Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/medical/fanoCavity/src/Run.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 /// \file medical/fanoCavity/src/Run.cc
 27 /// \brief Implementation of the Run class
 28 //
 29 //
 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32 
 33 #include "Run.hh"
 34 
 35 #include "DetectorConstruction.hh"
 36 #include "HistoManager.hh"
 37 #include "PrimaryGeneratorAction.hh"
 38 
 39 #include "G4Electron.hh"
 40 #include "G4EmCalculator.hh"
 41 #include "G4Run.hh"
 42 #include "G4RunManager.hh"
 43 #include "G4SystemOfUnits.hh"
 44 #include "G4UnitsTable.hh"
 45 #include "Randomize.hh"
 46 
 47 #include <iomanip>
 48 
 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 50 
 51 Run::Run(DetectorConstruction* det, PrimaryGeneratorAction* kin)
 52   : fDetector(det), fKinematic(kin), fProcCounter(0), fMateWall(0), fMateCavity(0)
 53 
 54 {
 55   // geometry
 56   //
 57   fWallThickness = fDetector->GetWallThickness();
 58   fWallRadius = fDetector->GetWallRadius();
 59   fMateWall = fDetector->GetWallMaterial();
 60   fDensityWall = fMateWall->GetDensity();
 61 
 62   fCavityThickness = fDetector->GetCavityThickness();
 63   fCavityRadius = fDetector->GetCavityRadius();
 64   fSurfaceCavity = CLHEP::pi * fCavityRadius * fCavityRadius;
 65   fVolumeCavity = fSurfaceCavity * fCavityThickness;
 66   fMateCavity = fDetector->GetCavityMaterial();
 67   fDensityCavity = fMateCavity->GetDensity();
 68   fMassCavity = fVolumeCavity * fDensityCavity;
 69 
 70   // process counter
 71   //
 72   fProcCounter = new ProcessesCount;
 73 
 74   // kinetic energy of charged secondary a creation
 75   //
 76   fEsecondary = fEsecondary2 = 0.;
 77   fNbSec = 0;
 78 
 79   // charged particles and energy flow in cavity
 80   //
 81   fPartFlowCavity[0] = fPartFlowCavity[1] = 0;
 82   fEnerFlowCavity[0] = fEnerFlowCavity[1] = 0.;
 83 
 84   // total energy deposit and charged track segment in cavity
 85   //
 86   fEdepCavity = fEdepCavity2 = fTrkSegmCavity = 0.;
 87   fNbEventCavity = 0;
 88 
 89   // survey convergence
 90   //
 91   fOldEmean = fOldDose = 0.;
 92 
 93   // stepLenth of charged particles
 94   //
 95   fStepWall = fStepWall2 = fStepCavity = fStepCavity2 = 0.;
 96   fNbStepWall = fNbStepCavity = 0;
 97 
 98   // histograms
 99   //
100   G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
101   if (analysisManager->IsActive()) {
102     analysisManager->OpenFile();
103   }
104 }
105 
106 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
107 
108 Run::~Run() {}
109 
110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
111 
112 void Run::EndOfRun()
113 {  // Only call by Master thread
114   std::ios::fmtflags mode = G4cout.flags();
115   G4cout.setf(std::ios::fixed, std::ios::floatfield);
116 
117   if (numberOfEvent == 0) return;
118 
119   // run conditions
120   //
121   G4ParticleDefinition* particle = fKinematic->GetParticleGun()->GetParticleDefinition();
122   G4String partName = particle->GetParticleName();
123   G4double energy = fKinematic->GetParticleGun()->GetParticleEnergy();
124 
125   G4cout << "\n ======================== run summary ======================\n";
126 
127   G4int prec = G4cout.precision(3);
128 
129   G4cout << "\n The run consists of " << numberOfEvent << " " << partName << " of "
130          << G4BestUnit(energy, "Energy") << " through 2*" << G4BestUnit(fWallThickness, "Length")
131          << " of " << fMateWall->GetName()
132          << " (density: " << G4BestUnit(fDensityWall, "Volumic Mass") << ")" << G4endl;
133 
134   G4cout << "\n the cavity is " << G4BestUnit(fCavityThickness, "Length") << " of "
135          << fMateCavity->GetName() << " (density: " << G4BestUnit(fDensityCavity, "Volumic Mass")
136          << "); Mass = " << G4BestUnit(fMassCavity, "Mass") << G4endl;
137 
138   G4cout << "\n ============================================================\n";
139 
140   // frequency of processes
141   //
142   G4cout << "\n Process calls frequency --->";
143   for (size_t i = 0; i < fProcCounter->size(); i++) {
144     G4String procName = (*fProcCounter)[i]->GetName();
145     G4int count = (*fProcCounter)[i]->GetCounter();
146     G4cout << "  " << procName << "= " << count;
147   }
148   G4cout << G4endl;
149 
150   // extract cross sections with G4EmCalculator
151   //
152   G4EmCalculator emCalculator;
153   G4cout << "\n Gamma crossSections in wall material :";
154   G4double sumc = 0.0;
155   for (size_t i = 0; i < fProcCounter->size(); i++) {
156     G4String procName = (*fProcCounter)[i]->GetName();
157     G4double massSigma =
158       emCalculator.ComputeCrossSectionPerVolume(energy, particle, procName, fMateWall)
159       / fDensityWall;
160     if (massSigma > 0.) {
161       sumc += massSigma;
162       G4cout << "  " << procName << "= " << G4BestUnit(massSigma, "Surface/Mass");
163     }
164   }
165   G4cout << "   --> total= " << G4BestUnit(sumc, "Surface/Mass") << G4endl;
166 
167   // mean kinetic energy of secondary electrons
168   //
169   if (fNbSec == 0) return;
170   G4double meanEsecond = fEsecondary / fNbSec, meanEsecond2 = fEsecondary2 / fNbSec;
171   G4double varianceEsec = meanEsecond2 - meanEsecond * meanEsecond;
172   G4double dToverT = 0.;
173   if (varianceEsec > 0.) dToverT = std::sqrt(varianceEsec / fNbSec) / meanEsecond;
174   G4double csdaRange = emCalculator.GetCSDARange(meanEsecond, G4Electron::Electron(), fMateWall);
175 
176   G4cout.precision(4);
177   G4cout << "\n Mean energy of secondary e- = " << G4BestUnit(meanEsecond, "Energy") << " +- "
178          << 100 * dToverT << " %"
179          << "  (--> range in wall material = " << G4BestUnit(csdaRange, "Length") << ")" << G4endl;
180 
181   // compute mass energy transfer coefficient
182   //
183   G4double massTransfCoef = sumc * meanEsecond / energy;
184 
185   G4cout << " Mass_energy_transfer coef: " << G4BestUnit(massTransfCoef, "Surface/Mass") << G4endl;
186 
187   // stopping power from EmCalculator
188   //
189   G4double dedxWall = emCalculator.GetDEDX(meanEsecond, G4Electron::Electron(), fMateWall);
190   dedxWall /= fDensityWall;
191   G4double dedxCavity = emCalculator.GetDEDX(meanEsecond, G4Electron::Electron(), fMateCavity);
192   dedxCavity /= fDensityCavity;
193 
194   G4cout << "\n StoppingPower in wall   = " << G4BestUnit(dedxWall, "Energy*Surface/Mass")
195          << "\n               in cavity = " << G4BestUnit(dedxCavity, "Energy*Surface/Mass")
196          << G4endl;
197 
198   // charged particle flow in cavity
199   //
200   G4cout << "\n Charged particle flow in cavity :"
201          << "\n      Enter --> nbParticles = " << fPartFlowCavity[0]
202          << "\t Energy = " << G4BestUnit(fEnerFlowCavity[0], "Energy")
203          << "\n      Exit  --> nbParticles = " << fPartFlowCavity[1]
204          << "\t Energy = " << G4BestUnit(fEnerFlowCavity[1], "Energy") << G4endl;
205 
206   if (fPartFlowCavity[0] == 0) return;
207 
208   // beam energy fluence
209   //
210   G4double rBeam = fWallRadius * (fKinematic->GetBeamRadius());
211   G4double surfaceBeam = CLHEP::pi * rBeam * rBeam;
212 
213   // error on Edep in cavity
214   //
215   if (fNbEventCavity == 0) return;
216   G4double meanEdep = fEdepCavity / fNbEventCavity;
217   G4double meanEdep2 = fEdepCavity2 / fNbEventCavity;
218   G4double varianceEdep = meanEdep2 - meanEdep * meanEdep;
219   G4double dEoverE = 0.;
220   if (varianceEdep > 0.) dEoverE = std::sqrt(varianceEdep / fNbEventCavity) / meanEdep;
221 
222   // total dose in cavity
223   //
224   G4double doseCavity = fEdepCavity / fMassCavity;
225   G4double doseOverBeam = doseCavity * surfaceBeam / (numberOfEvent * energy);
226 
227   // track length in cavity
228   G4double meantrack = fTrkSegmCavity / fPartFlowCavity[0];
229 
230   G4cout.precision(4);
231   G4cout << "\n Total edep in cavity = " << G4BestUnit(fEdepCavity, "Energy") << " +- "
232          << 100 * dEoverE << " %"
233          << "\t Total charged trackLength = " << G4BestUnit(fTrkSegmCavity, "Length")
234          << "   (mean value = " << G4BestUnit(meantrack, "Length") << ")"
235          << "\n Total dose in cavity = " << doseCavity / (MeV / mg) << " MeV/mg"
236          << "\n Dose/EnergyFluence   = " << G4BestUnit(doseOverBeam, "Surface/Mass") << G4endl;
237 
238   // ratio simulation/theory
239   //
240   G4double ratio = doseOverBeam / massTransfCoef;
241   G4double error = ratio * std::sqrt(dEoverE * dEoverE + dToverT * dToverT);
242 
243   G4cout.precision(5);
244   G4cout << "\n (Dose/EnergyFluence)/Mass_energy_transfer = " << ratio << " +- " << error << G4endl;
245 
246   // compute mean step size of charged particles
247   //
248   fStepWall /= fNbStepWall;
249   fStepWall2 /= fNbStepWall;
250   G4double rms = fStepWall2 - fStepWall * fStepWall;
251   if (rms > 0.)
252     rms = std::sqrt(rms);
253   else
254     rms = 0.;
255 
256   G4cout.precision(4);
257   G4cout << "\n StepSize of ch. tracks in wall   = " << G4BestUnit(fStepWall, "Length") << " +- "
258          << G4BestUnit(rms, "Length") << "\t (nbSteps/track = " << double(fNbStepWall) / fNbSec
259          << ")";
260 
261   fStepCavity /= fNbStepCavity;
262   fStepCavity2 /= fNbStepCavity;
263   rms = fStepCavity2 - fStepCavity * fStepCavity;
264   if (rms > 0.)
265     rms = std::sqrt(rms);
266   else
267     rms = 0.;
268 
269   G4cout << "\n StepSize of ch. tracks in cavity = " << G4BestUnit(fStepCavity, "Length") << " +- "
270          << G4BestUnit(rms, "Length")
271          << "\t (nbSteps/track = " << double(fNbStepCavity) / fPartFlowCavity[0] << ")";
272 
273   G4cout << G4endl;
274 
275   // reset default formats
276   G4cout.setf(mode, std::ios::floatfield);
277   G4cout.precision(prec);
278 
279   // delete and remove all contents in fProcCounter
280   while (fProcCounter->size() > 0) {
281     OneProcessCount* aProcCount = fProcCounter->back();
282     fProcCounter->pop_back();
283     delete aProcCount;
284   }
285   delete fProcCounter;
286 }
287 
288 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
289 
290 void Run::SurveyConvergence(G4int NbofEvents)
291 {
292   if (NbofEvents == 0) return;
293 
294   // mean kinetic energy of secondary electrons
295   //
296   G4double meanEsecond = 0.;
297   if (fNbSec > 0) meanEsecond = fEsecondary / fNbSec;
298   G4double rateEmean = 0.;
299   // compute variation rate (%), iteration to iteration
300   if (fOldEmean > 0.) rateEmean = 100 * (meanEsecond / fOldEmean - 1.);
301   fOldEmean = meanEsecond;
302 
303   // beam energy fluence
304   //
305   G4double rBeam = fWallRadius * (fKinematic->GetBeamRadius());
306   G4double surfaceBeam = CLHEP::pi * rBeam * rBeam;
307   G4double beamEnergy = fKinematic->GetParticleGun()->GetParticleEnergy();
308 
309   // total dose in cavity
310   //
311   G4double doseCavity = fEdepCavity / fMassCavity;
312   G4double doseOverBeam = doseCavity * surfaceBeam / (NbofEvents * beamEnergy);
313   G4double rateDose = 0.;
314   // compute variation rate (%), iteration to iteration
315   if (fOldDose > 0.) rateDose = 100 * (doseOverBeam / fOldDose - 1.);
316   fOldDose = doseOverBeam;
317 
318   std::ios::fmtflags mode = G4cout.flags();
319   G4cout.setf(std::ios::fixed, std::ios::floatfield);
320   G4int prec = G4cout.precision(3);
321 
322   G4cout << " ---> NbofEvents= " << NbofEvents << "   NbOfelectr= " << fNbSec
323          << "   Tkin= " << G4BestUnit(meanEsecond, "Energy") << " (" << rateEmean << " %)"
324          << "   NbOfelec in cav= " << fPartFlowCavity[0]
325          << "   Dose/EnFluence= " << G4BestUnit(doseOverBeam, "Surface/Mass") << " (" << rateDose
326          << " %) \n"
327          << G4endl;
328 
329   // reset default formats
330   G4cout.setf(mode, std::ios::floatfield);
331   G4cout.precision(prec);
332 }
333 
334 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
335 
336 void Run::Merge(const G4Run* run)
337 {
338   const Run* localRun = static_cast<const Run*>(run);
339 
340   fPartFlowCavity[0] += localRun->fPartFlowCavity[0];
341   fPartFlowCavity[1] += localRun->fPartFlowCavity[1];
342   fEnerFlowCavity[0] += localRun->fEnerFlowCavity[0];
343   fEnerFlowCavity[1] += localRun->fEnerFlowCavity[1];
344   fEdepCavity += localRun->fEdepCavity;
345   fEdepCavity2 += localRun->fEdepCavity2;
346   fTrkSegmCavity += localRun->fTrkSegmCavity;
347   fNbEventCavity += localRun->fNbEventCavity;
348 
349   fStepWall += localRun->fStepWall;
350   fStepWall2 += localRun->fStepWall2;
351   fStepCavity += localRun->fStepCavity;
352   fStepCavity2 += localRun->fStepCavity2;
353   fNbStepWall += localRun->fNbStepWall;
354   fNbStepCavity += localRun->fNbStepCavity;
355 
356   fEsecondary += localRun->fEsecondary;
357   fEsecondary2 += localRun->fEsecondary2;
358 
359   fNbSec += localRun->fNbSec;
360 
361   // ???  G4double                fOldEmean
362   // ??? G4Double         fOldDose;
363 
364   // Merge ProcessCount varaibles
365   std::vector<OneProcessCount*>::iterator it;
366   for (it = localRun->fProcCounter->begin(); it != localRun->fProcCounter->end(); it++) {
367     OneProcessCount* process = *it;
368     for (G4int i = 0; i < process->GetCounter(); i++)
369       this->CountProcesses(process->GetName());
370   }
371 
372   G4Run::Merge(run);
373 }
374 
375 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
376 
377 void Run::CountProcesses(G4String procName)
378 {
379   // does the process  already encounted ?
380   size_t nbProc = fProcCounter->size();
381   size_t i = 0;
382   while ((i < nbProc) && ((*fProcCounter)[i]->GetName() != procName))
383     i++;
384   if (i == nbProc) fProcCounter->push_back(new OneProcessCount(procName));
385 
386   (*fProcCounter)[i]->Count();
387 }
388 
389 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
390