Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/Boolean/src/G4UnionSolid.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // Implementation of methods for the class G4UnionSolid
 27 //
 28 // 23.04.18 E.Tcherniaev: added extended BBox, yearly return in Inside()
 29 // 17.03.17 E.Tcherniaev: revision of SurfaceNormal()
 30 // 12.09.98 V.Grichine: first implementation
 31 // --------------------------------------------------------------------
 32 
 33 #include <sstream>
 34 
 35 #include "G4UnionSolid.hh"
 36 
 37 #include "G4SystemOfUnits.hh"
 38 #include "G4VoxelLimits.hh"
 39 #include "G4VPVParameterisation.hh"
 40 #include "G4GeometryTolerance.hh"
 41 
 42 #include "G4VGraphicsScene.hh"
 43 #include "G4Polyhedron.hh"
 44 #include "G4PolyhedronArbitrary.hh"
 45 #include "HepPolyhedronProcessor.h"
 46 
 47 #include "G4IntersectionSolid.hh"
 48 
 49 //////////////////////////////////////////////////////////////////////////
 50 //
 51 // Transfer all data members to G4BooleanSolid which is responsible
 52 // for them. pName will be in turn sent to G4VSolid
 53 
 54 G4UnionSolid:: G4UnionSolid( const G4String& pName,
 55                                    G4VSolid* pSolidA ,
 56                                    G4VSolid* pSolidB )
 57   : G4BooleanSolid(pName,pSolidA,pSolidB)
 58 {
 59   Init();
 60 }
 61 
 62 //////////////////////////////////////////////////////////////////////////
 63 //
 64 // Constructor
 65  
 66 G4UnionSolid::G4UnionSolid( const G4String& pName,
 67                                   G4VSolid* pSolidA ,
 68                                   G4VSolid* pSolidB ,
 69                                   G4RotationMatrix* rotMatrix,
 70                             const G4ThreeVector& transVector )
 71   : G4BooleanSolid(pName,pSolidA,pSolidB,rotMatrix,transVector)
 72 
 73 {
 74   Init();
 75 }
 76 
 77 //////////////////////////////////////////////////////////////////////////
 78 //
 79 // Constructor
 80  
 81 G4UnionSolid::G4UnionSolid( const G4String& pName,
 82                                   G4VSolid* pSolidA ,
 83                                   G4VSolid* pSolidB ,
 84                             const G4Transform3D& transform )
 85   : G4BooleanSolid(pName,pSolidA,pSolidB,transform)
 86 {
 87   Init();
 88 } 
 89 
 90 //////////////////////////////////////////////////////////////////////////
 91 //
 92 // Fake default constructor - sets only member data and allocates memory
 93 //                            for usage restricted to object persistency.
 94 
 95 G4UnionSolid::G4UnionSolid( __void__& a )
 96   : G4BooleanSolid(a)
 97 {
 98 }
 99 
100 //////////////////////////////////////////////////////////////////////////
101 //
102 // Destructor
103 
104 G4UnionSolid::~G4UnionSolid()
105 = default;
106 
107 //////////////////////////////////////////////////////////////////////////
108 //
109 // Copy constructor
110 
111 G4UnionSolid::G4UnionSolid(const G4UnionSolid& rhs)
112   : G4BooleanSolid (rhs)
113 {
114   fPMin = rhs.fPMin;
115   fPMax = rhs.fPMax;
116   halfCarTolerance=0.5*kCarTolerance;
117 }
118 
119 //////////////////////////////////////////////////////////////////////////
120 //
121 // Assignment operator
122 
123 G4UnionSolid& G4UnionSolid::operator = (const G4UnionSolid& rhs) 
124 {
125   // Check assignment to self
126   //
127   if (this == &rhs)  { return *this; }
128 
129   // Copy base class data
130   //
131   G4BooleanSolid::operator=(rhs);
132 
133   fPMin = rhs.fPMin;
134   fPMax = rhs.fPMax;
135   halfCarTolerance = rhs.halfCarTolerance;
136 
137   return *this;
138 }  
139 
140 //////////////////////////////////////////////////////////////////////////
141 //
142 // Initialisation
143 
144 void G4UnionSolid::Init()
145 {
146   G4ThreeVector pdelta(kCarTolerance,kCarTolerance,kCarTolerance);
147   G4ThreeVector pmin, pmax;
148   BoundingLimits(pmin, pmax);
149   fPMin = pmin - pdelta;
150   fPMax = pmax + pdelta;
151   halfCarTolerance=0.5*kCarTolerance;
152 }
153 
154 //////////////////////////////////////////////////////////////////////////
155 //
156 // Get bounding box
157 
158 void G4UnionSolid::BoundingLimits(G4ThreeVector& pMin,
159                                   G4ThreeVector& pMax) const
160 {
161   G4ThreeVector minA,maxA, minB,maxB;
162   fPtrSolidA->BoundingLimits(minA,maxA);
163   fPtrSolidB->BoundingLimits(minB,maxB);
164 
165   pMin.set(std::min(minA.x(),minB.x()),
166            std::min(minA.y(),minB.y()),
167            std::min(minA.z(),minB.z()));
168 
169   pMax.set(std::max(maxA.x(),maxB.x()),
170            std::max(maxA.y(),maxB.y()),
171            std::max(maxA.z(),maxB.z()));
172 
173   // Check correctness of the bounding box
174   //
175   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
176   {
177     std::ostringstream message;
178     message << "Bad bounding box (min >= max) for solid: "
179             << GetName() << " !"
180             << "\npMin = " << pMin
181             << "\npMax = " << pMax;
182     G4Exception("G4UnionSolid::BoundingLimits()", "GeomMgt0001",
183                 JustWarning, message);
184     DumpInfo();
185   }
186 }
187 
188 //////////////////////////////////////////////////////////////////////////
189 //
190 // Calculate extent under transform and specified limit
191      
192 G4bool 
193 G4UnionSolid::CalculateExtent( const EAxis pAxis,
194                                const G4VoxelLimits& pVoxelLimit,
195                                const G4AffineTransform& pTransform,
196                                      G4double& pMin,
197                                      G4double& pMax ) const 
198 {
199   G4bool   touchesA, touchesB, out ;
200   G4double minA =  kInfinity, minB =  kInfinity, 
201            maxA = -kInfinity, maxB = -kInfinity; 
202 
203   touchesA = fPtrSolidA->CalculateExtent( pAxis, pVoxelLimit, 
204                                           pTransform, minA, maxA);
205   touchesB = fPtrSolidB->CalculateExtent( pAxis, pVoxelLimit, 
206                                           pTransform, minB, maxB);
207   if( touchesA || touchesB )
208   {
209     pMin = std::min( minA, minB ); 
210     pMax = std::max( maxA, maxB );
211     out  = true ; 
212   }
213   else
214   {
215     out = false ;
216   }
217 
218   return out ;  // It exists in this slice if either one does.
219 }
220  
221 //////////////////////////////////////////////////////////////////////////
222 //
223 // Important comment: When solids A and B touch together along flat
224 // surface the surface points will be considered as kSurface, while points 
225 // located around will correspond to kInside
226 
227 EInside G4UnionSolid::Inside( const G4ThreeVector& p ) const
228 {
229   if (std::max(p.z()-fPMax.z(), fPMin.z()-p.z()) > 0) { return kOutside; }
230 
231   EInside positionA = fPtrSolidA->Inside(p);
232   if (positionA == kInside)  { return positionA; } // inside A
233   EInside positionB = fPtrSolidB->Inside(p);
234   if (positionA == kOutside) { return positionB; }
235 
236   if (positionB == kInside)  { return positionB; } // inside  B
237   if (positionB == kOutside) { return positionA; } // surface A
238 
239   // Both points are on surface
240   //
241   static const G4double rtol
242     = 1000*G4GeometryTolerance::GetInstance()->GetRadialTolerance();
243 
244   return ((fPtrSolidA->SurfaceNormal(p) + 
245            fPtrSolidB->SurfaceNormal(p)).mag2() < rtol) ? kInside : kSurface;
246 }
247 
248 //////////////////////////////////////////////////////////////////////////
249 //
250 // Get surface normal
251 
252 G4ThreeVector 
253 G4UnionSolid::SurfaceNormal( const G4ThreeVector& p ) const 
254 {
255   EInside positionA = fPtrSolidA->Inside(p);
256   EInside positionB = fPtrSolidB->Inside(p);
257 
258   if (positionA == kSurface &&
259       positionB == kOutside) return fPtrSolidA->SurfaceNormal(p);
260 
261   if (positionA == kOutside &&
262       positionB == kSurface) return fPtrSolidB->SurfaceNormal(p);
263 
264   if (positionA == kSurface &&
265       positionB == kSurface)
266   {
267     if (Inside(p) == kSurface)
268     {
269       G4ThreeVector normalA = fPtrSolidA->SurfaceNormal(p);
270       G4ThreeVector normalB = fPtrSolidB->SurfaceNormal(p);
271       return (normalA + normalB).unit(); 
272     }
273   }
274 #ifdef G4BOOLDEBUG
275   G4String surf[3] = { "OUTSIDE", "SURFACE", "INSIDE" };
276   std::ostringstream message;
277   G4int oldprc = message.precision(16);
278   message << "Invalid call of SurfaceNormal(p) for union solid: "
279           << GetName() << " !"
280           << "\nPoint p" << p << " is " << surf[Inside(p)] << " !!!"; 
281   message.precision(oldprc);
282   G4Exception("G4UnionSolid::SurfaceNormal()", "GeomMgt0001",
283               JustWarning, message);
284 #endif
285   return fPtrSolidA->SurfaceNormal(p);
286 }
287 
288 //////////////////////////////////////////////////////////////////////////
289 //
290 // The same algorithm as in DistanceToIn(p)
291 
292 G4double 
293 G4UnionSolid::DistanceToIn( const G4ThreeVector& p,
294                             const G4ThreeVector& v  ) const 
295 {
296 #ifdef G4BOOLDEBUG
297   if( Inside(p) == kInside )
298   {
299     G4cout << "WARNING - Invalid call in "
300            << "G4UnionSolid::DistanceToIn(p,v)" << G4endl
301            << "  Point p is inside !" << G4endl;
302     G4cout << "          p = " << p << G4endl;
303     G4cout << "          v = " << v << G4endl;
304     G4cerr << "WARNING - Invalid call in "
305            << "G4UnionSolid::DistanceToIn(p,v)" << G4endl
306            << "  Point p is inside !" << G4endl;
307     G4cerr << "          p = " << p << G4endl;
308     G4cerr << "          v = " << v << G4endl;
309   }
310 #endif
311 
312   return std::min(fPtrSolidA->DistanceToIn(p,v),
313                   fPtrSolidB->DistanceToIn(p,v) ) ;
314 }
315 
316 //////////////////////////////////////////////////////////////////////////
317 //
318 // Approximate nearest distance from the point p to the union of
319 // two solids
320 
321 G4double 
322 G4UnionSolid::DistanceToIn( const G4ThreeVector& p ) const 
323 {
324 #ifdef G4BOOLDEBUG
325   if( Inside(p) == kInside )
326   {
327     G4cout << "WARNING - Invalid call in "
328            << "G4UnionSolid::DistanceToIn(p)" << G4endl
329            << "  Point p is inside !" << G4endl;
330     G4cout << "          p = " << p << G4endl;
331     G4cerr << "WARNING - Invalid call in "
332            << "G4UnionSolid::DistanceToIn(p)" << G4endl
333            << "  Point p is inside !" << G4endl;
334     G4cerr << "          p = " << p << G4endl;
335   }
336 #endif
337   G4double distA = fPtrSolidA->DistanceToIn(p) ;
338   G4double distB = fPtrSolidB->DistanceToIn(p) ;
339   G4double safety = std::min(distA,distB) ;
340   if(safety < 0.0) safety = 0.0 ;
341   return safety ;
342 }
343 
344 //////////////////////////////////////////////////////////////////////////
345 //
346 // The same algorithm as DistanceToOut(p)
347 
348 G4double 
349 G4UnionSolid::DistanceToOut( const G4ThreeVector& p,
350                              const G4ThreeVector& v,
351                              const G4bool calcNorm,
352                                    G4bool* validNorm,
353                                    G4ThreeVector* n  ) const 
354 {
355   G4double  dist = 0.0, disTmp = 0.0 ;
356   G4ThreeVector normTmp;
357   G4ThreeVector* nTmp = &normTmp;
358 
359   if( Inside(p) == kOutside )
360   {
361 #ifdef G4BOOLDEBUG
362       G4cout << "Position:"  << G4endl << G4endl;
363       G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl;
364       G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl;
365       G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl;
366       G4cout << "Direction:" << G4endl << G4endl;
367       G4cout << "v.x() = "   << v.x() << G4endl;
368       G4cout << "v.y() = "   << v.y() << G4endl;
369       G4cout << "v.z() = "   << v.z() << G4endl << G4endl;
370       G4cout << "WARNING - Invalid call in "
371              << "G4UnionSolid::DistanceToOut(p,v)" << G4endl
372              << "  Point p is outside !" << G4endl;
373       G4cout << "          p = " << p << G4endl;
374       G4cout << "          v = " << v << G4endl;
375       G4cerr << "WARNING - Invalid call in "
376              << "G4UnionSolid::DistanceToOut(p,v)" << G4endl
377              << "  Point p is outside !" << G4endl;
378       G4cerr << "          p = " << p << G4endl;
379       G4cerr << "          v = " << v << G4endl;
380 #endif
381   }
382   else
383   {
384     EInside positionA = fPtrSolidA->Inside(p) ;
385 
386     if( positionA != kOutside )
387     { 
388       do  // Loop checking, 13.08.2015, G.Cosmo
389       {
390         disTmp = fPtrSolidA->DistanceToOut(p+dist*v,v,calcNorm,
391                                            validNorm,nTmp);
392         dist += disTmp ;
393 
394         if(fPtrSolidB->Inside(p+dist*v) != kOutside)
395         { 
396           disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v,calcNorm,
397                                              validNorm,nTmp);
398           dist += disTmp ;
399         }
400       }
401       while( (fPtrSolidA->Inside(p+dist*v) != kOutside)
402           && (disTmp > halfCarTolerance) );
403     }
404     else // if( positionB != kOutside )
405     {
406       do  // Loop checking, 13.08.2015, G.Cosmo
407       {
408         disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v,calcNorm,
409                                            validNorm,nTmp); 
410         dist += disTmp ;
411 
412         if(fPtrSolidA->Inside(p+dist*v) != kOutside)
413         { 
414           disTmp = fPtrSolidA->DistanceToOut(p+dist*v,v,calcNorm,
415                                              validNorm,nTmp);
416           dist += disTmp ;
417         }
418       }
419       while( (fPtrSolidB->Inside(p+dist*v) != kOutside)
420           && (disTmp > halfCarTolerance) );
421     }
422   }
423   if( calcNorm )
424   { 
425      *validNorm = false ;
426      *n         = *nTmp ;   
427   }
428   return dist ;
429 }
430 
431 //////////////////////////////////////////////////////////////////////////
432 //
433 // Inverted algorithm of DistanceToIn(p)
434 
435 G4double 
436 G4UnionSolid::DistanceToOut( const G4ThreeVector& p ) const 
437 {
438   G4double distout = 0.0;
439   if( Inside(p) == kOutside )
440   {
441 #ifdef G4BOOLDEBUG
442     G4cout << "WARNING - Invalid call in "
443            << "G4UnionSolid::DistanceToOut(p)" << G4endl
444            << "  Point p is outside !" << G4endl;
445     G4cout << "          p = " << p << G4endl;
446     G4cerr << "WARNING - Invalid call in "
447            << "G4UnionSolid::DistanceToOut(p)" << G4endl
448            << "  Point p is outside !" << G4endl;
449     G4cerr << "          p = " << p << G4endl;
450 #endif
451   }
452   else
453   {
454     EInside positionA = fPtrSolidA->Inside(p) ;
455     EInside positionB = fPtrSolidB->Inside(p) ;
456   
457     //  Is this equivalent ??
458     //    if( ! (  (positionA == kOutside)) && 
459     //             (positionB == kOutside))  ) 
460     if((positionA == kInside  && positionB == kInside  ) ||
461        (positionA == kInside  && positionB == kSurface ) ||
462        (positionA == kSurface && positionB == kInside  )     )
463     {     
464       distout= std::max(fPtrSolidA->DistanceToOut(p),
465                         fPtrSolidB->DistanceToOut(p) ) ;
466     }
467     else
468     {
469       if(positionA == kOutside)
470       {
471         distout= fPtrSolidB->DistanceToOut(p) ;
472       }
473       else
474       {
475         distout= fPtrSolidA->DistanceToOut(p) ;
476       }
477     }
478   }
479   return distout;
480 }
481 
482 //////////////////////////////////////////////////////////////////////////
483 //
484 // GetEntityType
485 
486 G4GeometryType G4UnionSolid::GetEntityType() const 
487 {
488   return {"G4UnionSolid"};
489 }
490 
491 //////////////////////////////////////////////////////////////////////////
492 //
493 // Make a clone of the object
494 
495 G4VSolid* G4UnionSolid::Clone() const
496 {
497   return new G4UnionSolid(*this);
498 }
499 
500 //////////////////////////////////////////////////////////////////////////
501 //
502 // ComputeDimensions
503 
504 void 
505 G4UnionSolid::ComputeDimensions(       G4VPVParameterisation*,
506                                  const G4int,
507                                  const G4VPhysicalVolume* ) 
508 {
509 }
510 
511 //////////////////////////////////////////////////////////////////////////
512 //
513 // DescribeYourselfTo
514 
515 void 
516 G4UnionSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 
517 {
518   scene.AddSolid (*this);
519 }
520 
521 //////////////////////////////////////////////////////////////////////////
522 //
523 // CreatePolyhedron
524 
525 G4Polyhedron* 
526 G4UnionSolid::CreatePolyhedron () const
527 {
528   if (fExternalBoolProcessor == nullptr)
529   {
530     HepPolyhedronProcessor processor;
531     // Stack components and components of components recursively
532     // See G4BooleanSolid::StackPolyhedron
533     G4Polyhedron* top = StackPolyhedron(processor, this);
534     auto result = new G4Polyhedron(*top);
535     if (processor.execute(*result))
536     {
537       return result;
538     }
539     else
540     {
541       return nullptr;
542     }
543   }
544   else
545   {
546     return fExternalBoolProcessor->Process(this);
547   }
548 }
549 
550 //////////////////////////////////////////////////////////////////////////
551 //
552 // GetCubicVolume
553 
554 G4double G4UnionSolid::GetCubicVolume()
555 {
556   if( fCubicVolume >= 0. )
557   {
558     return fCubicVolume;
559   }
560   G4ThreeVector bminA, bmaxA, bminB, bmaxB;
561   fPtrSolidA->BoundingLimits(bminA, bmaxA);
562   fPtrSolidB->BoundingLimits(bminB, bmaxB);
563   G4bool noIntersection =
564      bminA.x() >= bmaxB.x() || bminA.y() >= bmaxB.y() || bminA.z() >= bmaxB.z() ||
565      bminB.x() >= bmaxA.x() || bminB.y() >= bmaxA.y() || bminB.z() >= bmaxA.z();
566 
567   if (noIntersection)
568   {
569     fCubicVolume = fPtrSolidA->GetCubicVolume() + fPtrSolidB->GetCubicVolume();
570   }
571   else
572   {
573     if (GetNumOfConstituents() > 10)
574     {
575       fCubicVolume = G4BooleanSolid::GetCubicVolume();
576     }
577     else
578     {
579       G4IntersectionSolid intersectVol("Temporary-Intersection-for-Union",
580                                        fPtrSolidA, fPtrSolidB);
581       intersectVol.SetCubVolStatistics(GetCubVolStatistics());
582       intersectVol.SetCubVolEpsilon(GetCubVolEpsilon());
583 
584       fCubicVolume = fPtrSolidA->GetCubicVolume() + fPtrSolidB->GetCubicVolume()
585         - intersectVol.GetCubicVolume();
586     }
587   }
588   return fCubicVolume;
589 }
590