Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // Implementation of methods for the class G4UnionSolid 27 // 28 // 23.04.18 E.Tcherniaev: added extended BBox, yearly return in Inside() 29 // 17.03.17 E.Tcherniaev: revision of SurfaceNormal() 30 // 12.09.98 V.Grichine: first implementation 31 // -------------------------------------------------------------------- 32 33 #include <sstream> 34 35 #include "G4UnionSolid.hh" 36 37 #include "G4SystemOfUnits.hh" 38 #include "G4VoxelLimits.hh" 39 #include "G4VPVParameterisation.hh" 40 #include "G4GeometryTolerance.hh" 41 42 #include "G4VGraphicsScene.hh" 43 #include "G4Polyhedron.hh" 44 #include "G4PolyhedronArbitrary.hh" 45 #include "HepPolyhedronProcessor.h" 46 47 #include "G4IntersectionSolid.hh" 48 49 ////////////////////////////////////////////////////////////////////////// 50 // 51 // Transfer all data members to G4BooleanSolid which is responsible 52 // for them. pName will be in turn sent to G4VSolid 53 54 G4UnionSolid:: G4UnionSolid( const G4String& pName, 55 G4VSolid* pSolidA , 56 G4VSolid* pSolidB ) 57 : G4BooleanSolid(pName,pSolidA,pSolidB) 58 { 59 Init(); 60 } 61 62 ////////////////////////////////////////////////////////////////////////// 63 // 64 // Constructor 65 66 G4UnionSolid::G4UnionSolid( const G4String& pName, 67 G4VSolid* pSolidA , 68 G4VSolid* pSolidB , 69 G4RotationMatrix* rotMatrix, 70 const G4ThreeVector& transVector ) 71 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMatrix,transVector) 72 73 { 74 Init(); 75 } 76 77 ////////////////////////////////////////////////////////////////////////// 78 // 79 // Constructor 80 81 G4UnionSolid::G4UnionSolid( const G4String& pName, 82 G4VSolid* pSolidA , 83 G4VSolid* pSolidB , 84 const G4Transform3D& transform ) 85 : G4BooleanSolid(pName,pSolidA,pSolidB,transform) 86 { 87 Init(); 88 } 89 90 ////////////////////////////////////////////////////////////////////////// 91 // 92 // Fake default constructor - sets only member data and allocates memory 93 // for usage restricted to object persistency. 94 95 G4UnionSolid::G4UnionSolid( __void__& a ) 96 : G4BooleanSolid(a) 97 { 98 } 99 100 ////////////////////////////////////////////////////////////////////////// 101 // 102 // Destructor 103 104 G4UnionSolid::~G4UnionSolid() 105 = default; 106 107 ////////////////////////////////////////////////////////////////////////// 108 // 109 // Copy constructor 110 111 G4UnionSolid::G4UnionSolid(const G4UnionSolid& rhs) 112 : G4BooleanSolid (rhs) 113 { 114 fPMin = rhs.fPMin; 115 fPMax = rhs.fPMax; 116 halfCarTolerance=0.5*kCarTolerance; 117 } 118 119 ////////////////////////////////////////////////////////////////////////// 120 // 121 // Assignment operator 122 123 G4UnionSolid& G4UnionSolid::operator = (const G4UnionSolid& rhs) 124 { 125 // Check assignment to self 126 // 127 if (this == &rhs) { return *this; } 128 129 // Copy base class data 130 // 131 G4BooleanSolid::operator=(rhs); 132 133 fPMin = rhs.fPMin; 134 fPMax = rhs.fPMax; 135 halfCarTolerance = rhs.halfCarTolerance; 136 137 return *this; 138 } 139 140 ////////////////////////////////////////////////////////////////////////// 141 // 142 // Initialisation 143 144 void G4UnionSolid::Init() 145 { 146 G4ThreeVector pdelta(kCarTolerance,kCarTolerance,kCarTolerance); 147 G4ThreeVector pmin, pmax; 148 BoundingLimits(pmin, pmax); 149 fPMin = pmin - pdelta; 150 fPMax = pmax + pdelta; 151 halfCarTolerance=0.5*kCarTolerance; 152 } 153 154 ////////////////////////////////////////////////////////////////////////// 155 // 156 // Get bounding box 157 158 void G4UnionSolid::BoundingLimits(G4ThreeVector& pMin, 159 G4ThreeVector& pMax) const 160 { 161 G4ThreeVector minA,maxA, minB,maxB; 162 fPtrSolidA->BoundingLimits(minA,maxA); 163 fPtrSolidB->BoundingLimits(minB,maxB); 164 165 pMin.set(std::min(minA.x(),minB.x()), 166 std::min(minA.y(),minB.y()), 167 std::min(minA.z(),minB.z())); 168 169 pMax.set(std::max(maxA.x(),maxB.x()), 170 std::max(maxA.y(),maxB.y()), 171 std::max(maxA.z(),maxB.z())); 172 173 // Check correctness of the bounding box 174 // 175 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 176 { 177 std::ostringstream message; 178 message << "Bad bounding box (min >= max) for solid: " 179 << GetName() << " !" 180 << "\npMin = " << pMin 181 << "\npMax = " << pMax; 182 G4Exception("G4UnionSolid::BoundingLimits()", "GeomMgt0001", 183 JustWarning, message); 184 DumpInfo(); 185 } 186 } 187 188 ////////////////////////////////////////////////////////////////////////// 189 // 190 // Calculate extent under transform and specified limit 191 192 G4bool 193 G4UnionSolid::CalculateExtent( const EAxis pAxis, 194 const G4VoxelLimits& pVoxelLimit, 195 const G4AffineTransform& pTransform, 196 G4double& pMin, 197 G4double& pMax ) const 198 { 199 G4bool touchesA, touchesB, out ; 200 G4double minA = kInfinity, minB = kInfinity, 201 maxA = -kInfinity, maxB = -kInfinity; 202 203 touchesA = fPtrSolidA->CalculateExtent( pAxis, pVoxelLimit, 204 pTransform, minA, maxA); 205 touchesB = fPtrSolidB->CalculateExtent( pAxis, pVoxelLimit, 206 pTransform, minB, maxB); 207 if( touchesA || touchesB ) 208 { 209 pMin = std::min( minA, minB ); 210 pMax = std::max( maxA, maxB ); 211 out = true ; 212 } 213 else 214 { 215 out = false ; 216 } 217 218 return out ; // It exists in this slice if either one does. 219 } 220 221 ////////////////////////////////////////////////////////////////////////// 222 // 223 // Important comment: When solids A and B touch together along flat 224 // surface the surface points will be considered as kSurface, while points 225 // located around will correspond to kInside 226 227 EInside G4UnionSolid::Inside( const G4ThreeVector& p ) const 228 { 229 if (std::max(p.z()-fPMax.z(), fPMin.z()-p.z()) > 0) { return kOutside; } 230 231 EInside positionA = fPtrSolidA->Inside(p); 232 if (positionA == kInside) { return positionA; } // inside A 233 EInside positionB = fPtrSolidB->Inside(p); 234 if (positionA == kOutside) { return positionB; } 235 236 if (positionB == kInside) { return positionB; } // inside B 237 if (positionB == kOutside) { return positionA; } // surface A 238 239 // Both points are on surface 240 // 241 static const G4double rtol 242 = 1000*G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 243 244 return ((fPtrSolidA->SurfaceNormal(p) + 245 fPtrSolidB->SurfaceNormal(p)).mag2() < rtol) ? kInside : kSurface; 246 } 247 248 ////////////////////////////////////////////////////////////////////////// 249 // 250 // Get surface normal 251 252 G4ThreeVector 253 G4UnionSolid::SurfaceNormal( const G4ThreeVector& p ) const 254 { 255 EInside positionA = fPtrSolidA->Inside(p); 256 EInside positionB = fPtrSolidB->Inside(p); 257 258 if (positionA == kSurface && 259 positionB == kOutside) return fPtrSolidA->SurfaceNormal(p); 260 261 if (positionA == kOutside && 262 positionB == kSurface) return fPtrSolidB->SurfaceNormal(p); 263 264 if (positionA == kSurface && 265 positionB == kSurface) 266 { 267 if (Inside(p) == kSurface) 268 { 269 G4ThreeVector normalA = fPtrSolidA->SurfaceNormal(p); 270 G4ThreeVector normalB = fPtrSolidB->SurfaceNormal(p); 271 return (normalA + normalB).unit(); 272 } 273 } 274 #ifdef G4BOOLDEBUG 275 G4String surf[3] = { "OUTSIDE", "SURFACE", "INSIDE" }; 276 std::ostringstream message; 277 G4int oldprc = message.precision(16); 278 message << "Invalid call of SurfaceNormal(p) for union solid: " 279 << GetName() << " !" 280 << "\nPoint p" << p << " is " << surf[Inside(p)] << " !!!"; 281 message.precision(oldprc); 282 G4Exception("G4UnionSolid::SurfaceNormal()", "GeomMgt0001", 283 JustWarning, message); 284 #endif 285 return fPtrSolidA->SurfaceNormal(p); 286 } 287 288 ////////////////////////////////////////////////////////////////////////// 289 // 290 // The same algorithm as in DistanceToIn(p) 291 292 G4double 293 G4UnionSolid::DistanceToIn( const G4ThreeVector& p, 294 const G4ThreeVector& v ) const 295 { 296 #ifdef G4BOOLDEBUG 297 if( Inside(p) == kInside ) 298 { 299 G4cout << "WARNING - Invalid call in " 300 << "G4UnionSolid::DistanceToIn(p,v)" << G4endl 301 << " Point p is inside !" << G4endl; 302 G4cout << " p = " << p << G4endl; 303 G4cout << " v = " << v << G4endl; 304 G4cerr << "WARNING - Invalid call in " 305 << "G4UnionSolid::DistanceToIn(p,v)" << G4endl 306 << " Point p is inside !" << G4endl; 307 G4cerr << " p = " << p << G4endl; 308 G4cerr << " v = " << v << G4endl; 309 } 310 #endif 311 312 return std::min(fPtrSolidA->DistanceToIn(p,v), 313 fPtrSolidB->DistanceToIn(p,v) ) ; 314 } 315 316 ////////////////////////////////////////////////////////////////////////// 317 // 318 // Approximate nearest distance from the point p to the union of 319 // two solids 320 321 G4double 322 G4UnionSolid::DistanceToIn( const G4ThreeVector& p ) const 323 { 324 #ifdef G4BOOLDEBUG 325 if( Inside(p) == kInside ) 326 { 327 G4cout << "WARNING - Invalid call in " 328 << "G4UnionSolid::DistanceToIn(p)" << G4endl 329 << " Point p is inside !" << G4endl; 330 G4cout << " p = " << p << G4endl; 331 G4cerr << "WARNING - Invalid call in " 332 << "G4UnionSolid::DistanceToIn(p)" << G4endl 333 << " Point p is inside !" << G4endl; 334 G4cerr << " p = " << p << G4endl; 335 } 336 #endif 337 G4double distA = fPtrSolidA->DistanceToIn(p) ; 338 G4double distB = fPtrSolidB->DistanceToIn(p) ; 339 G4double safety = std::min(distA,distB) ; 340 if(safety < 0.0) safety = 0.0 ; 341 return safety ; 342 } 343 344 ////////////////////////////////////////////////////////////////////////// 345 // 346 // The same algorithm as DistanceToOut(p) 347 348 G4double 349 G4UnionSolid::DistanceToOut( const G4ThreeVector& p, 350 const G4ThreeVector& v, 351 const G4bool calcNorm, 352 G4bool* validNorm, 353 G4ThreeVector* n ) const 354 { 355 G4double dist = 0.0, disTmp = 0.0 ; 356 G4ThreeVector normTmp; 357 G4ThreeVector* nTmp = &normTmp; 358 359 if( Inside(p) == kOutside ) 360 { 361 #ifdef G4BOOLDEBUG 362 G4cout << "Position:" << G4endl << G4endl; 363 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 364 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 365 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 366 G4cout << "Direction:" << G4endl << G4endl; 367 G4cout << "v.x() = " << v.x() << G4endl; 368 G4cout << "v.y() = " << v.y() << G4endl; 369 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 370 G4cout << "WARNING - Invalid call in " 371 << "G4UnionSolid::DistanceToOut(p,v)" << G4endl 372 << " Point p is outside !" << G4endl; 373 G4cout << " p = " << p << G4endl; 374 G4cout << " v = " << v << G4endl; 375 G4cerr << "WARNING - Invalid call in " 376 << "G4UnionSolid::DistanceToOut(p,v)" << G4endl 377 << " Point p is outside !" << G4endl; 378 G4cerr << " p = " << p << G4endl; 379 G4cerr << " v = " << v << G4endl; 380 #endif 381 } 382 else 383 { 384 EInside positionA = fPtrSolidA->Inside(p) ; 385 386 if( positionA != kOutside ) 387 { 388 do // Loop checking, 13.08.2015, G.Cosmo 389 { 390 disTmp = fPtrSolidA->DistanceToOut(p+dist*v,v,calcNorm, 391 validNorm,nTmp); 392 dist += disTmp ; 393 394 if(fPtrSolidB->Inside(p+dist*v) != kOutside) 395 { 396 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v,calcNorm, 397 validNorm,nTmp); 398 dist += disTmp ; 399 } 400 } 401 while( (fPtrSolidA->Inside(p+dist*v) != kOutside) 402 && (disTmp > halfCarTolerance) ); 403 } 404 else // if( positionB != kOutside ) 405 { 406 do // Loop checking, 13.08.2015, G.Cosmo 407 { 408 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v,calcNorm, 409 validNorm,nTmp); 410 dist += disTmp ; 411 412 if(fPtrSolidA->Inside(p+dist*v) != kOutside) 413 { 414 disTmp = fPtrSolidA->DistanceToOut(p+dist*v,v,calcNorm, 415 validNorm,nTmp); 416 dist += disTmp ; 417 } 418 } 419 while( (fPtrSolidB->Inside(p+dist*v) != kOutside) 420 && (disTmp > halfCarTolerance) ); 421 } 422 } 423 if( calcNorm ) 424 { 425 *validNorm = false ; 426 *n = *nTmp ; 427 } 428 return dist ; 429 } 430 431 ////////////////////////////////////////////////////////////////////////// 432 // 433 // Inverted algorithm of DistanceToIn(p) 434 435 G4double 436 G4UnionSolid::DistanceToOut( const G4ThreeVector& p ) const 437 { 438 G4double distout = 0.0; 439 if( Inside(p) == kOutside ) 440 { 441 #ifdef G4BOOLDEBUG 442 G4cout << "WARNING - Invalid call in " 443 << "G4UnionSolid::DistanceToOut(p)" << G4endl 444 << " Point p is outside !" << G4endl; 445 G4cout << " p = " << p << G4endl; 446 G4cerr << "WARNING - Invalid call in " 447 << "G4UnionSolid::DistanceToOut(p)" << G4endl 448 << " Point p is outside !" << G4endl; 449 G4cerr << " p = " << p << G4endl; 450 #endif 451 } 452 else 453 { 454 EInside positionA = fPtrSolidA->Inside(p) ; 455 EInside positionB = fPtrSolidB->Inside(p) ; 456 457 // Is this equivalent ?? 458 // if( ! ( (positionA == kOutside)) && 459 // (positionB == kOutside)) ) 460 if((positionA == kInside && positionB == kInside ) || 461 (positionA == kInside && positionB == kSurface ) || 462 (positionA == kSurface && positionB == kInside ) ) 463 { 464 distout= std::max(fPtrSolidA->DistanceToOut(p), 465 fPtrSolidB->DistanceToOut(p) ) ; 466 } 467 else 468 { 469 if(positionA == kOutside) 470 { 471 distout= fPtrSolidB->DistanceToOut(p) ; 472 } 473 else 474 { 475 distout= fPtrSolidA->DistanceToOut(p) ; 476 } 477 } 478 } 479 return distout; 480 } 481 482 ////////////////////////////////////////////////////////////////////////// 483 // 484 // GetEntityType 485 486 G4GeometryType G4UnionSolid::GetEntityType() const 487 { 488 return {"G4UnionSolid"}; 489 } 490 491 ////////////////////////////////////////////////////////////////////////// 492 // 493 // Make a clone of the object 494 495 G4VSolid* G4UnionSolid::Clone() const 496 { 497 return new G4UnionSolid(*this); 498 } 499 500 ////////////////////////////////////////////////////////////////////////// 501 // 502 // ComputeDimensions 503 504 void 505 G4UnionSolid::ComputeDimensions( G4VPVParameterisation*, 506 const G4int, 507 const G4VPhysicalVolume* ) 508 { 509 } 510 511 ////////////////////////////////////////////////////////////////////////// 512 // 513 // DescribeYourselfTo 514 515 void 516 G4UnionSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 517 { 518 scene.AddSolid (*this); 519 } 520 521 ////////////////////////////////////////////////////////////////////////// 522 // 523 // CreatePolyhedron 524 525 G4Polyhedron* 526 G4UnionSolid::CreatePolyhedron () const 527 { 528 if (fExternalBoolProcessor == nullptr) 529 { 530 HepPolyhedronProcessor processor; 531 // Stack components and components of components recursively 532 // See G4BooleanSolid::StackPolyhedron 533 G4Polyhedron* top = StackPolyhedron(processor, this); 534 auto result = new G4Polyhedron(*top); 535 if (processor.execute(*result)) 536 { 537 return result; 538 } 539 else 540 { 541 return nullptr; 542 } 543 } 544 else 545 { 546 return fExternalBoolProcessor->Process(this); 547 } 548 } 549 550 ////////////////////////////////////////////////////////////////////////// 551 // 552 // GetCubicVolume 553 554 G4double G4UnionSolid::GetCubicVolume() 555 { 556 if( fCubicVolume >= 0. ) 557 { 558 return fCubicVolume; 559 } 560 G4ThreeVector bminA, bmaxA, bminB, bmaxB; 561 fPtrSolidA->BoundingLimits(bminA, bmaxA); 562 fPtrSolidB->BoundingLimits(bminB, bmaxB); 563 G4bool noIntersection = 564 bminA.x() >= bmaxB.x() || bminA.y() >= bmaxB.y() || bminA.z() >= bmaxB.z() || 565 bminB.x() >= bmaxA.x() || bminB.y() >= bmaxA.y() || bminB.z() >= bmaxA.z(); 566 567 if (noIntersection) 568 { 569 fCubicVolume = fPtrSolidA->GetCubicVolume() + fPtrSolidB->GetCubicVolume(); 570 } 571 else 572 { 573 if (GetNumOfConstituents() > 10) 574 { 575 fCubicVolume = G4BooleanSolid::GetCubicVolume(); 576 } 577 else 578 { 579 G4IntersectionSolid intersectVol("Temporary-Intersection-for-Union", 580 fPtrSolidA, fPtrSolidB); 581 intersectVol.SetCubVolStatistics(GetCubVolStatistics()); 582 intersectVol.SetCubVolEpsilon(GetCubVolEpsilon()); 583 584 fCubicVolume = fPtrSolidA->GetCubicVolume() + fPtrSolidB->GetCubicVolume() 585 - intersectVol.GetCubicVolume(); 586 } 587 } 588 return fCubicVolume; 589 } 590