Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/management/src/G4SmartVoxelHeader.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 // 
 26 // class G4SmartVoxelHeader implementation
 27 //
 28 // Define G4GEOMETRY_VOXELDEBUG for debugging information on G4cout
 29 //
 30 // 29.04.02 Use 3D voxelisation for non consuming replication - G.C.
 31 // 18.04.01 Migrated to STL vector - G.C.
 32 // 12.02.99 Introduction of new quality/smartless: max for (slices/cand) - S.G.
 33 // 11.02.99 Voxels at lower levels are now built for collapsed slices - S.G.
 34 // 21.07.95 Full implementation, supporting non divided physical volumes - P.K.
 35 // 14.07.95 Initial version - stubb definitions only - P.K.
 36 // --------------------------------------------------------------------
 37 
 38 #include "G4SmartVoxelHeader.hh"
 39 
 40 #include "G4ios.hh"
 41 
 42 #include "G4LogicalVolume.hh"
 43 #include "G4VPhysicalVolume.hh"
 44 #include "G4VoxelLimits.hh"
 45 
 46 #include "voxeldefs.hh"
 47 #include "G4AffineTransform.hh"
 48 #include "G4VSolid.hh"
 49 #include "G4VPVParameterisation.hh"
 50 
 51 // ***************************************************************************
 52 // Constructor for topmost header, to begin voxel construction at a
 53 // given logical volume.
 54 // Constructs target List of volumes, calls "Build and refine" constructor.
 55 // Assumes all daughters represent single volumes (ie. no divisions
 56 // or parametric)
 57 // ***************************************************************************
 58 //
 59 G4SmartVoxelHeader::G4SmartVoxelHeader(G4LogicalVolume* pVolume,
 60                                        G4int pSlice)
 61   : fminEquivalent(pSlice),
 62     fmaxEquivalent(pSlice),
 63     fparamAxis(kUndefined)
 64 {
 65   std::size_t nDaughters = pVolume->GetNoDaughters();
 66 
 67   // Determine whether daughter is replicated
 68   //
 69   if ((nDaughters!=1) || (!pVolume->GetDaughter(0)->IsReplicated()))
 70   {
 71     // Daughter not replicated => conventional voxel Build
 72     // where each daughters extents are computed
 73     //
 74     BuildVoxels(pVolume);
 75   }
 76   else
 77   {
 78     // Single replicated daughter
 79     //
 80     BuildReplicaVoxels(pVolume);
 81   }
 82 }
 83 
 84 // ***************************************************************************
 85 // Protected constructor:
 86 // builds and refines voxels between specified limits, considering only
 87 // the physical volumes numbered `pCandidates'. `pSlice' is used to set max
 88 // and min equivalent slice nos for the header - they apply to the level
 89 // of the header, not its nodes.
 90 // ***************************************************************************
 91 //
 92 G4SmartVoxelHeader::G4SmartVoxelHeader(G4LogicalVolume* pVolume,
 93                                  const G4VoxelLimits& pLimits,
 94                                  const G4VolumeNosVector* pCandidates,
 95                                        G4int pSlice)
 96   : fminEquivalent(pSlice),
 97     fmaxEquivalent(pSlice),
 98     fparamAxis(kUndefined)
 99 {
100 #ifdef G4GEOMETRY_VOXELDEBUG
101   G4cout << "**** G4SmartVoxelHeader::G4SmartVoxelHeader" << G4endl
102          << "     Limits " << pLimits << G4endl
103          << "     Candidate #s = " ;
104   for (auto i=0; i<pCandidates->size(); ++i)
105   {
106     G4cout << (*pCandidates)[i] << " ";
107   }
108   G4cout << G4endl;
109 #endif   
110 
111   BuildVoxelsWithinLimits(pVolume,pLimits,pCandidates);
112 }
113 
114 // ***************************************************************************
115 // Destructor:
116 // deletes all proxies and underlying objects.
117 // ***************************************************************************
118 //
119 G4SmartVoxelHeader::~G4SmartVoxelHeader()
120 {
121   // Manually destroy underlying nodes/headers
122   // Delete collected headers and nodes once only
123   //
124   std::size_t node, proxy, maxNode=fslices.size();
125   G4SmartVoxelProxy* lastProxy = nullptr;
126   G4SmartVoxelNode *dyingNode, *lastNode=nullptr;
127   G4SmartVoxelHeader *dyingHeader, *lastHeader=nullptr;
128 
129   for (node=0; node<maxNode; ++node)
130   {
131     if (fslices[node]->IsHeader())
132     {
133       dyingHeader = fslices[node]->GetHeader();
134       if (lastHeader != dyingHeader)
135       {
136         lastHeader = dyingHeader;
137         lastNode = nullptr;
138         delete dyingHeader;
139       }
140     }
141     else
142     {
143       dyingNode = fslices[node]->GetNode();
144       if (dyingNode != lastNode)
145       {
146         lastNode = dyingNode;
147         lastHeader = nullptr;
148         delete dyingNode;
149       }
150     }
151   }
152   // Delete proxies
153   //
154   for (proxy=0; proxy<maxNode; ++proxy)
155   {
156     if (fslices[proxy] != lastProxy)
157     {
158       lastProxy = fslices[proxy];
159       delete lastProxy;
160     }
161   }
162   // Don't need to clear slices
163   // fslices.clear();
164 }
165 
166 // ***************************************************************************
167 // Equality operator: returns true if contents are equivalent.
168 // Implies a deep search through contained nodes/header.
169 // Compares headers' axes,sizes,extents. Returns false if different.
170 // For each contained proxy, determines whether node/header, compares and
171 // returns if different. Compares and returns if proxied nodes/headers
172 // are different.
173 // ***************************************************************************
174 //
175 G4bool G4SmartVoxelHeader::operator == (const G4SmartVoxelHeader& pHead) const
176 {
177   if ( (GetAxis()      == pHead.GetAxis())
178     && (GetNoSlices()  == pHead.GetNoSlices())
179     && (GetMinExtent() == pHead.GetMinExtent())
180     && (GetMaxExtent() == pHead.GetMaxExtent()) )
181   {
182     std::size_t node, maxNode;
183     G4SmartVoxelProxy *leftProxy, *rightProxy;
184     G4SmartVoxelHeader *leftHeader, *rightHeader;
185     G4SmartVoxelNode *leftNode, *rightNode;
186 
187     maxNode = GetNoSlices();
188     for (node=0; node<maxNode; ++node)
189     {
190       leftProxy  = GetSlice(node);
191       rightProxy = pHead.GetSlice(node);
192       if (leftProxy->IsHeader())
193       {
194         if (rightProxy->IsNode())
195         {
196           return false;
197         }
198         else
199         {
200           leftHeader  = leftProxy->GetHeader();
201           rightHeader = rightProxy->GetHeader();
202           if (!(*leftHeader == *rightHeader))
203           {
204             return false;
205           }
206         }
207       }
208       else
209       {
210         if (rightProxy->IsHeader())
211         {
212           return false;
213         }
214         else
215         {
216           leftNode  = leftProxy->GetNode();
217           rightNode = rightProxy->GetNode();
218           if (!(*leftNode == *rightNode))
219           {
220             return false;
221           }
222         }
223       }
224     }
225     return true;
226   }
227   else
228   {
229     return false;
230   }
231 }
232 
233 // ***************************************************************************
234 // Builds voxels for daughters specified volume, in NON-REPLICATED case
235 // o Create List of target volume nos (all daughters; 0->noDaughters-1)
236 // o BuildWithinLimits does Build & also determines mother dimensions.
237 // ***************************************************************************
238 //
239 void G4SmartVoxelHeader::BuildVoxels(G4LogicalVolume* pVolume)
240 {
241   G4VoxelLimits limits;   // Create `unlimited' limits object
242   std::size_t nDaughters = pVolume->GetNoDaughters();
243 
244   G4VolumeNosVector targetList;
245   targetList.reserve(nDaughters);
246   for (std::size_t i=0; i<nDaughters; ++i)
247   {
248     targetList.push_back((G4int)i);
249   }
250   BuildVoxelsWithinLimits(pVolume, limits, &targetList);
251 }
252 
253 // ***************************************************************************
254 // Builds voxels for specified volume containing a single replicated volume.
255 // If axis is not specified (i.e. "kUndefined"), 3D voxelisation is applied,
256 // and the best axis is determined according to heuristics as for placements.
257 // ***************************************************************************
258 //
259 void G4SmartVoxelHeader::BuildReplicaVoxels(G4LogicalVolume* pVolume)
260 {
261   G4VPhysicalVolume* pDaughter = nullptr;
262 
263   // Replication data
264   //
265   EAxis axis;
266   G4int nReplicas;
267   G4double width,offset;
268   G4bool consuming;
269 
270   // Consistency check: pVolume should contain single replicated volume
271   //
272   if ( (pVolume->GetNoDaughters()==1)
273     && (pVolume->GetDaughter(0)->IsReplicated()) )
274   {
275     // Obtain replication data
276     //
277     pDaughter = pVolume->GetDaughter(0);
278     pDaughter->GetReplicationData(axis,nReplicas,width,offset,consuming);
279     fparamAxis = axis;
280     if ( !consuming )
281     {
282       G4VoxelLimits limits;   // Create `unlimited' limits object
283       G4VolumeNosVector targetList;
284       targetList.reserve(nReplicas);
285       for (auto i=0; i<nReplicas; ++i)
286       {
287         targetList.push_back(i);
288       }
289       if (axis != kUndefined)
290       {
291         // Apply voxelisation along the specified axis only
292 
293         G4ProxyVector* pSlices=BuildNodes(pVolume,limits,&targetList,axis);
294         faxis = axis;
295         fslices = *pSlices;
296         delete pSlices;
297 
298         // Calculate and set min and max extents given our axis
299         //
300         const G4AffineTransform origin;
301         pVolume->GetSolid()->CalculateExtent(faxis, limits, origin,
302                                              fminExtent, fmaxExtent);
303         // Calculate equivalent nos
304         //
305         BuildEquivalentSliceNos();
306         CollectEquivalentNodes();   // Collect common nodes
307       }
308       else
309       {
310         // Build voxels similarly as for normal placements considering
311         // all three cartesian axes.
312 
313         BuildVoxelsWithinLimits(pVolume, limits, &targetList);
314       }
315     }
316     else
317     {
318       // Replication is consuming -> Build voxels directly
319       //
320       // o Cartesian axes - range is -width*nREplicas/2 to +width*nREplicas/2
321       //                    nReplicas replications result
322       // o Radial axis (rho) = range is 0 to width*nReplicas
323       //                    nReplicas replications result
324       // o Phi axi       - range is offset to offset+width*nReplicas radians
325       //
326       // Equivalent slices no computation & collection not required - all
327       // slices are different
328       //
329       switch (axis)
330       {
331         case kXAxis:
332         case kYAxis:
333         case kZAxis:
334           fminExtent = -width*nReplicas*0.5;
335           fmaxExtent =  width*nReplicas*0.5;
336           break;
337         case kRho:
338           fminExtent = offset;
339           fmaxExtent = width*nReplicas+offset;
340           break;
341         case kPhi:
342           fminExtent = offset;
343           fmaxExtent = offset+width*nReplicas;
344           break;
345         default:
346           G4Exception("G4SmartVoxelHeader::BuildReplicaVoxels()",
347                       "GeomMgt0002", FatalException, "Illegal axis.");
348           break;
349       }  
350       faxis = axis;   // Set axis
351       BuildConsumedNodes(nReplicas);
352       if ( (axis==kXAxis) || (axis==kYAxis) || (axis==kZAxis) )
353       {
354         // Sanity check on extent
355         //
356         G4double emin = kInfinity, emax = -kInfinity;
357         G4VoxelLimits limits;
358         G4AffineTransform origin;
359         pVolume->GetSolid()->CalculateExtent(axis, limits, origin, emin, emax);
360         if ( (std::fabs((emin-fminExtent)/fminExtent) +
361               std::fabs((emax-fmaxExtent)/fmaxExtent)) > 0.05)
362         {
363           std::ostringstream message;
364           message << "Sanity check: wrong solid extent." << G4endl
365                   << "        Replicated geometry, logical volume: "
366                   << pVolume->GetName();
367           G4Exception("G4SmartVoxelHeader::BuildReplicaVoxels",
368                       "GeomMgt0002", FatalException, message);
369         }
370       }
371     }
372   }
373   else
374   {
375     G4Exception("G4SmartVoxelHeader::BuildReplicaVoxels", "GeomMgt0002",
376                 FatalException, "Only one replicated daughter is allowed !");
377   }
378 }
379 
380 // ***************************************************************************
381 // Builds `consumed nodes': nReplicas nodes each containing one replication,
382 // numbered in sequence 0->nReplicas-1
383 // o Modifies fslices `in place'
384 // o faxis,fminExtent,fmaxExtent NOT modified.
385 // ***************************************************************************
386 //
387 void G4SmartVoxelHeader::BuildConsumedNodes(G4int nReplicas)
388 {
389   G4int nNode, nVol;
390   G4SmartVoxelNode* pNode;
391   G4SmartVoxelProxy* pProxyNode;
392 
393   // Create and fill nodes in temporary G4NodeVector (on stack)
394   //
395   G4NodeVector nodeList;
396   nodeList.reserve(nReplicas);
397   for (nNode=0; nNode<nReplicas; ++nNode)
398   {
399     pNode = new G4SmartVoxelNode(nNode);
400     if (pNode == nullptr)
401     {
402       G4Exception("G4SmartVoxelHeader::BuildConsumedNodes()", "GeomMgt0003",
403                   FatalException, "Node allocation error.");
404     }
405     nodeList.push_back(pNode);
406   }
407   for (nVol=0; nVol<nReplicas; ++nVol)
408   {
409     nodeList[nVol]->Insert(nVol);   // Insert replication of number
410   }                                 // identical to voxel number
411 
412   // Create & fill proxy List `in place' by modifying instance data fslices
413   //
414   fslices.clear();
415   for (nNode=0; nNode<nReplicas; ++nNode)
416   {
417     pProxyNode = new G4SmartVoxelProxy(nodeList[nNode]);
418     if (pProxyNode == nullptr)
419     {
420       G4Exception("G4SmartVoxelHeader::BuildConsumedNodes()", "GeomMgt0003",
421                   FatalException, "Proxy node allocation error.");
422     }
423     fslices.push_back(pProxyNode);
424   }
425 }
426 
427 // ***************************************************************************
428 // Builds and refines voxels between specified limits, considering only
429 // the physical volumes numbered `pCandidates'.
430 // o Chooses axis
431 // o Determines min and max extents (of mother solid) within limits.
432 // ***************************************************************************
433 //
434 void
435 G4SmartVoxelHeader::BuildVoxelsWithinLimits(G4LogicalVolume* pVolume,
436                                             G4VoxelLimits pLimits,
437                                       const G4VolumeNosVector* pCandidates)
438 {
439   // Choose best axis for slicing by:
440   // 1. Trying all unlimited cartesian axes
441   // 2. Select axis which gives greatest no slices
442 
443   G4ProxyVector *pGoodSlices=nullptr, *pTestSlices;
444   G4double goodSliceScore=kInfinity, testSliceScore;
445   EAxis goodSliceAxis = kXAxis;
446   std::size_t node, maxNode; 
447   G4VoxelLimits noLimits;
448 
449   // Try all non-limited cartesian axes
450   //
451   for ( EAxis testAxis : { kXAxis, kYAxis, kZAxis } )
452   {
453     if (!pLimits.IsLimited(testAxis))
454     {
455       pTestSlices = BuildNodes(pVolume,pLimits,pCandidates,testAxis);
456       testSliceScore = CalculateQuality(pTestSlices);
457       if ( (pGoodSlices == nullptr) || (testSliceScore<goodSliceScore) )
458       {
459         goodSliceAxis  = testAxis;
460         goodSliceScore = testSliceScore;
461         std::swap( pGoodSlices, pTestSlices);
462       }
463       if (pTestSlices != nullptr)
464       {
465         // Destroy pTestSlices and all its contents
466         //
467         maxNode=pTestSlices->size();
468         for (node=0; node<maxNode; ++node)
469         {
470           delete (*pTestSlices)[node]->GetNode();
471         }
472         G4SmartVoxelProxy* tmpProx;
473         while (!pTestSlices->empty())  // Loop checking, 06.08.2015, G.Cosmo
474         {
475           tmpProx = pTestSlices->back();
476           pTestSlices->pop_back();
477           for (auto i=pTestSlices->cbegin(); i!=pTestSlices->cend(); )
478           {
479             if (*i==tmpProx)
480             {
481               i = pTestSlices->erase(i);
482             }
483             else
484             {
485               ++i;
486             }
487           }
488           delete tmpProx; 
489         }
490         delete pTestSlices;
491       }
492     }
493   }
494   // Check for error case.. when limits already 3d,
495   // so cannot select a new axis
496   //
497   if (pGoodSlices == nullptr)
498   {
499     G4Exception("G4SmartVoxelHeader::BuildVoxelsWithinLimits()",
500                 "GeomMgt0002", FatalException,
501                 "Cannot select more than 3 axis for optimisation.");
502     return;
503   }
504 
505   // 
506   // We have selected pGoodSlices, with a score testSliceScore
507   //
508 
509   // Store chosen axis, slice ptr
510   //
511   fslices =* pGoodSlices; // Set slice information, copy ptrs in collection
512   delete pGoodSlices;     // Destroy slices vector, but not contained
513                           // proxies or nodes
514   faxis = goodSliceAxis;
515 
516 #ifdef G4GEOMETRY_VOXELDEBUG
517   G4cout << G4endl << "     Volume = " << pVolume->GetName()
518          << G4endl << "     Selected axis = " << faxis << G4endl;
519   for (auto islice=0; islice<fslices.size(); ++islice)
520   {
521     G4cout << "     Node #" << islice << " = {";
522     for (auto j=0; j<fslices[islice]->GetNode()->GetNoContained(); ++j)
523     {
524       G4cout << " " << fslices[islice]->GetNode()->GetVolume(j);
525     }
526     G4cout << " }" << G4endl;
527   }
528   G4cout << G4endl;
529 #endif
530 
531   // Calculate and set min and max extents given our axis
532   //
533   G4VSolid* outerSolid = pVolume->GetSolid();
534   const G4AffineTransform origin;
535   if(!outerSolid->CalculateExtent(faxis,pLimits,origin,fminExtent,fmaxExtent))
536   {
537     outerSolid->CalculateExtent(faxis,noLimits,origin,fminExtent,fmaxExtent);
538   }
539 
540   // Calculate equivalent nos
541   //
542   BuildEquivalentSliceNos();
543   CollectEquivalentNodes();      // Collect common nodes
544   RefineNodes(pVolume, pLimits); // Refine nodes creating headers
545 
546   // No common headers can exist because collapsed by construction
547 }
548 
549 // ***************************************************************************
550 // Calculates and stores the minimum and maximum equivalent neighbour
551 // values for all slices at our level.
552 //
553 // Precondition: all slices are nodes.
554 // For each potential start of a group of equivalent nodes:
555 // o searches forwards in fslices to find group end
556 // o loops from start to end setting start and end slices.
557 // ***************************************************************************
558 //
559 void G4SmartVoxelHeader::BuildEquivalentSliceNos()
560 {
561   std::size_t sliceNo, minNo, maxNo, equivNo;
562   std::size_t maxNode = fslices.size();
563   G4SmartVoxelNode *startNode, *sampleNode;
564   for (sliceNo=0; sliceNo<maxNode; ++sliceNo)
565   {
566     minNo = sliceNo;
567 
568     // Get first node (see preconditions - will throw exception if a header)
569     //
570     startNode = fslices[minNo]->GetNode();
571 
572     // Find max equivalent
573     //
574     for (equivNo=minNo+1; equivNo<maxNode; ++equivNo)
575     {
576       sampleNode = fslices[equivNo]->GetNode();
577       if (!((*startNode) == (*sampleNode))) { break; }
578     }
579     maxNo = equivNo-1;
580     if (maxNo != minNo)
581     {
582       // Set min and max nos
583       //
584       for (equivNo=minNo; equivNo<=maxNo; ++equivNo)
585       {
586         sampleNode = fslices[equivNo]->GetNode();
587         sampleNode->SetMinEquivalentSliceNo((G4int)minNo);
588         sampleNode->SetMaxEquivalentSliceNo((G4int)maxNo);
589       }
590       // Advance outer loop to end of equivalent group
591       //
592       sliceNo = maxNo;
593     }
594   }
595 }
596 
597 // ***************************************************************************
598 // Collects common nodes at our level, deleting all but one to save
599 // memory, and adjusting stored slice pointers appropriately.
600 //
601 // Preconditions:
602 // o the slices have not previously be "collected"
603 // o all of the slices are nodes.
604 // ***************************************************************************
605 //
606 void G4SmartVoxelHeader::CollectEquivalentNodes()
607 {
608   std::size_t sliceNo, maxNo, equivNo;
609   std::size_t maxNode=fslices.size();
610   G4SmartVoxelNode* equivNode;
611   G4SmartVoxelProxy* equivProxy;
612 
613   for (sliceNo=0; sliceNo<maxNode; ++sliceNo)
614   {
615     equivProxy=fslices[sliceNo];
616 
617     // Assumption (see preconditions): all slices are nodes
618     //
619     equivNode = equivProxy->GetNode();
620     maxNo = equivNode->GetMaxEquivalentSliceNo();
621     if (maxNo != sliceNo)
622     {
623 #ifdef G4GEOMETRY_VOXELDEBUG
624       G4cout << "**** G4SmartVoxelHeader::CollectEquivalentNodes" << G4endl
625              << "     Collecting Nodes = " 
626              << sliceNo << " - " << maxNo << G4endl;
627 #endif
628       // Do collection between sliceNo and maxNo inclusive
629       //
630       for (equivNo=sliceNo+1; equivNo<=maxNo; ++equivNo)
631       {
632         delete fslices[equivNo]->GetNode();
633         delete fslices[equivNo];
634         fslices[equivNo] = equivProxy;
635       }
636       sliceNo = maxNo;
637     }
638   }
639 }
640 
641 // ***************************************************************************
642 // Collects common headers at our level, deleting all but one to save
643 // memory, and adjusting stored slice pointers appropriately.
644 // 
645 // Preconditions:
646 // o if a header forms part of a range of equivalent slices
647 //   (ie. GetMaxEquivalentSliceNo()>GetMinEquivalentSliceNo()),
648 //   it is assumed that all slices in the range are headers.
649 // o this will be true if a constant Expression is used to evaluate
650 //   when to refine nodes.
651 // ***************************************************************************
652 //
653 void G4SmartVoxelHeader::CollectEquivalentHeaders()
654 {
655   std::size_t sliceNo, maxNo, equivNo;
656   std::size_t maxNode = fslices.size();
657   G4SmartVoxelHeader *equivHeader, *sampleHeader;
658   G4SmartVoxelProxy *equivProxy;
659 
660   for (sliceNo=0; sliceNo<maxNode; ++sliceNo)
661   {
662     equivProxy = fslices[sliceNo];
663     if (equivProxy->IsHeader())
664     {
665       equivHeader = equivProxy->GetHeader();
666       maxNo = equivHeader->GetMaxEquivalentSliceNo();
667       if (maxNo != sliceNo)
668       {
669         // Attempt collection between sliceNo and maxNo inclusive:
670         // look for common headers. All slices between sliceNo and maxNo
671         // are guaranteed to be headers but may not have equal contents
672         //
673 #ifdef G4GEOMETRY_VOXELDEBUG
674         G4cout << "**** G4SmartVoxelHeader::CollectEquivalentHeaders" << G4endl
675                << "     Collecting Headers =";
676 #endif
677         for (equivNo=sliceNo+1; equivNo<=maxNo; ++equivNo)
678         {
679           sampleHeader = fslices[equivNo]->GetHeader();
680           if ( (*sampleHeader) == (*equivHeader) )
681           {
682 #ifdef G4GEOMETRY_VOXELDEBUG
683             G4cout << " " << equivNo;
684 #endif
685             // Delete sampleHeader + proxy and replace with equivHeader/Proxy
686             //
687             delete sampleHeader;
688             delete fslices[equivNo];
689             fslices[equivNo] = equivProxy;
690           }
691           else
692           {
693             // Not equal. Set this header to be
694             // the current header for comparisons
695             //
696             equivProxy  = fslices[equivNo];
697             equivHeader = equivProxy->GetHeader();
698           }
699 
700         }
701 #ifdef G4GEOMETRY_VOXELDEBUG
702         G4cout << G4endl;
703 #endif
704         // Skip past examined slices
705         //
706         sliceNo = maxNo;
707       }
708     }
709   }
710 }
711 
712 // ***************************************************************************
713 // Builds the nodes corresponding to slices between the specified limits
714 // and along the specified axis, using candidate volume no.s in the vector
715 // pCandidates. If the `daughters' are replicated volumes (ie. the logical
716 // volume has a single replicated/parameterised volume for a daughter)
717 // the candidate no.s are interpreted as PARAMETERISED volume no.s & 
718 // PARAMETERISATIONs are applied to compute transformations & solid
719 // dimensions appropriately. The volume must be parameterised - ie. has a
720 // parameterisation object & non-consuming) - in this case.
721 // 
722 // Returns pointer to built node "structure" (guaranteed non NULL) consisting
723 // of G4SmartVoxelNodeProxies referring to G4SmartVoxelNodes.
724 // ***************************************************************************
725 //
726 G4ProxyVector* G4SmartVoxelHeader::BuildNodes(G4LogicalVolume* pVolume,
727                                               G4VoxelLimits pLimits,
728                                         const G4VolumeNosVector* pCandidates,
729                                               EAxis pAxis)
730 {
731   G4double motherMinExtent= kInfinity, motherMaxExtent= -kInfinity,
732            targetMinExtent= kInfinity, targetMaxExtent= -kInfinity;
733   G4VPhysicalVolume* pDaughter = nullptr;
734   G4VPVParameterisation* pParam = nullptr;
735   G4VSolid *targetSolid;
736   G4AffineTransform targetTransform;
737   G4bool replicated;
738   std::size_t nCandidates = pCandidates->size();
739   std::size_t nVol, nNode, targetVolNo;
740   G4VoxelLimits noLimits;
741 
742 #ifdef G4GEOMETRY_VOXELDEBUG
743   G4cout << "**** G4SmartVoxelHeader::BuildNodes" << G4endl
744          << "     Limits = " << pLimits << G4endl
745          << "       Axis = " << pAxis << G4endl
746          << " Candidates = " << nCandidates << G4endl;
747 #endif
748 
749   // Compute extent of logical volume's solid along this axis
750   // NOTE: results stored locally and not preserved/reused
751   //
752   G4VSolid* outerSolid = pVolume->GetSolid();
753   const G4AffineTransform origin;
754   if( !outerSolid->CalculateExtent(pAxis, pLimits, origin,
755                                    motherMinExtent, motherMaxExtent) )
756   {
757     outerSolid->CalculateExtent(pAxis, noLimits, origin,
758                                 motherMinExtent, motherMaxExtent);
759   }
760   G4VolumeExtentVector minExtents(nCandidates,0.);
761   G4VolumeExtentVector maxExtents(nCandidates,0.);
762 
763   if ( (pVolume->GetNoDaughters() == 1)
764     && (pVolume->GetDaughter(0)->IsReplicated()) )
765   {
766     // Replication data not required: only parameterisation object 
767     // and volume no. List used
768     //
769     pDaughter = pVolume->GetDaughter(0);
770     pParam = pDaughter->GetParameterisation();
771     if (pParam == nullptr)
772     {
773       std::ostringstream message;
774       message << "PANIC! - Missing parameterisation." << G4endl
775               << "         Replicated volume with no parameterisation object !";
776       G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003",
777                   FatalException, message);
778       return nullptr;
779     }
780 
781     // Setup daughter's transformations
782     //
783     targetTransform = G4AffineTransform(pDaughter->GetRotation(),
784                                         pDaughter->GetTranslation());
785     replicated = true;
786   }
787     else
788   {
789     replicated = false;
790   }
791     
792   // Compute extents
793   //
794   for (nVol=0; nVol<nCandidates; ++nVol)
795   {
796     targetVolNo = (*pCandidates)[nVol];
797     if (!replicated)
798     {
799       pDaughter = pVolume->GetDaughter(targetVolNo);
800 
801       // Setup daughter's transformations
802       //
803       targetTransform = G4AffineTransform(pDaughter->GetRotation(),
804                                           pDaughter->GetTranslation());
805       // Get underlying (and setup) solid
806       //
807       targetSolid = pDaughter->GetLogicalVolume()->GetSolid();
808     }
809     else
810     {
811       // Find  solid
812       //
813       targetSolid = pParam->ComputeSolid((G4int)targetVolNo,pDaughter);
814 
815       // Setup solid
816       //
817       targetSolid->ComputeDimensions(pParam,(G4int)targetVolNo,pDaughter);
818 
819       // Setup transform
820       //
821       pParam->ComputeTransformation((G4int)targetVolNo,pDaughter);
822       targetTransform = G4AffineTransform(pDaughter->GetRotation(),
823                                           pDaughter->GetTranslation());
824     }
825     // Calculate extents
826     //
827     if(!targetSolid->CalculateExtent(pAxis, pLimits, targetTransform,
828                                      targetMinExtent, targetMaxExtent))
829     {
830       targetSolid->CalculateExtent(pAxis, noLimits, targetTransform,
831                                    targetMinExtent,targetMaxExtent);
832     }
833     minExtents[nVol] = targetMinExtent;
834     maxExtents[nVol] = targetMaxExtent;
835 
836 #ifdef G4GEOMETRY_VOXELDEBUG
837    G4cout << "---------------------------------------------------" << G4endl
838           << "     Volume = " << pDaughter->GetName() << G4endl
839           << " Min Extent = " << targetMinExtent << G4endl
840           << " Max Extent = " << targetMaxExtent << G4endl
841           << "---------------------------------------------------" << G4endl;
842 #endif
843 
844     // Check not entirely outside mother when processing toplevel nodes
845     //
846     if ( (!pLimits.IsLimited()) && ((targetMaxExtent<=motherMinExtent)
847                                   ||(targetMinExtent>=motherMaxExtent)) )
848     {
849       std::ostringstream message;
850       message << "PANIC! - Overlapping daughter with mother volume." << G4endl
851               << "         Daughter physical volume "
852               << pDaughter->GetName() << G4endl
853               << "         is entirely outside mother logical volume "
854               << pVolume->GetName() << " !!";
855       G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0002",
856                   FatalException, message);
857     }
858 
859 #ifdef G4GEOMETRY_VOXELDEBUG
860     // Check for straddling volumes when debugging.
861     // If a volume is >kStraddlePercent percent over the mother
862     // boundary, print a warning.
863     //
864     if (!pLimits.IsLimited())
865     {
866       G4double width;
867       G4int kStraddlePercent = 5;
868       width = maxExtents[nVol]-minExtents[nVol];
869       if ( (((motherMinExtent-minExtents[nVol])*100/width) > kStraddlePercent)
870          ||(((maxExtents[nVol]-motherMaxExtent)*100/width) > kStraddlePercent) )
871       {
872         G4cout << "**** G4SmartVoxelHeader::BuildNodes" << G4endl
873                << "     WARNING : Daughter # " << nVol
874                << " name = " << pDaughter->GetName() << G4endl
875                << "     Crosses mother boundary of logical volume, name = " 
876                << pVolume->GetName() << G4endl
877                << "     by more than " << kStraddlePercent 
878                << "%" << G4endl;
879       }
880     }
881 #endif
882   }
883 
884   // Extents of all daughters known
885 
886   // Calculate minimum slice width, only including volumes inside the limits
887   //
888   G4double minWidth = kInfinity;
889   G4double currentWidth;
890   for (nVol=0; nVol<nCandidates; ++nVol)
891   {
892     // currentWidth should -always- be a positive value. Inaccurate computed extent
893     // from the solid or situations of malformed geometries (overlaps) may lead to
894     // negative values and therefore unpredictable crashes !
895     //
896     currentWidth = std::abs(maxExtents[nVol]-minExtents[nVol]);
897     if ( (currentWidth<minWidth)
898       && (maxExtents[nVol]>=pLimits.GetMinExtent(pAxis))
899       && (minExtents[nVol]<=pLimits.GetMaxExtent(pAxis)) )
900     {
901       minWidth = currentWidth;
902     }
903   }
904 
905   // No. of Nodes formula - nearest integer to
906   // mother width/half min daughter width +1
907   //
908   G4double noNodesExactD = ((motherMaxExtent-motherMinExtent)*2.0/minWidth)+1.0;
909 
910   // Compare with "smartless quality", i.e. the average number of slices
911   // used per contained volume.
912   //
913   G4double smartlessComputed = noNodesExactD / nCandidates;
914   G4double smartlessUser = pVolume->GetSmartless();
915   G4double smartless = (smartlessComputed <= smartlessUser)
916                        ? smartlessComputed : smartlessUser;
917   G4double noNodesSmart = smartless*nCandidates;
918   auto     noNodesExactI = G4int(noNodesSmart);
919   G4long   noNodes = ((noNodesSmart-noNodesExactI)>=0.5)
920                      ? noNodesExactI+1 : noNodesExactI;
921   if( noNodes == 0 ) { noNodes=1; }
922 
923 #ifdef G4GEOMETRY_VOXELDEBUG
924   G4cout << "     Smartless computed = " << smartlessComputed << G4endl
925          << "     Smartless volume = " << smartlessUser
926          << " => # Smartless = " << smartless << G4endl;
927   G4cout << "     Min width = " << minWidth
928          << " => # Nodes = " << noNodes << G4endl;
929 #endif
930 
931   if (noNodes>kMaxVoxelNodes)
932   {
933     noNodes=kMaxVoxelNodes;
934 #ifdef G4GEOMETRY_VOXELDEBUG
935     G4cout << "     Nodes Clipped to = " << kMaxVoxelNodes << G4endl;
936 #endif   
937   }
938   G4double nodeWidth = (motherMaxExtent-motherMinExtent)/noNodes;
939 
940   // Create G4VoxelNodes. Will Add proxies before setting fslices
941   //
942   auto* nodeList = new G4NodeVector();
943   if (nodeList == nullptr)
944   {
945     G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003",
946                 FatalException, "NodeList allocation error.");
947     return nullptr;
948   }
949   nodeList->reserve(noNodes);
950 
951   for (nNode=0; G4long(nNode)<noNodes; ++nNode)
952   {
953     G4SmartVoxelNode *pNode;
954     pNode = new G4SmartVoxelNode((G4int)nNode);
955     if (pNode == nullptr)
956     {
957       G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003",
958                   FatalException, "Node allocation error.");
959       return nullptr;
960     }
961     nodeList->push_back(pNode);
962   }
963 
964   // All nodes created (empty)
965 
966   // Fill nodes: Step through extent lists
967   //
968   for (nVol=0; nVol<nCandidates; ++nVol)
969   {
970     G4long nodeNo, minContainingNode, maxContainingNode;
971     minContainingNode = (minExtents[nVol]-motherMinExtent)/nodeWidth;
972     maxContainingNode = (maxExtents[nVol]-motherMinExtent)/nodeWidth;
973 
974     // Only add nodes that are inside the limits of the axis
975     //
976     if ( (maxContainingNode>=0) && (minContainingNode<noNodes) )
977     {
978       // If max extent is on max boundary => maxContainingNode=noNodes:
979       // should be one less as nodeList has noNodes entries
980       //
981       if (maxContainingNode>=noNodes)
982       {
983         maxContainingNode = noNodes-1;
984       }
985       //
986       // Protection against protruding volumes
987       //
988       if (minContainingNode<0)
989       {
990         minContainingNode = 0;
991       }
992       for (nodeNo=minContainingNode; nodeNo<=maxContainingNode; ++nodeNo)
993       {
994         (*nodeList)[nodeNo]->Insert((*pCandidates)[nVol]);
995       }
996     }
997   }
998 
999   // All nodes filled
1000 
1001   // Create proxy List : caller has deletion responsibility
1002   // (but we must delete nodeList *itself* - not the contents)
1003   //
1004   auto* proxyList = new G4ProxyVector();
1005   if (proxyList == nullptr)
1006   {
1007     G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003",
1008                 FatalException, "Proxy list allocation error.");
1009     return nullptr;
1010   }
1011   proxyList->reserve(noNodes);
1012 
1013   //
1014   // Fill proxy List
1015   //
1016   for (nNode=0; G4long(nNode)<noNodes; ++nNode)
1017   {
1018     // Get rid of possible excess capacity in the internal node vector
1019     //
1020     ((*nodeList)[nNode])->Shrink();
1021     auto* pProxyNode = new G4SmartVoxelProxy((*nodeList)[nNode]);
1022     if (pProxyNode == nullptr)
1023     {
1024       G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003",
1025                   FatalException, "Proxy node allocation failed.");
1026       return nullptr;
1027     }
1028     proxyList->push_back(pProxyNode);
1029   }
1030   delete nodeList;
1031   return proxyList;
1032 }
1033 
1034 // ***************************************************************************
1035 // Calculate a "quality value" for the specified vector of voxels.
1036 // The value returned should be >0 and such that the smaller the number
1037 // the higher the quality of the slice.
1038 //
1039 // Preconditions: pSlice must consist of G4SmartVoxelNodeProxies only
1040 // Process:
1041 // o Examine each node in turn, summing:
1042 //      no. of non-empty nodes
1043 //      no. of volumes in each node
1044 // o Calculate Quality=sigma(volumes in nod)/(no. of non-empty nodes)
1045 //      if all nodes empty, return kInfinity
1046 // o Call G4Exception on finding a G4SmartVoxelHeaderProxy
1047 // ***************************************************************************
1048 //
1049 G4double G4SmartVoxelHeader::CalculateQuality(G4ProxyVector *pSlice)
1050 {
1051   G4double quality;
1052   std::size_t nNodes = pSlice->size();
1053   std::size_t noContained, maxContained=0, sumContained=0, sumNonEmptyNodes=0;
1054   G4SmartVoxelNode *node;
1055 
1056   for (std::size_t i=0; i<nNodes; ++i)
1057   {
1058     if ((*pSlice)[i]->IsNode())
1059     {
1060       // Definitely a node. Add info to running totals
1061       //
1062       node = (*pSlice)[i]->GetNode();
1063       noContained = node->GetNoContained();
1064       if (noContained != 0)
1065       {
1066         ++sumNonEmptyNodes;
1067         sumContained += noContained;
1068         //
1069         // Calc maxContained for statistics
1070         //
1071         if (noContained>maxContained)
1072         {
1073           maxContained = noContained;
1074         }
1075       }
1076     }
1077     else
1078     {
1079       G4Exception("G4SmartVoxelHeader::CalculateQuality()", "GeomMgt0001",
1080                   FatalException, "Not applicable to replicated volumes.");
1081     }
1082   }
1083 
1084   // Calculate quality with protection against no non-empty nodes
1085   //
1086   if (sumNonEmptyNodes != 0)
1087   {
1088     quality = sumContained/sumNonEmptyNodes;
1089   }
1090   else
1091   {
1092     quality = kInfinity;
1093   }
1094 
1095 #ifdef G4GEOMETRY_VOXELDEBUG
1096   G4cout << "**** G4SmartVoxelHeader::CalculateQuality" << G4endl
1097          << "     Quality = " << quality << G4endl
1098          << "     Nodes = " << nNodes 
1099          << " of which " << sumNonEmptyNodes << " non empty" << G4endl
1100          << "     Max Contained = " << maxContained << G4endl;
1101 #endif
1102 
1103   return quality;
1104 }
1105 
1106 // ***************************************************************************
1107 // Examined each contained node, refines (creates a replacement additional
1108 // dimension of voxels) when there is more than one voxel in the slice.
1109 // Does not refine further if already limited in two dimensions (=> this
1110 // is the third level of limits)
1111 //
1112 // Preconditions: slices (nodes) have been built.
1113 // ***************************************************************************
1114 //
1115 void G4SmartVoxelHeader::RefineNodes(G4LogicalVolume* pVolume,
1116                                      G4VoxelLimits pLimits)
1117 {
1118   std::size_t refinedDepth=0, minVolumes;
1119   std::size_t maxNode = fslices.size();
1120 
1121   if (pLimits.IsXLimited()) 
1122   {
1123     ++refinedDepth;
1124   }
1125   if (pLimits.IsYLimited()) 
1126   {
1127     ++refinedDepth;
1128   }
1129   if (pLimits.IsZLimited()) 
1130   {
1131     ++refinedDepth;
1132   }
1133 
1134   // Calculate minimum number of volumes necessary to refine
1135   //
1136   switch (refinedDepth)
1137   {
1138     case 0:
1139       minVolumes=kMinVoxelVolumesLevel2;
1140       break;
1141     case 1:
1142       minVolumes=kMinVoxelVolumesLevel3;
1143       break;
1144     default:
1145       minVolumes=10000;   // catch refinedDepth=3 and errors
1146       break;
1147   }
1148 
1149   if (refinedDepth<2)
1150   {
1151     std::size_t targetNo, noContainedDaughters, minNo, maxNo, replaceNo, i;
1152     G4double sliceWidth = (fmaxExtent-fminExtent)/maxNode;
1153     G4VoxelLimits newLimits;
1154     G4SmartVoxelNode* targetNode;
1155     G4SmartVoxelProxy* targetNodeProxy;
1156     G4SmartVoxelHeader* replaceHeader;
1157     G4SmartVoxelProxy* replaceHeaderProxy;
1158     G4VolumeNosVector* targetList;
1159     G4SmartVoxelProxy* lastProxy;
1160       
1161     for (targetNo=0; targetNo<maxNode; ++targetNo)
1162     {
1163       // Assume all slices are nodes (see preconditions)
1164       //
1165       targetNodeProxy = fslices[targetNo];
1166       targetNode = targetNodeProxy->GetNode();
1167 
1168       if (targetNode->GetNoContained() >= minVolumes)
1169       {
1170         noContainedDaughters = targetNode->GetNoContained();
1171         targetList = new G4VolumeNosVector();
1172         if (targetList == nullptr)
1173         {
1174           G4Exception("G4SmartVoxelHeader::RefineNodes()",
1175                       "GeomMgt0003", FatalException,
1176                       "Target volume node list allocation error.");
1177           return;
1178         }
1179         targetList->reserve(noContainedDaughters);
1180         for (i=0; i<noContainedDaughters; ++i)
1181         {
1182           targetList->push_back(targetNode->GetVolume((G4int)i));
1183         }
1184         minNo = targetNode->GetMinEquivalentSliceNo();
1185         maxNo = targetNode->GetMaxEquivalentSliceNo();
1186 
1187 #ifdef G4GEOMETRY_VOXELDEBUG
1188         G4cout << "**** G4SmartVoxelHeader::RefineNodes" << G4endl
1189                << "     Refining nodes " << minNo 
1190                << " - " << maxNo << " inclusive" << G4endl;
1191 #endif
1192         if (minNo > maxNo)    // Delete node and list to be replaced
1193         {                     // and avoid further action ...
1194           delete targetNode;
1195           delete targetList;
1196           return;
1197         }
1198 
1199         // Delete node proxies at start of collected sets of nodes/headers
1200         //
1201         lastProxy=nullptr;
1202         for (replaceNo=minNo; replaceNo<=maxNo; ++replaceNo)
1203         {
1204           if (lastProxy != fslices[replaceNo])
1205           {
1206             lastProxy=fslices[replaceNo];
1207             delete lastProxy;
1208           }
1209         }
1210         // Delete node to be replaced
1211         //
1212         delete targetNode;
1213 
1214         // Create new headers + proxies and replace in fslices
1215         //
1216         newLimits = pLimits;
1217         newLimits.AddLimit(faxis,fminExtent+sliceWidth*minNo,
1218                            fminExtent+sliceWidth*(maxNo+1));
1219         replaceHeader = new G4SmartVoxelHeader(pVolume,newLimits,
1220                                                targetList,(G4int)replaceNo);
1221         if (replaceHeader == nullptr)
1222         {
1223           G4Exception("G4SmartVoxelHeader::RefineNodes()", "GeomMgt0003",
1224                       FatalException, "Refined VoxelHeader allocation error.");
1225           return;
1226         }
1227         replaceHeader->SetMinEquivalentSliceNo((G4int)minNo);
1228         replaceHeader->SetMaxEquivalentSliceNo((G4int)maxNo);
1229         replaceHeaderProxy = new G4SmartVoxelProxy(replaceHeader);
1230         if (replaceHeaderProxy == nullptr)
1231         {
1232           G4Exception("G4SmartVoxelHeader::RefineNodes()", "GeomMgt0003",
1233                       FatalException, "Refined VoxelProxy allocation error.");
1234           return;
1235         }
1236         for (replaceNo=minNo; replaceNo<=maxNo; ++replaceNo)
1237         {
1238           fslices[replaceNo] = replaceHeaderProxy;
1239         }
1240         // Finished replacing current `equivalent' group
1241         //
1242         delete targetList;
1243         targetNo=maxNo;
1244       }
1245     }
1246   }
1247 }
1248 
1249 // ***************************************************************************
1250 // Returns true if all slices have equal contents.
1251 // Preconditions: all equal slices have been collected.
1252 // Procedure:
1253 // o checks all slice proxy pointers are equal
1254 // o returns true if only one slice or all slice proxies pointers equal.
1255 // ***************************************************************************
1256 //
1257 G4bool G4SmartVoxelHeader::AllSlicesEqual() const
1258 {
1259   std::size_t noSlices = fslices.size();
1260   G4SmartVoxelProxy* refProxy;
1261 
1262   if (noSlices>1)
1263   {
1264     refProxy=fslices[0];
1265     for (std::size_t i=1; i<noSlices; ++i)
1266     {
1267       if (refProxy!=fslices[i])
1268       {
1269         return false;
1270       }
1271     }
1272   }
1273   return true;
1274 }
1275 
1276 // ***************************************************************************
1277 // Streaming operator for debugging.
1278 // ***************************************************************************
1279 //
1280 std::ostream& operator << (std::ostream& os, const G4SmartVoxelHeader& h)
1281 {
1282   os << "Axis = " << G4int(h.faxis) << G4endl;
1283   G4SmartVoxelProxy *collectNode=nullptr, *collectHead=nullptr;
1284   std::size_t collectNodeNo = 0;
1285   std::size_t collectHeadNo = 0;
1286   std::size_t i, j;
1287   G4bool haveHeaders = false;
1288 
1289   for (i=0; i<h.fslices.size(); ++i)
1290   {
1291     os << "Slice #" << i << " = ";
1292     if (h.fslices[i]->IsNode())
1293     {
1294       if (h.fslices[i]!=collectNode)
1295       {
1296         os << "{";
1297         for (std::size_t k=0; k<h.fslices[i]->GetNode()->GetNoContained(); ++k)
1298         {
1299           os << " " << h.fslices[i]->GetNode()->GetVolume((G4int)k);
1300         }
1301         os << " }" << G4endl;
1302         collectNode = h.fslices[i];
1303         collectNodeNo = i;
1304       }
1305       else
1306       {
1307         os << "As slice #" << collectNodeNo << G4endl;
1308       }
1309     }
1310     else
1311     {
1312       haveHeaders=true;
1313       if (h.fslices[i] != collectHead)
1314       {
1315         os << "Header" << G4endl;
1316         collectHead = h.fslices[i];
1317         collectHeadNo = i;
1318       }
1319       else
1320       {
1321         os << "As slice #" << collectHeadNo << G4endl;
1322       }
1323     }
1324   }
1325 
1326   if (haveHeaders)
1327   {
1328     collectHead=nullptr;
1329     for (j=0; j<h.fslices.size(); ++j)
1330     {
1331       if (h.fslices[j]->IsHeader())
1332       {
1333         os << "Header at Slice #" << j << " = ";
1334         if (h.fslices[j] != collectHead)
1335         {
1336           os << G4endl 
1337              << (*(h.fslices[j]->GetHeader()));
1338           collectHead = h.fslices[j];
1339           collectHeadNo = j;
1340         }
1341         else
1342         {
1343           os << "As slice #" << collectHeadNo << G4endl;
1344         }
1345       }
1346     }
1347   }
1348   return os;
1349 }
1350