Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/radioactivedecay/Activation/src/Run.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 /// \file Run.cc
 27 /// \brief Implementation of the Run class
 28 //
 29 //
 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32 
 33 #include "Run.hh"
 34 
 35 #include "DetectorConstruction.hh"
 36 #include "HistoManager.hh"
 37 #include "PrimaryGeneratorAction.hh"
 38 
 39 #include "G4AutoLock.hh"
 40 #include "G4SystemOfUnits.hh"
 41 #include "G4Threading.hh"
 42 #include "G4UnitsTable.hh"
 43 
 44 // mutex in a file scope
 45 
 46 namespace
 47 {
 48 // Mutex to lock updating the global ion map
 49 G4Mutex ionIdMapMutex = G4MUTEX_INITIALIZER;
 50 }  // namespace
 51 
 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 53 
 54 std::map<G4String, G4int> Run::fgIonMap;
 55 G4int Run::fgIonId = kMaxHisto1;
 56 
 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 58 
 59 Run::Run(DetectorConstruction* det) : fDetector(det) {}
 60 
 61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 62 
 63 void Run::Merge(std::map<G4String, ParticleData>& destinationMap,
 64                 const std::map<G4String, ParticleData>& sourceMap) const
 65 {
 66   for (const auto& particleData : sourceMap) {
 67     G4String name = particleData.first;
 68     const ParticleData& localData = particleData.second;
 69     if (destinationMap.find(name) == destinationMap.end()) {
 70       destinationMap[name] = ParticleData(localData.fCount, localData.fEmean, localData.fEmin,
 71                                           localData.fEmax, localData.fTmean);
 72     }
 73     else {
 74       ParticleData& data = destinationMap[name];
 75       data.fCount += localData.fCount;
 76       data.fEmean += localData.fEmean;
 77       G4double emin = localData.fEmin;
 78       if (emin < data.fEmin) data.fEmin = emin;
 79       G4double emax = localData.fEmax;
 80       if (emax > data.fEmax) data.fEmax = emax;
 81       data.fTmean = localData.fTmean;
 82     }
 83   }
 84 }
 85 
 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 87 
 88 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy)
 89 {
 90   fParticle = particle;
 91   fEkin = energy;
 92 }
 93 
 94 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 95 
 96 void Run::CountProcesses(const G4VProcess* process)
 97 {
 98   if (process == nullptr) return;
 99   G4String procName = process->GetProcessName();
100   std::map<G4String, G4int>::iterator it = fProcCounter.find(procName);
101   if (it == fProcCounter.end()) {
102     fProcCounter[procName] = 1;
103   }
104   else {
105     fProcCounter[procName]++;
106   }
107 }
108 
109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
110 
111 void Run::ParticleCount(G4String name, G4double Ekin, G4double meanLife)
112 {
113   std::map<G4String, ParticleData>::iterator it = fParticleDataMap1.find(name);
114   if (it == fParticleDataMap1.end()) {
115     fParticleDataMap1[name] = ParticleData(1, Ekin, Ekin, Ekin, meanLife);
116   }
117   else {
118     ParticleData& data = it->second;
119     data.fCount++;
120     data.fEmean += Ekin;
121     // update min max
122     G4double emin = data.fEmin;
123     if (Ekin < emin) data.fEmin = Ekin;
124     G4double emax = data.fEmax;
125     if (Ekin > emax) data.fEmax = Ekin;
126     data.fTmean = meanLife;
127   }
128 }
129 
130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
131 
132 void Run::AddEdep(G4double edep)
133 {
134   fEnergyDeposit += edep;
135   fEnergyDeposit2 += edep * edep;
136 }
137 
138 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
139 
140 void Run::AddEflow(G4double eflow)
141 {
142   fEnergyFlow += eflow;
143   fEnergyFlow2 += eflow * eflow;
144 }
145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
146 
147 void Run::ParticleFlux(G4String name, G4double Ekin)
148 {
149   std::map<G4String, ParticleData>::iterator it = fParticleDataMap2.find(name);
150   if (it == fParticleDataMap2.end()) {
151     fParticleDataMap2[name] = ParticleData(1, Ekin, Ekin, Ekin, -1 * ns);
152   }
153   else {
154     ParticleData& data = it->second;
155     data.fCount++;
156     data.fEmean += Ekin;
157     // update min max
158     G4double emin = data.fEmin;
159     if (Ekin < emin) data.fEmin = Ekin;
160     G4double emax = data.fEmax;
161     if (Ekin > emax) data.fEmax = Ekin;
162     data.fTmean = -1 * ns;
163   }
164 }
165 
166 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
167 
168 G4int Run::GetIonId(G4String ionName)
169 {
170   G4AutoLock lock(&ionIdMapMutex);
171   // updating the global ion map needs to be locked
172 
173   std::map<G4String, G4int>::const_iterator it = fgIonMap.find(ionName);
174   if (it == fgIonMap.end()) {
175     fgIonMap[ionName] = fgIonId;
176     if (fgIonId < (kMaxHisto2 - 1)) fgIonId++;
177   }
178   return fgIonMap[ionName];
179 }
180 
181 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
182 
183 void Run::Merge(const G4Run* run)
184 {
185   const Run* localRun = static_cast<const Run*>(run);
186 
187   // primary particle info
188   //
189   fParticle = localRun->fParticle;
190   fEkin = localRun->fEkin;
191 
192   // accumulate sums
193   //
194   fEnergyDeposit += localRun->fEnergyDeposit;
195   fEnergyDeposit2 += localRun->fEnergyDeposit2;
196   fEnergyFlow += localRun->fEnergyFlow;
197   fEnergyFlow2 += localRun->fEnergyFlow2;
198 
199   // map: processes count
200   for (const auto& procCounter : localRun->fProcCounter) {
201     G4String procName = procCounter.first;
202     G4int localCount = procCounter.second;
203     if (fProcCounter.find(procName) == fProcCounter.end()) {
204       fProcCounter[procName] = localCount;
205     }
206     else {
207       fProcCounter[procName] += localCount;
208     }
209   }
210 
211   // map: created particles count
212   Merge(fParticleDataMap1, localRun->fParticleDataMap1);
213 
214   // map: particles flux count
215   Merge(fParticleDataMap2, localRun->fParticleDataMap2);
216 
217   G4Run::Merge(run);
218 }
219 
220 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
221 
222 void Run::EndOfRun()
223 {
224   G4int prec = 5, wid = prec + 2;
225   G4int dfprec = G4cout.precision(prec);
226 
227   // run condition
228   //
229   G4Material* material = fDetector->GetAbsorMaterial();
230   G4double density = material->GetDensity();
231 
232   G4String Particle = fParticle->GetParticleName();
233   G4cout << "\n The run is " << numberOfEvent << " " << Particle << " of "
234          << G4BestUnit(fEkin, "Energy") << " through "
235          << G4BestUnit(fDetector->GetAbsorThickness(), "Length") << " of " << material->GetName()
236          << " (density: " << G4BestUnit(density, "Volumic Mass") << ")" << G4endl;
237 
238   if (numberOfEvent == 0) {
239     G4cout.precision(dfprec);
240     return;
241   }
242 
243   // frequency of processes
244   //
245   G4cout << "\n Process calls frequency :" << G4endl;
246   G4int index = 0;
247   for (const auto& procCounter : fProcCounter) {
248     G4String procName = procCounter.first;
249     G4int count = procCounter.second;
250     G4String space = " ";
251     if (++index % 3 == 0) space = "\n";
252     G4cout << " " << std::setw(20) << procName << "=" << std::setw(7) << count << space;
253   }
254   G4cout << G4endl;
255 
256   // particles count
257   //
258   G4cout << "\n List of generated particles (with meanLife != 0):" << G4endl;
259 
260   for (const auto& particleData : fParticleDataMap1) {
261     G4String name = particleData.first;
262     ParticleData data = particleData.second;
263     G4int count = data.fCount;
264     G4double eMean = data.fEmean / count;
265     G4double eMin = data.fEmin;
266     G4double eMax = data.fEmax;
267     G4double meanLife = data.fTmean;
268 
269     G4cout << "  " << std::setw(13) << name << ": " << std::setw(7) << count
270            << "  Emean = " << std::setw(wid) << G4BestUnit(eMean, "Energy") << "\t( "
271            << G4BestUnit(eMin, "Energy") << " --> " << G4BestUnit(eMax, "Energy") << ")";
272     if (meanLife >= 0.)
273       G4cout << "\tmean life = " << G4BestUnit(meanLife, "Time") << G4endl;
274     else
275       G4cout << "\tstable" << G4endl;
276   }
277 
278   // compute mean Energy deposited and rms
279   //
280   G4int TotNbofEvents = numberOfEvent;
281   fEnergyDeposit /= TotNbofEvents;
282   fEnergyDeposit2 /= TotNbofEvents;
283   G4double rmsEdep = fEnergyDeposit2 - fEnergyDeposit * fEnergyDeposit;
284   if (rmsEdep > 0.)
285     rmsEdep = std::sqrt(rmsEdep);
286   else
287     rmsEdep = 0.;
288 
289   G4cout << "\n Mean energy deposit per event = " << G4BestUnit(fEnergyDeposit, "Energy")
290          << ";  rms = " << G4BestUnit(rmsEdep, "Energy") << G4endl;
291 
292   // compute mean Energy flow and rms
293   //
294   fEnergyFlow /= TotNbofEvents;
295   fEnergyFlow2 /= TotNbofEvents;
296   G4double rmsEflow = fEnergyFlow2 - fEnergyFlow * fEnergyFlow;
297   if (rmsEflow > 0.)
298     rmsEflow = std::sqrt(rmsEflow);
299   else
300     rmsEflow = 0.;
301 
302   G4cout << " Mean energy flow per event    = " << G4BestUnit(fEnergyFlow, "Energy")
303          << ";  rms = " << G4BestUnit(rmsEflow, "Energy") << G4endl;
304 
305   // particles flux
306   //
307   G4cout << "\n List of particles emerging from the target :" << G4endl;
308 
309   for (const auto& particleData : fParticleDataMap2) {
310     G4String name = particleData.first;
311     ParticleData data = particleData.second;
312     G4int count = data.fCount;
313     G4double eMean = data.fEmean / count;
314     G4double eMin = data.fEmin;
315     G4double eMax = data.fEmax;
316     G4double Eflow = data.fEmean / TotNbofEvents;
317 
318     G4cout << "  " << std::setw(13) << name << ": " << std::setw(7) << count
319            << "  Emean = " << std::setw(wid) << G4BestUnit(eMean, "Energy") << "\t( "
320            << G4BestUnit(eMin, "Energy") << " --> " << G4BestUnit(eMax, "Energy")
321            << ") \tEflow/event = " << G4BestUnit(Eflow, "Energy") << G4endl;
322   }
323 
324   // histogram Id for populations
325   //
326   G4cout << "\n histo Id for populations :" << G4endl;
327 
328   // Update the histogram titles according to the ion map
329   // and print new titles
330   G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
331   for (const auto& ionMapElement : fgIonMap) {
332     G4String ionName = ionMapElement.first;
333     G4int h1Id = ionMapElement.second;
334     // print new titles
335     G4cout << " " << std::setw(20) << ionName << "  id = " << std::setw(3) << h1Id << G4endl;
336 
337     // update histogram ids
338     if (!analysisManager->GetH1(h1Id)) continue;
339     // Skip inactive histograms, this is not necessary
340     // but it  makes the code safe wrt modifications in future
341     G4String title = analysisManager->GetH1Title(h1Id);
342     title = ionName + title;
343     analysisManager->SetH1Title(h1Id, title);
344   }
345   G4cout << G4endl;
346 
347   // normalize histograms
348   G4int ih = 2;
349   G4double binWidth = analysisManager->GetH1Width(ih);
350   G4double fac = (1. / (numberOfEvent * binWidth)) * (mm / MeV);
351   analysisManager->ScaleH1(ih, fac);
352 
353   for (ih = 14; ih < 24; ih++) {
354     binWidth = analysisManager->GetH1Width(ih);
355     G4double unit = analysisManager->GetH1Unit(ih);
356     fac = (second / (binWidth * unit));
357     analysisManager->ScaleH1(ih, fac);
358   }
359 
360   // remove all contents in fProcCounter, fCount
361   fProcCounter.clear();
362   fParticleDataMap1.clear();
363   fParticleDataMap2.clear();
364   fgIonMap.clear();
365 
366   // restore default format
367   G4cout.precision(dfprec);
368 }
369 
370 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
371