Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4CashKarpRKF45 implementation 27 // 28 // The Cash-Karp Runge-Kutta-Fehlberg 4/5 method is an embedded fourth 29 // order method (giving fifth-order accuracy) for the solution of an ODE. 30 // Two different fourth order estimates are calculated; their difference 31 // gives an error estimate. [ref. Numerical Recipes in C, 2nd Edition] 32 // It is used to integrate the equations of the motion of a particle 33 // in a magnetic field. 34 // 35 // [ref. Numerical Recipes in C, 2nd Edition] 36 // 37 // Authors: J.Apostolakis, V.Grichine - 30.01.1997 38 // ------------------------------------------------------------------- 39 40 #include "G4CashKarpRKF45.hh" 41 #include "G4LineSection.hh" 42 43 ///////////////////////////////////////////////////////////////////// 44 // 45 // Constructor 46 // 47 G4CashKarpRKF45::G4CashKarpRKF45(G4EquationOfMotion *EqRhs, 48 G4int noIntegrationVariables, 49 G4bool primary) 50 : G4MagIntegratorStepper(EqRhs, noIntegrationVariables) 51 { 52 const G4int numberOfVariables = 53 std::max( noIntegrationVariables, 54 ( ( (noIntegrationVariables-1)/4 + 1 ) * 4 ) ); 55 // For better alignment with cache-line 56 57 ak2 = new G4double[numberOfVariables] ; 58 ak3 = new G4double[numberOfVariables] ; 59 ak4 = new G4double[numberOfVariables] ; 60 ak5 = new G4double[numberOfVariables] ; 61 ak6 = new G4double[numberOfVariables] ; 62 // ak7 = 0; 63 64 // Must ensure space extra 'state' variables exists - i.e. yIn[7] 65 const G4int numStateMax = std::max(GetNumberOfStateVariables(), 8); 66 const G4int numStateVars = std::max(noIntegrationVariables, 67 numStateMax ); 68 // GetNumberOfStateVariables() ); 69 70 yTemp = new G4double[numStateVars] ; 71 yIn = new G4double[numStateVars] ; 72 73 fLastInitialVector = new G4double[numStateVars] ; 74 fLastFinalVector = new G4double[numStateVars] ; 75 fLastDyDx = new G4double[numberOfVariables]; 76 77 fMidVector = new G4double[numStateVars]; 78 fMidError = new G4double[numStateVars]; 79 if( primary ) 80 { 81 fAuxStepper = new G4CashKarpRKF45(EqRhs, numberOfVariables, !primary); 82 } 83 } 84 85 ///////////////////////////////////////////////////////////////////// 86 // 87 // Destructor 88 // 89 G4CashKarpRKF45::~G4CashKarpRKF45() 90 { 91 delete [] ak2; 92 delete [] ak3; 93 delete [] ak4; 94 delete [] ak5; 95 delete [] ak6; 96 // delete [] ak7; 97 delete [] yTemp; 98 delete [] yIn; 99 100 delete [] fLastInitialVector; 101 delete [] fLastFinalVector; 102 delete [] fLastDyDx; 103 delete [] fMidVector; 104 delete [] fMidError; 105 106 delete fAuxStepper; 107 } 108 109 ////////////////////////////////////////////////////////////////////// 110 // 111 // Given values for n = 6 variables yIn[0,...,n-1] 112 // known at x, use the fifth-order Cash-Karp Runge- 113 // Kutta-Fehlberg-4-5 method to advance the solution over an interval 114 // Step and return the incremented variables as yOut[0,...,n-1]. Also 115 // return an estimate of the local truncation error yErr[] using the 116 // embedded 4th-order method. The user supplies routine 117 // RightHandSide(y,dydx), which returns derivatives dydx for y . 118 // 119 void 120 G4CashKarpRKF45::Stepper(const G4double yInput[], 121 const G4double dydx[], 122 G4double Step, 123 G4double yOut[], 124 G4double yErr[]) 125 { 126 // const G4int nvar = 6 ; 127 // const G4double a2 = 0.2 , a3 = 0.3 , a4 = 0.6 , a5 = 1.0 , a6 = 0.875; 128 G4int i; 129 130 const G4double b21 = 0.2 , 131 b31 = 3.0/40.0 , b32 = 9.0/40.0 , 132 b41 = 0.3 , b42 = -0.9 , b43 = 1.2 , 133 134 b51 = -11.0/54.0 , b52 = 2.5 , b53 = -70.0/27.0 , 135 b54 = 35.0/27.0 , 136 137 b61 = 1631.0/55296.0 , b62 = 175.0/512.0 , 138 b63 = 575.0/13824.0 , b64 = 44275.0/110592.0 , 139 b65 = 253.0/4096.0 , 140 141 c1 = 37.0/378.0 , c3 = 250.0/621.0 , c4 = 125.0/594.0 , 142 c6 = 512.0/1771.0 , dc5 = -277.0/14336.0 ; 143 144 const G4double dc1 = c1 - 2825.0/27648.0 , dc3 = c3 - 18575.0/48384.0 , 145 dc4 = c4 - 13525.0/55296.0 , dc6 = c6 - 0.25 ; 146 147 // Initialise time to t0, needed when it is not updated by the integration. 148 // [ Note: Only for time dependent fields (usually electric) 149 // is it neccessary to integrate the time.] 150 yOut[7] = yTemp[7] = yIn[7] = yInput[7]; 151 152 const G4int numberOfVariables= this->GetNumberOfVariables(); 153 // The number of variables to be integrated over 154 155 // Saving yInput because yInput and yOut can be aliases for same array 156 157 for(i=0; i<numberOfVariables; ++i) 158 { 159 yIn[i]=yInput[i]; 160 } 161 // RightHandSide(yIn, dydx) ; // 1st Step 162 163 for(i=0; i<numberOfVariables; ++i) 164 { 165 yTemp[i] = yIn[i] + b21*Step*dydx[i] ; 166 } 167 RightHandSide(yTemp, ak2) ; // 2nd Step 168 169 for(i=0; i<numberOfVariables; ++i) 170 { 171 yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b32*ak2[i]) ; 172 } 173 RightHandSide(yTemp, ak3) ; // 3rd Step 174 175 for(i=0; i<numberOfVariables; ++i) 176 { 177 yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b42*ak2[i] + b43*ak3[i]) ; 178 } 179 RightHandSide(yTemp, ak4) ; // 4th Step 180 181 for(i=0; i<numberOfVariables; ++i) 182 { 183 yTemp[i] = yIn[i] + Step*(b51*dydx[i] 184 + b52*ak2[i] + b53*ak3[i] + b54*ak4[i]) ; 185 } 186 RightHandSide(yTemp, ak5) ; // 5th Step 187 188 for(i=0; i<numberOfVariables; ++i) 189 { 190 yTemp[i] = yIn[i] + Step*(b61*dydx[i] 191 + b62*ak2[i] + b63*ak3[i] + b64*ak4[i] + b65*ak5[i]) ; 192 } 193 RightHandSide(yTemp, ak6) ; // 6th Step 194 195 for(i=0; i<numberOfVariables; ++i) 196 { 197 // Accumulate increments with proper weights 198 // 199 yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*ak3[i] + c4*ak4[i] + c6*ak6[i]) ; 200 201 // Estimate error as difference between 4th and 5th order methods 202 // 203 yErr[i] = Step*(dc1*dydx[i] 204 + dc3*ak3[i] + dc4*ak4[i] + dc5*ak5[i] + dc6*ak6[i]) ; 205 206 // Store Input and Final values, for possible use in calculating chord 207 // 208 fLastInitialVector[i] = yIn[i] ; 209 fLastFinalVector[i] = yOut[i]; 210 fLastDyDx[i] = dydx[i]; 211 } 212 // NormaliseTangentVector( yOut ); // Not wanted 213 214 fLastStepLength = Step; 215 216 return; 217 } 218 219 /////////////////////////////////////////////////////////////////////////////// 220 // 221 void 222 G4CashKarpRKF45::StepWithEst( const G4double*, 223 const G4double*, 224 G4double, 225 G4double*, 226 G4double&, 227 G4double&, 228 const G4double*, 229 G4double* ) 230 { 231 G4Exception("G4CashKarpRKF45::StepWithEst()", "GeomField0001", 232 FatalException, "Method no longer used."); 233 return ; 234 } 235 236 ///////////////////////////////////////////////////////////////// 237 // 238 G4double G4CashKarpRKF45::DistChord() const 239 { 240 G4double distLine, distChord; 241 G4ThreeVector initialPoint, finalPoint, midPoint; 242 243 // Store last initial and final points 244 // (they will be overwritten in self-Stepper call!) 245 // 246 initialPoint = G4ThreeVector( fLastInitialVector[0], 247 fLastInitialVector[1], fLastInitialVector[2]); 248 finalPoint = G4ThreeVector( fLastFinalVector[0], 249 fLastFinalVector[1], fLastFinalVector[2]); 250 251 // Do half a step using StepNoErr 252 // 253 fAuxStepper->Stepper( fLastInitialVector, fLastDyDx, 254 0.5 * fLastStepLength, fMidVector, fMidError ); 255 256 midPoint = G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2]); 257 258 // Use stored values of Initial and Endpoint + new Midpoint to evaluate 259 // distance of Chord 260 // 261 if (initialPoint != finalPoint) 262 { 263 distLine = G4LineSection::Distline( midPoint, initialPoint, finalPoint ); 264 distChord = distLine; 265 } 266 else 267 { 268 distChord = (midPoint-initialPoint).mag(); 269 } 270 return distChord; 271 } 272