Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4RepleteEofM.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4RepleteEofM implementation
 27 //
 28 // Created: P.Gumplinger, 08.04.2013
 29 // -------------------------------------------------------------------
 30 
 31 #include "G4RepleteEofM.hh"
 32 #include "G4Field.hh"
 33 #include "G4ThreeVector.hh"
 34 #include "globals.hh"
 35 
 36 #include "G4PhysicalConstants.hh"
 37 #include "G4SystemOfUnits.hh"
 38 
 39 
 40 G4RepleteEofM::G4RepleteEofM( G4Field* field, G4int nvar )
 41           : G4EquationOfMotion( field ), fNvar(nvar)
 42 {
 43    fGfield = field->IsGravityActive();
 44 }
 45 
 46 G4RepleteEofM::~G4RepleteEofM() = default;
 47 
 48 void  
 49 G4RepleteEofM::SetChargeMomentumMass(G4ChargeState particleCharge, // e+ units
 50                               G4double MomentumXc,
 51                               G4double particleMass)
 52 {
 53    charge    = particleCharge.GetCharge();
 54    mass      = particleMass;
 55    magMoment = particleCharge.GetMagneticDipoleMoment();
 56    spin      = particleCharge.GetSpin();
 57 
 58    ElectroMagCof =  eplus*charge*c_light;
 59    omegac = (eplus/mass)*c_light;
 60 
 61    G4double muB = 0.5*eplus*hbar_Planck/(mass/c_squared);
 62 
 63    G4double g_BMT;
 64    if ( spin != 0. )
 65    {
 66      g_BMT = (std::abs(magMoment)/muB)/spin;
 67    }
 68    else
 69    {
 70      g_BMT = 2.;
 71    }
 72 
 73    anomaly = (g_BMT - 2.)/2.;
 74 
 75    G4double E = std::sqrt(sqr(MomentumXc)+sqr(mass));
 76    beta  = MomentumXc/E;
 77    gamma = E/mass;
 78 }
 79 
 80 void
 81 G4RepleteEofM::EvaluateRhsGivenB( const G4double y[],
 82                                   const G4double Field[],
 83                                         G4double dydx[] ) const
 84 {
 85 
 86    // Components of y:
 87    //    0-2 dr/ds,
 88    //    3-5 dp/ds - momentum derivatives
 89    //    9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives
 90    //
 91    // The BMT equation, following J.D.Jackson, Classical
 92    // Electrodynamics, Second Edition,
 93    // dS/dt = (e/mc) S \cross
 94    //              [ (g/2-1 +1/\gamma) B
 95    //               -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta
 96    //               -(g/2-\gamma/(\gamma+1) \beta \cross E ]
 97    // where
 98    // S = \vec{s}, where S^2 = 1
 99    // B = \vec{B}
100    // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1
101    // E = \vec{E}
102    //
103    // Field[0,1,2] are the magnetic field components
104    // Field[3,4,5] are the electric field components
105    // Field[6,7,8] are the gravity  field components
106    // The Field[] array may trivially be extended to 18 components
107    // Field[ 9] == dB_x/dx; Field[10] == dB_y/dx; Field[11] == dB_z/dx
108    // Field[12] == dB_x/dy; Field[13] == dB_y/dy; Field[14] == dB_z/dy
109    // Field[15] == dB_x/dz; Field[16] == dB_y/dz; Field[17] == dB_z/dz
110 
111    G4double momentum_mag_square = y[3]*y[3] + y[4]*y[4] + y[5]*y[5];
112    G4double inv_momentum_magnitude = 1.0 / std::sqrt( momentum_mag_square );
113 
114    G4double Energy = std::sqrt(momentum_mag_square + mass*mass);
115    G4double inverse_velocity = Energy*inv_momentum_magnitude/c_light;
116 
117    G4double cof1 = ElectroMagCof*inv_momentum_magnitude;
118    G4double cof2 = Energy/c_light;
119    G4double cof3 = inv_momentum_magnitude*mass;
120 
121    dydx[0] = y[3]*inv_momentum_magnitude;       //  (d/ds)x = Vx/V
122    dydx[1] = y[4]*inv_momentum_magnitude;       //  (d/ds)y = Vy/V
123    dydx[2] = y[5]*inv_momentum_magnitude;       //  (d/ds)z = Vz/V
124 
125    dydx[3] = 0.;
126    dydx[4] = 0.;
127    dydx[5] = 0.;
128 
129    G4double field[18] = {0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.};
130 
131    field[0] = Field[0];
132    field[1] = Field[1];
133    field[2] = Field[2];
134 
135    // Force due to B field - Field[0,1,2]
136 
137    if (fBfield)
138    {
139       if (charge != 0.)
140       {
141          dydx[3] += cof1*(y[4]*field[2] - y[5]*field[1]);
142          dydx[4] += cof1*(y[5]*field[0] - y[3]*field[2]);
143          dydx[5] += cof1*(y[3]*field[1] - y[4]*field[0]);
144       }
145    }
146 
147    // add force due to E field - Field[3,4,5]
148 
149    if (!fBfield)
150    {
151       field[3] = Field[0];
152       field[4] = Field[1];
153       field[5] = Field[2];
154    }
155    else
156    {
157       field[3] = Field[3];
158       field[4] = Field[4];
159       field[5] = Field[5];
160    }
161 
162    if (fEfield)
163    {
164       if (charge != 0.)
165       {
166          dydx[3] += cof1*cof2*field[3];
167          dydx[4] += cof1*cof2*field[4];
168          dydx[5] += cof1*cof2*field[5];
169       }
170    }
171 
172    // add force due to gravity field - Field[6,7,8]
173 
174    if (!fBfield && !fEfield)
175    {
176       field[6] = Field[0];
177       field[7] = Field[1];
178       field[8] = Field[2];
179    }
180    else
181    {
182       field[6] = Field[6];
183       field[7] = Field[7];
184       field[8] = Field[8];
185    }
186 
187    if (fGfield)
188    {
189       if (mass > 0.)
190       {
191          dydx[3] += field[6]*cof2*cof3/c_light;
192          dydx[4] += field[7]*cof2*cof3/c_light;
193          dydx[5] += field[8]*cof2*cof3/c_light;
194       }
195    }
196 
197    // add force
198 
199    if (!fBfield && !fEfield && !fGfield)
200    {
201       field[9]  = Field[0];
202       field[10] = Field[1];
203       field[11] = Field[2];
204       field[12] = Field[3];
205       field[13] = Field[4];
206       field[14] = Field[5];
207       field[15] = Field[6];
208       field[16] = Field[7];
209       field[17] = Field[8];
210    }
211    else
212    {
213       field[9]  = Field[9];
214       field[10] = Field[10];
215       field[11] = Field[11];
216       field[12] = Field[12];
217       field[13] = Field[13];
218       field[14] = Field[14];
219       field[15] = Field[15];
220       field[16] = Field[16];
221       field[17] = Field[17];
222    }
223 
224    if (fgradB)
225    {
226       if (magMoment != 0.)
227       {
228          dydx[3] += magMoment*(y[9]*field[ 9]+y[10]*field[10]+y[11]*field[11])
229                                                 *inv_momentum_magnitude*Energy;
230          dydx[4] += magMoment*(y[9]*field[12]+y[10]*field[13]+y[11]*field[14])
231                                                 *inv_momentum_magnitude*Energy;
232          dydx[5] += magMoment*(y[9]*field[15]+y[10]*field[16]+y[11]*field[17])
233                                                 *inv_momentum_magnitude*Energy;
234       }
235    }
236 
237    dydx[6] = 0.; // not used
238 
239    // Lab Time of flight
240    //
241    dydx[7] = inverse_velocity;
242 
243    if (fNvar == 12)
244    {
245       dydx[ 8] = 0.; //not used
246 
247       dydx[ 9] = 0.;
248       dydx[10] = 0.;
249       dydx[11] = 0.;
250    }
251 
252    if (fSpin)
253    {
254       G4ThreeVector BField(0.,0.,0.);
255       if (fBfield)
256       {
257          G4ThreeVector F(field[0],field[1],field[2]);
258          BField = F;
259       }
260 
261       G4ThreeVector EField(0.,0.,0.);
262       if (fEfield)
263       {
264          G4ThreeVector F(field[3],field[4],field[5]);
265          EField = F;
266       }
267 
268       EField /= c_light;
269 
270       G4ThreeVector u(y[3], y[4], y[5]);
271       u *= inv_momentum_magnitude;
272 
273       G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
274       G4double ucb = (anomaly+1./gamma)/beta;
275       G4double uce = anomaly + 1./(gamma+1.);
276 
277       G4ThreeVector Spin(y[9],y[10],y[11]);
278 
279       G4double pcharge;
280       if (charge == 0.)
281       {
282         pcharge = 1.;
283       }
284       else
285       {
286         pcharge = charge;
287       }
288 
289       G4ThreeVector dSpin(0.,0.,0);
290       if (Spin.mag2() != 0.)
291       {
292          if (fBfield)
293          {
294            dSpin =
295              pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u)) );
296          }
297          if (fEfield)
298          {
299             dSpin -= pcharge*omegac*( uce*(u*(Spin*EField) - EField*(Spin*u)) );
300               // from Jackson
301               // -uce*Spin.cross(u.cross(EField)) );
302               // but this form has one less operation
303          }
304       }
305 
306       dydx[ 9] = dSpin.x();
307       dydx[10] = dSpin.y();
308       dydx[11] = dSpin.z();
309    }
310 
311    return;
312 }
313