     // on the normal of the previous edge. Similar with r1
678     // and the next edge. No transition piece is required.
679     //
680     r0 = r[0];
681     r1 = r[1];
682     z0 = z[0];
683     z1 = z[1];
684     
685     if (prevZS > DBL_MIN) r0 *= rFudge;
686     if (nextZS > DBL_MIN) r1 *= rFudge;
687   }
688   
689   //
690   // Loop
691   //
692   G4double phi = startPhi, 
693            cosPhi = std::cos(phi), 
694            sinPhi = std::sin(phi);
695   
696   G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ),
697                     v1( r1*cosPhi, r1*sinPhi, z1 ),
698   v2, w0, w1, w2;
699   transform.ApplyPointTransform( v0 );
700   transform.ApplyPointTransform( v1 );
701   
702   if (r2 >= 0)
703   {
704     v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
705     transform.ApplyPointTransform( v2 );
706   }
707 
708   do    // Loop checking, 13.08.2015, G.Cosmo
709   {
710     phi += sigPhi;
711     if (numPhi == 1) phi = startPhi+deltaPhi;  // Try to avoid roundoff
712     cosPhi = std::cos(phi), 
713     sinPhi = std::sin(phi);
714     
715     w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 );
716     w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 );
717     transform.ApplyPointTransform( w0 );
718     transform.ApplyPointTransform( w1 );
719     
720     G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1;
721     
722     //
723     // Build polygon, taking special care to keep the vertices
724     // in order
725     //
726     polygon.ClearAllVertices();
727 
728     polygon.AddVertexInOrder( v0 );
729     polygon.AddVertexInOrder( v1 );
730     polygon.AddVertexInOrder( w1 );
731     polygon.AddVertexInOrder( w0 );
732 
733     //
734     // Get extent
735     //
736     if (polygon.PartialClip( voxelLimit, axis ))
737     {
738       //
739       // Get dot product of normal with target axis
740       //
741       polygon.SetNormal( deltaV.cross(v1-v0).unit() );
742       
743       extentList.AddSurface( polygon );
744     }
745     
746     if (r2 >= 0)
747     {
748       //
749       // Repeat, for transition piece
750       //
751       w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
752       transform.ApplyPointTransform( w2 );
753 
754       polygon.ClearAllVertices();
755 
756       polygon.AddVertexInOrder( v2 );
757       polygon.AddVertexInOrder( v0 );
758       polygon.AddVertexInOrder( w0 );
759       polygon.AddVertexInOrder( w2 );
760 
761       if (polygon.PartialClip( voxelLimit, axis ))
762       {
763         polygon.SetNormal( deltaV.cross(v0-v2).unit() );
764         
765         extentList.AddSurface( polygon );
766       }
767       
768       v2 = w2;
769     }
770     
771     //
772     // Next vertex
773     //    
774     v0 = w0;
775     v1 = w1;
776   } while( --numPhi > 0 );
777   
778   //
779   // We are almost done. But, it is important that we leave no
780   // gaps in the surface of our solid. By using rFudge, however,
781   // we've done exactly that, if we have a phi segment. 
782   // Add two additional faces if necessary
783   //
784   if (phiIsOpen && rNorm > DBL_MIN)
785   {    
786     cosPhi = std::cos(startPhi);
787     sinPhi = std::sin(startPhi);
788 
789     G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
790                   a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
791                   b0( r0*cosPhi, r0*sinPhi, z[0] ),
792                   b1( r1*cosPhi, r1*sinPhi, z[1] );
793   
794     transform.ApplyPointTransform( a0 );
795     transform.ApplyPointTransform( a1 );
796     transform.ApplyPointTransform( b0 );
797     transform.ApplyPointTransform( b1 );
798 
799     polygon.ClearAllVertices();
800 
801     polygon.AddVertexInOrder( a0 );
802     polygon.AddVertexInOrder( a1 );
803     polygon.AddVertexInOrder( b0 );
804     polygon.AddVertexInOrder( b1 );
805     
806     if (polygon.PartialClip( voxelLimit , axis))
807     {
808       G4ThreeVector normal( sinPhi, -cosPhi, 0 );
809       polygon.SetNormal( transform.TransformAxis( normal ) );
810         
811       extentList.AddSurface( polygon );
812     }
813     
814     cosPhi = std::cos(startPhi+deltaPhi);
815     sinPhi = std::sin(startPhi+deltaPhi);
816     
817     a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
818     a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
819     b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ),
820     b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] );
821     transform.ApplyPointTransform( a0 );
822     transform.ApplyPointTransform( a1 );
823     transform.ApplyPointTransform( b0 );
824     transform.ApplyPointTransform( b1 );
825 
826     polygon.ClearAllVertices();
827 
828     polygon.AddVertexInOrder( a0 );
829     polygon.AddVertexInOrder( a1 );
830     polygon.AddVertexInOrder( b0 );
831     polygon.AddVertexInOrder( b1 );
832     
833     if (polygon.PartialClip( voxelLimit, axis ))
834     {
835       G4ThreeVector normal( -sinPhi, cosPhi, 0 );
836       polygon.SetNormal( transform.TransformAxis( normal ) );
837         
838       extentList.AddSurface( polygon );
839     }
840   }
841     
842   return;
843 }
844 
845 // GetPhi
846 //
847 // Calculate Phi for a given 3-vector (point), if not already cached for the
848 // same point, in the attempt to avoid consecutive computation of the same
849 // quantity
850 //
851 G4double G4PolyconeSide::GetPhi( const G4ThreeVector& p )
852 {
853   G4double val=0.;
854   G4ThreeVector vphi(G4MT_pcphix, G4MT_pcphiy, G4MT_pcphiz);
855 
856   if (vphi != p)
857   {
858     val = p.phi();
859     G4MT_pcphix = p.x(); G4MT_pcphiy = p.y(); G4MT_pcphiz = p.z();
860     G4MT_pcphik = val;
861   }
862   else
863   {
864     val = G4MT_pcphik;
865   }
866   return val;
867 }
868 
869 // DistanceAway
870 //
871 // Calculate distance of a point from our conical surface, including the effect
872 // of any phi segmentation
873 //
874 // Arguments:
875 //  p             - (in) Point to check
876 //  opposite      - (in) If true, check opposite hemisphere (see below)
877 //  distOutside   - (out) Additional distance outside the edges of the surface
878 //  edgeRZnorm    - (out) if negative, point is inside
879 //
880 //  return value = distance from the conical plane, if extrapolated beyond edges,
881 //                 signed by whether the point is in inside or outside the shape
882 //
883 // Notes:
884 //  * There are two answers, depending on which hemisphere is considered.
885 //
886 G4double G4PolyconeSide::DistanceAway( const G4ThreeVector& p,
887                                              G4bool opposite,
888                                              G4double& distOutside2,
889                                              G4double* edgeRZnorm  )
890 {
891   //
892   // Convert our point to r and z
893   //
894   G4double rx = p.perp(), zx = p.z();
895   
896   //
897   // Change sign of r if opposite says we should
898   //
899   if (opposite) rx = -rx;
900   
901   //
902   // Calculate return value
903   //
904   G4double deltaR  = rx - r[0], deltaZ = zx - z[0];
905   G4double answer = deltaR*rNorm + deltaZ*zNorm;
906   
907   //
908   // Are we off the surface in r,z space?
909   //
910   G4double q = deltaR*rS + deltaZ*zS;
911   if (q < 0)
912   {
913     distOutside2 = q*q;
914     if (edgeRZnorm != nullptr)
915       *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0];
916   }
917   else if (q > length)
918   {
919     distOutside2 = sqr( q-length );
920     if (edgeRZnorm != nullptr)
921     {
922       deltaR = rx - r[1];
923       deltaZ = zx - z[1];
924       *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1];
925     }
926   }
927   else
928   {
929     distOutside2 = 0.;
930     if (edgeRZnorm != nullptr) *edgeRZnorm = answer;
931   }
932 
933   if (phiIsOpen)
934   {
935     //
936     // Finally, check phi
937     //
938     G4double phi = GetPhi(p);
939     while( phi < startPhi )    // Loop checking, 13.08.2015, G.Cosmo
940       phi += twopi;
941     
942     if (phi > startPhi+deltaPhi)
943     {
944       //
945       // Oops. Are we closer to the start phi or end phi?
946       //
947       G4double d1 = phi-startPhi-deltaPhi;
948       while( phi > startPhi )    // Loop checking, 13.08.2015, G.Cosmo
949         phi -= twopi;
950       G4double d2 = startPhi-phi;
951       
952       if (d2 < d1) d1 = d2;
953       
954       //
955       // Add result to our distance
956       //
957       G4double dist = d1*rx;
958       
959       distOutside2 += dist*dist;
960       if (edgeRZnorm != nullptr)
961       {
962         *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
963       }
964     }
965   }
966 
967   return answer;
968 }
969 
970 // DistanceAway
971 //
972 // Special version of DistanceAway for Inside.
973 // Opposite parameter is not used, instead use sign of rx for choosing the side
974 //
975 G4double G4PolyconeSide::DistanceAway( const G4ThreeVector& p,
976                                              G4double& distOutside2,
977                                              G4double* edgeRZnorm  )
978 {
979   //
980   // Convert our point to r and z
981   //
982   G4double rx = p.perp(), zx = p.z();
983   
984   //
985   // Change sign of r if we should
986   //
987   G4int part = 1;
988   if (rx < 0) part = -1;
989   
990   //
991   // Calculate return value
992   //
993   G4double deltaR = rx - r[0]*part, deltaZ = zx - z[0];
994   G4double answer = deltaR*rNorm*part + deltaZ*zNorm;
995   
996   //
997   // Are we off the surface in r,z space?
998   //
999   G4double q = deltaR*rS*part + deltaZ*zS;
1000   if (q < 0)
1001   {
1002     distOutside2 = q*q;
1003     if (edgeRZnorm != nullptr)
1004     {
1005       *edgeRZnorm = deltaR*rNormEdge[0]*part + deltaZ*zNormEdge[0];
1006     }
1007   }
1008   else if (q > length)
1009   {
1010     distOutside2 = sqr( q-length );
1011     if (edgeRZnorm != nullptr)
1012     {
1013       deltaR = rx - r[1]*part;
1014       deltaZ = zx - z[1];
1015       *edgeRZnorm = deltaR*rNormEdge[1]*part + deltaZ*zNormEdge[1];
1016     }
1017   }
1018   else
1019   {
1020     distOutside2 = 0.;
1021     if (edgeRZnorm != nullptr) *edgeRZnorm = answer;
1022   }
1023 
1024   if (phiIsOpen)
1025   {
1026     //
1027     // Finally, check phi
1028     //
1029     G4double phi = GetPhi(p);
1030     while( phi < startPhi )    // Loop checking, 13.08.2015, G.Cosmo
1031       phi += twopi;
1032     
1033     if (phi > startPhi+deltaPhi)
1034     {
1035       //
1036       // Oops. Are we closer to the start phi or end phi?
1037       //
1038       G4double d1 = phi-startPhi-deltaPhi;
1039       while( phi > startPhi )    // Loop checking, 13.08.2015, G.Cosmo
1040         phi -= twopi;
1041       G4double d2 = startPhi-phi;
1042       
1043       if (d2 < d1) d1 = d2;
1044       
1045       //
1046       // Add result to our distance
1047       //
1048       G4double dist = d1*rx*part;
1049       
1050       distOutside2 += dist*dist;
1051       if (edgeRZnorm != nullptr)
1052       {
1053         *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
1054       }
1055     }
1056   }
1057 
1058   return answer;
1059 }
1060 
1061 // PointOnCone
1062 //
1063 // Decide if a point is on a cone and return normal if it is
1064 //
1065 G4bool G4PolyconeSide::PointOnCone( const G4ThreeVector& hit,
1066                                           G4double normSign,
1067                                     const G4ThreeVector& p,
1068                                     const G4ThreeVector& v,
1069                                           G4ThreeVector& normal )
1070 {
1071   G4double rx = hit.perp();
1072   //
1073   // Check radial/z extent, as appropriate
1074   //
1075   if (!cone->HitOn( rx, hit.z() )) return false;
1076   
1077   if (phiIsOpen)
1078   {
1079     G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance);
1080     //
1081     // Check phi segment. Here we have to be careful
1082     // to use the standard method consistent with
1083     // PolyPhiFace. See PolyPhiFace::InsideEdgesExact
1084     //
1085     G4double phi = GetPhi(hit);
1086     while( phi < startPhi-phiTolerant )   // Loop checking, 13.08.2015, G.Cosmo
1087       phi += twopi;
1088     
1089     if (phi > startPhi+deltaPhi+phiTolerant) return false;
1090     
1091     if (phi > startPhi+deltaPhi-phiTolerant)
1092     {
1093       //
1094       // Exact treatment
1095       //
1096       G4ThreeVector qx = p + v;
1097       G4ThreeVector qa = qx - corners[2],
1098               qb = qx - corners[3];
1099       G4ThreeVector qacb = qa.cross(qb);
1100       
1101       if (normSign*qacb.dot(v) < 0) return false;
1102     }
1103     else if (phi < phiTolerant)
1104     {
1105       G4ThreeVector qx = p + v;
1106       G4ThreeVector qa = qx - corners[1],
1107               qb = qx - corners[0];
1108       G4ThreeVector qacb = qa.cross(qb);
1109       
1110       if (normSign*qacb.dot(v) < 0) return false;
1111     }
1112   }
1113   
1114   //
1115   // We have a good hit! Calculate normal
1116   //
1117   if (rx < DBL_MIN) 
1118     normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 );
1119   else
1120     normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm );
1121   return true;
1122 }
1123 
1124 // FindLineIntersect
1125 //
1126 // Decide the point at which two 2-dimensional lines intersect
1127 //
1128 // Equation of line: x = x1 + s*tx1
1129 //                   y = y1 + s*ty1
1130 //
1131 // It is assumed that the lines are *not* parallel
1132 //
1133 void G4PolyconeSide::FindLineIntersect( G4double x1,  G4double y1,
1134                                         G4double tx1, G4double ty1,
1135                                         G4double x2,  G4double y2,
1136                                         G4double tx2, G4double ty2,
1137                                         G4double& x,  G4double& y )
1138 {
1139   //
1140   // The solution is a simple linear equation
1141   //
1142   G4double deter = tx1*ty2 - tx2*ty1;
1143   
1144   G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter;
1145   G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter;
1146 
1147   //
1148   // We want the answer to not depend on which order the
1149   // lines were specified. Take average.
1150   //
1151   x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );
1152   y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );
1153 }
1154 
1155 // Calculate surface area for GetPointOnSurface()
1156 //
1157 G4double G4PolyconeSide::SurfaceArea() 
1158 { 
1159   if(fSurfaceArea==0.)
1160   {
1161     fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1]));
1162     fSurfaceArea *= 0.5*(deltaPhi);
1163   }  
1164   return fSurfaceArea;
1165 }
1166 
1167 // GetPointOnFace
1168 //
1169 G4ThreeVector G4PolyconeSide::GetPointOnFace()
1170 {
1171   G4double x,y,zz;
1172   G4double rr,phi,dz,dr;
1173   dr=r[1]-r[0];dz=z[1]-z[0];
1174   phi=startPhi+deltaPhi*G4UniformRand();
1175   rr=r[0]+dr*G4UniformRand();
1176  
1177   x=rr*std::cos(phi);
1178   y=rr*std::sin(phi);
1179 
1180   // PolyconeSide has a Ring Form
1181   //
1182   if (dz==0.)
1183   {
1184     zz=z[0];
1185   }
1186   else
1187   {
1188     if(dr==0.)  // PolyconeSide has a Tube Form
1189     {
1190       zz = z[0]+dz*G4UniformRand();
1191     }
1192     else
1193     {
1194       zz = z[0]+(rr-r[0])*dz/dr;
1195     }
1196   }
1197 
1198   return {x,y,zz};
1199 }
1200