Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // Implementation of G4DisplacedSolid class for Boolean 27 // operations between other solids 28 // 29 // 28.10.98 V.Grichine: created 30 // 28.02.18 E.Tcherniaev: improved contruction from G4DisplacedSolid 31 // -------------------------------------------------------------------- 32 33 #include "G4DisplacedSolid.hh" 34 35 #include "G4VoxelLimits.hh" 36 37 #include "G4VPVParameterisation.hh" 38 39 #include "G4VGraphicsScene.hh" 40 #include "G4Polyhedron.hh" 41 42 //////////////////////////////////////////////////////////////// 43 // 44 // Constructor for transformation like rotation of frame then translation 45 // in new frame. It is similar to 1st constractor in G4PVPlacement 46 47 G4DisplacedSolid::G4DisplacedSolid( const G4String& pName, 48 G4VSolid* pSolid , 49 G4RotationMatrix* rotMatrix, 50 const G4ThreeVector& transVector ) 51 : G4VSolid(pName) 52 { 53 if (pSolid->GetEntityType() == "G4DisplacedSolid") 54 { 55 fPtrSolid = ((G4DisplacedSolid*)pSolid)->GetConstituentMovedSolid(); 56 G4AffineTransform t1 = ((G4DisplacedSolid*)pSolid)->GetDirectTransform(); 57 G4AffineTransform t2 = G4AffineTransform(rotMatrix,transVector); 58 fDirectTransform = new G4AffineTransform(t1*t2); 59 } 60 else 61 { 62 fPtrSolid = pSolid; 63 fDirectTransform = new G4AffineTransform(rotMatrix,transVector); 64 } 65 fPtrTransform = new G4AffineTransform(fDirectTransform->Inverse()); 66 } 67 68 ///////////////////////////////////////////////////////////////////////////////// 69 // 70 // Constructor 71 72 G4DisplacedSolid::G4DisplacedSolid( const G4String& pName, 73 G4VSolid* pSolid , 74 const G4Transform3D& transform ) 75 : G4VSolid(pName) 76 { 77 if (pSolid->GetEntityType() == "G4DisplacedSolid") 78 { 79 fPtrSolid = ((G4DisplacedSolid*)pSolid)->GetConstituentMovedSolid(); 80 G4AffineTransform t1 = ((G4DisplacedSolid*)pSolid)->GetDirectTransform(); 81 G4AffineTransform t2 = G4AffineTransform(transform.getRotation().inverse(), 82 transform.getTranslation()); 83 fDirectTransform = new G4AffineTransform(t1*t2); 84 } 85 else 86 { 87 fPtrSolid = pSolid; 88 fDirectTransform = new G4AffineTransform(transform.getRotation().inverse(), 89 transform.getTranslation()) ; 90 } 91 fPtrTransform = new G4AffineTransform(fDirectTransform->Inverse()); 92 } 93 94 /////////////////////////////////////////////////////////////////// 95 // 96 // Constructor for use with creation of Transient object 97 // from Persistent object 98 99 G4DisplacedSolid::G4DisplacedSolid( const G4String& pName, 100 G4VSolid* pSolid , 101 const G4AffineTransform directTransform ) 102 : G4VSolid(pName) 103 { 104 if (pSolid->GetEntityType() == "G4DisplacedSolid") 105 { 106 fPtrSolid = ((G4DisplacedSolid*)pSolid)->GetConstituentMovedSolid(); 107 G4AffineTransform t1 = ((G4DisplacedSolid*)pSolid)->GetDirectTransform(); 108 auto t2 = G4AffineTransform(directTransform); 109 fDirectTransform = new G4AffineTransform(t1*t2); 110 } 111 else 112 { 113 fPtrSolid = pSolid; 114 fDirectTransform = new G4AffineTransform(directTransform); 115 } 116 fPtrTransform = new G4AffineTransform(fDirectTransform->Inverse()); 117 } 118 119 /////////////////////////////////////////////////////////////////// 120 // 121 // Fake default constructor - sets only member data and allocates memory 122 // for usage restricted to object persistency. 123 124 G4DisplacedSolid::G4DisplacedSolid( __void__& a ) 125 : G4VSolid(a) 126 { 127 } 128 129 /////////////////////////////////////////////////////////////////// 130 // 131 // Destructor 132 133 G4DisplacedSolid::~G4DisplacedSolid() 134 { 135 CleanTransformations(); 136 delete fpPolyhedron; fpPolyhedron = nullptr; 137 } 138 139 /////////////////////////////////////////////////////////////// 140 // 141 // Copy constructor 142 143 G4DisplacedSolid::G4DisplacedSolid(const G4DisplacedSolid& rhs) 144 : G4VSolid (rhs), fPtrSolid(rhs.fPtrSolid) 145 { 146 fPtrTransform = new G4AffineTransform(*(rhs.fPtrTransform)); 147 fDirectTransform = new G4AffineTransform(*(rhs.fDirectTransform)); 148 } 149 150 /////////////////////////////////////////////////////////////// 151 // 152 // Assignment operator 153 154 G4DisplacedSolid& G4DisplacedSolid::operator = (const G4DisplacedSolid& rhs) 155 { 156 // Check assignment to self 157 // 158 if (this == &rhs) { return *this; } 159 160 // Copy base class data 161 // 162 G4VSolid::operator=(rhs); 163 164 // Copy data 165 // 166 fPtrSolid = rhs.fPtrSolid; 167 delete fPtrTransform; delete fDirectTransform; 168 fPtrTransform = new G4AffineTransform(*(rhs.fPtrTransform)); 169 fDirectTransform = new G4AffineTransform(*(rhs.fDirectTransform)); 170 fRebuildPolyhedron = false; 171 delete fpPolyhedron; fpPolyhedron = nullptr; 172 173 return *this; 174 } 175 176 void G4DisplacedSolid::CleanTransformations() 177 { 178 if(fPtrTransform != nullptr) 179 { 180 delete fPtrTransform; fPtrTransform = nullptr; 181 delete fDirectTransform; fDirectTransform = nullptr; 182 } 183 } 184 185 const G4DisplacedSolid* G4DisplacedSolid::GetDisplacedSolidPtr() const 186 { 187 return this; 188 } 189 190 G4DisplacedSolid* G4DisplacedSolid::GetDisplacedSolidPtr() 191 { 192 return this; 193 } 194 195 G4VSolid* G4DisplacedSolid::GetConstituentMovedSolid() const 196 { 197 return fPtrSolid; 198 } 199 200 ///////////////////////////////////////////////////////////////////////////// 201 202 G4AffineTransform G4DisplacedSolid::GetTransform() const 203 { 204 G4AffineTransform aTransform = *fPtrTransform; 205 return aTransform; 206 } 207 208 void G4DisplacedSolid::SetTransform(G4AffineTransform& transform) 209 { 210 fPtrTransform = &transform ; 211 fRebuildPolyhedron = true; 212 } 213 214 ////////////////////////////////////////////////////////////////////////////// 215 216 G4AffineTransform G4DisplacedSolid::GetDirectTransform() const 217 { 218 G4AffineTransform aTransform= *fDirectTransform; 219 return aTransform; 220 } 221 222 void G4DisplacedSolid::SetDirectTransform(G4AffineTransform& transform) 223 { 224 fDirectTransform = &transform ; 225 fRebuildPolyhedron = true; 226 } 227 228 ///////////////////////////////////////////////////////////////////////////// 229 230 G4RotationMatrix G4DisplacedSolid::GetFrameRotation() const 231 { 232 G4RotationMatrix InvRotation = fDirectTransform->NetRotation(); 233 return InvRotation; 234 } 235 236 void G4DisplacedSolid::SetFrameRotation(const G4RotationMatrix& matrix) 237 { 238 fDirectTransform->SetNetRotation(matrix); 239 fRebuildPolyhedron = true; 240 } 241 242 ///////////////////////////////////////////////////////////////////////////// 243 244 G4ThreeVector G4DisplacedSolid::GetFrameTranslation() const 245 { 246 return fPtrTransform->NetTranslation(); 247 } 248 249 void G4DisplacedSolid::SetFrameTranslation(const G4ThreeVector& vector) 250 { 251 fPtrTransform->SetNetTranslation(vector); 252 fRebuildPolyhedron = true; 253 } 254 255 /////////////////////////////////////////////////////////////// 256 257 G4RotationMatrix G4DisplacedSolid::GetObjectRotation() const 258 { 259 G4RotationMatrix Rotation = fPtrTransform->NetRotation(); 260 return Rotation; 261 } 262 263 void G4DisplacedSolid::SetObjectRotation(const G4RotationMatrix& matrix) 264 { 265 fPtrTransform->SetNetRotation(matrix); 266 fRebuildPolyhedron = true; 267 } 268 269 /////////////////////////////////////////////////////////////////////// 270 271 G4ThreeVector G4DisplacedSolid::GetObjectTranslation() const 272 { 273 return fDirectTransform->NetTranslation(); 274 } 275 276 void G4DisplacedSolid::SetObjectTranslation(const G4ThreeVector& vector) 277 { 278 fDirectTransform->SetNetTranslation(vector); 279 fRebuildPolyhedron = true; 280 } 281 282 ////////////////////////////////////////////////////////////////////////// 283 // 284 // Get bounding box 285 286 void G4DisplacedSolid::BoundingLimits(G4ThreeVector& pMin, 287 G4ThreeVector& pMax) const 288 { 289 if (!fDirectTransform->IsRotated()) 290 { 291 // Special case of pure translation 292 // 293 fPtrSolid->BoundingLimits(pMin,pMax); 294 G4ThreeVector offset = fDirectTransform->NetTranslation(); 295 pMin += offset; 296 pMax += offset; 297 } 298 else 299 { 300 // General case, use CalculateExtent() to find bounding box 301 // 302 G4VoxelLimits unLimit; 303 G4double xmin,xmax,ymin,ymax,zmin,zmax; 304 fPtrSolid->CalculateExtent(kXAxis,unLimit,*fDirectTransform,xmin,xmax); 305 fPtrSolid->CalculateExtent(kYAxis,unLimit,*fDirectTransform,ymin,ymax); 306 fPtrSolid->CalculateExtent(kZAxis,unLimit,*fDirectTransform,zmin,zmax); 307 pMin.set(xmin,ymin,zmin); 308 pMax.set(xmax,ymax,zmax); 309 } 310 311 // Check correctness of the bounding box 312 // 313 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 314 { 315 std::ostringstream message; 316 message << "Bad bounding box (min >= max) for solid: " 317 << GetName() << " !" 318 << "\npMin = " << pMin 319 << "\npMax = " << pMax; 320 G4Exception("G4DisplacedSolid::BoundingLimits()", "GeomMgt0001", 321 JustWarning, message); 322 DumpInfo(); 323 } 324 } 325 326 ////////////////////////////////////////////////////////////////////////// 327 // 328 // Calculate extent under transform and specified limit 329 330 G4bool 331 G4DisplacedSolid::CalculateExtent( const EAxis pAxis, 332 const G4VoxelLimits& pVoxelLimit, 333 const G4AffineTransform& pTransform, 334 G4double& pMin, 335 G4double& pMax ) const 336 { 337 G4AffineTransform sumTransform ; 338 sumTransform.Product(*fDirectTransform,pTransform) ; 339 return fPtrSolid->CalculateExtent(pAxis,pVoxelLimit,sumTransform,pMin,pMax) ; 340 } 341 342 ///////////////////////////////////////////////////// 343 // 344 // SurfaceNormal 345 346 EInside G4DisplacedSolid::Inside(const G4ThreeVector& p) const 347 { 348 G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; 349 return fPtrSolid->Inside(newPoint) ; 350 } 351 352 ////////////////////////////////////////////////////////////// 353 // 354 // 355 356 G4ThreeVector 357 G4DisplacedSolid::SurfaceNormal( const G4ThreeVector& p ) const 358 { 359 G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; 360 G4ThreeVector normal = fPtrSolid->SurfaceNormal(newPoint) ; 361 return fDirectTransform->TransformAxis(normal) ; 362 } 363 364 ///////////////////////////////////////////////////////////// 365 // 366 // The same algorithm as in DistanceToIn(p) 367 368 G4double 369 G4DisplacedSolid::DistanceToIn( const G4ThreeVector& p, 370 const G4ThreeVector& v ) const 371 { 372 G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; 373 G4ThreeVector newDirection = fPtrTransform->TransformAxis(v) ; 374 return fPtrSolid->DistanceToIn(newPoint,newDirection) ; 375 } 376 377 //////////////////////////////////////////////////////// 378 // 379 // Approximate nearest distance from the point p to the intersection of 380 // two solids 381 382 G4double 383 G4DisplacedSolid::DistanceToIn( const G4ThreeVector& p ) const 384 { 385 G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; 386 return fPtrSolid->DistanceToIn(newPoint) ; 387 } 388 389 ////////////////////////////////////////////////////////// 390 // 391 // The same algorithm as DistanceToOut(p) 392 393 G4double 394 G4DisplacedSolid::DistanceToOut( const G4ThreeVector& p, 395 const G4ThreeVector& v, 396 const G4bool calcNorm, 397 G4bool *validNorm, 398 G4ThreeVector *n ) const 399 { 400 G4ThreeVector solNorm ; 401 G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; 402 G4ThreeVector newDirection = fPtrTransform->TransformAxis(v) ; 403 G4double dist = fPtrSolid->DistanceToOut(newPoint,newDirection, 404 calcNorm,validNorm,&solNorm) ; 405 if(calcNorm) 406 { 407 *n = fDirectTransform->TransformAxis(solNorm) ; 408 } 409 return dist ; 410 } 411 412 ////////////////////////////////////////////////////////////// 413 // 414 // Inverted algorithm of DistanceToIn(p) 415 416 G4double 417 G4DisplacedSolid::DistanceToOut( const G4ThreeVector& p ) const 418 { 419 G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; 420 return fPtrSolid->DistanceToOut(newPoint) ; 421 } 422 423 ////////////////////////////////////////////////////////////// 424 // 425 // ComputeDimensions 426 427 void 428 G4DisplacedSolid::ComputeDimensions( G4VPVParameterisation*, 429 const G4int, 430 const G4VPhysicalVolume* ) 431 { 432 DumpInfo(); 433 G4Exception("G4DisplacedSolid::ComputeDimensions()", 434 "GeomSolids0001", FatalException, 435 "Method not applicable in this context!"); 436 } 437 438 ////////////////////////////////////////////////////////////// 439 // 440 // Return volume 441 442 G4double G4DisplacedSolid::GetCubicVolume() 443 { 444 return fPtrSolid->GetCubicVolume(); 445 } 446 447 ////////////////////////////////////////////////////////////// 448 // 449 // Return surface area 450 451 G4double G4DisplacedSolid::GetSurfaceArea() 452 { 453 return fPtrSolid->GetSurfaceArea(); 454 } 455 456 ////////////////////////////////////////////////////////////////////////// 457 // 458 // Returns a point (G4ThreeVector) randomly and uniformly selected 459 // on the solid surface 460 // 461 462 G4ThreeVector G4DisplacedSolid::GetPointOnSurface() const 463 { 464 G4ThreeVector p = fPtrSolid->GetPointOnSurface(); 465 return fDirectTransform->TransformPoint(p); 466 } 467 468 ////////////////////////////////////////////////////////////////////////// 469 // 470 // Return the number of constituents used for construction of the solid 471 472 G4int G4DisplacedSolid::GetNumOfConstituents() const 473 { 474 return fPtrSolid->GetNumOfConstituents(); 475 } 476 477 ////////////////////////////////////////////////////////////////////////// 478 // 479 // Return true if the solid has only planar faces 480 481 G4bool G4DisplacedSolid::IsFaceted() const 482 { 483 return fPtrSolid->IsFaceted(); 484 } 485 486 ////////////////////////////////////////////////////////////////////////// 487 // 488 // Return object type name 489 490 G4GeometryType G4DisplacedSolid::GetEntityType() const 491 { 492 return {"G4DisplacedSolid"}; 493 } 494 495 ////////////////////////////////////////////////////////////////////////// 496 // 497 // Make a clone of the object 498 // 499 G4VSolid* G4DisplacedSolid::Clone() const 500 { 501 return new G4DisplacedSolid(*this); 502 } 503 504 ////////////////////////////////////////////////////////////////////////// 505 // 506 // Stream object contents to an output stream 507 508 std::ostream& G4DisplacedSolid::StreamInfo(std::ostream& os) const 509 { 510 os << "-----------------------------------------------------------\n" 511 << " *** Dump for Displaced solid - " << GetName() << " ***\n" 512 << " ===================================================\n" 513 << " Solid type: " << GetEntityType() << "\n" 514 << " Parameters of constituent solid: \n" 515 << "===========================================================\n"; 516 fPtrSolid->StreamInfo(os); 517 os << "===========================================================\n" 518 << " Transformations: \n" 519 << " Direct transformation - translation : \n" 520 << " " << fDirectTransform->NetTranslation() << "\n" 521 << " - rotation : \n" 522 << " "; 523 fDirectTransform->NetRotation().print(os); 524 os << "\n" 525 << "===========================================================\n"; 526 527 return os; 528 } 529 530 ////////////////////////////////////////////////////////////////////////// 531 // 532 // DescribeYourselfTo 533 534 void 535 G4DisplacedSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 536 { 537 scene.AddSolid (*this); 538 } 539 540 ////////////////////////////////////////////////////////////////////////// 541 // 542 // CreatePolyhedron 543 544 G4Polyhedron* 545 G4DisplacedSolid::CreatePolyhedron () const 546 { 547 G4Polyhedron* polyhedron = fPtrSolid->CreatePolyhedron(); 548 if (polyhedron != nullptr) 549 { 550 polyhedron 551 ->Transform(G4Transform3D(GetObjectRotation(),GetObjectTranslation())); 552 } 553 else 554 { 555 DumpInfo(); 556 G4Exception("G4DisplacedSolid::CreatePolyhedron()", 557 "GeomSolids2002", JustWarning, 558 "No G4Polyhedron for displaced solid"); 559 } 560 return polyhedron; 561 } 562 563 ////////////////////////////////////////////////////////////////////////// 564 // 565 // GetPolyhedron 566 567 G4Polyhedron* G4DisplacedSolid::GetPolyhedron () const 568 { 569 if (fpPolyhedron == nullptr || 570 fRebuildPolyhedron || 571 fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 572 fpPolyhedron->GetNumberOfRotationSteps()) 573 { 574 fpPolyhedron = CreatePolyhedron(); 575 fRebuildPolyhedron = false; 576 } 577 return fpPolyhedron; 578 } 579