Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/hadronic/Hadr07/src/Run.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 /// \file Run.cc
 27 /// \brief Implementation of the Run class
 28 //
 29 //
 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32 
 33 #include "Run.hh"
 34 
 35 #include "DetectorConstruction.hh"
 36 #include "EventAction.hh"
 37 #include "HistoManager.hh"
 38 #include "PrimaryGeneratorAction.hh"
 39 
 40 #include "G4Event.hh"
 41 #include "G4Material.hh"
 42 #include "G4SystemOfUnits.hh"
 43 #include "G4UnitsTable.hh"
 44 
 45 #include <iomanip>
 46 
 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 48 
 49 Run::Run(DetectorConstruction* detector) : fDetector(detector)
 50 {
 51   fTotEdep[1] = fEleak[1] = fEtotal[1] = joule;
 52 
 53   for (G4int i = 0; i < kMaxAbsor; ++i) {
 54     fEdeposit[i] = 0.;
 55     fEmin[i] = joule;
 56     fEmax[i] = 0.;
 57   }
 58 }
 59 
 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 61 
 62 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy)
 63 {
 64   fParticle = particle;
 65   fEkin = energy;
 66 }
 67 
 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 69 
 70 void Run::CountProcesses(const G4VProcess* process)
 71 {
 72   if (process == nullptr) return;
 73   G4String procName = process->GetProcessName();
 74   std::map<G4String, G4int>::iterator it = fProcCounter.find(procName);
 75   if (it == fProcCounter.end()) {
 76     fProcCounter[procName] = 1;
 77   }
 78   else {
 79     fProcCounter[procName]++;
 80   }
 81 }
 82 
 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 84 
 85 void Run::ParticleCount(G4int k, G4String name, G4double Ekin, G4double meanLife)
 86 {
 87   std::map<G4String, ParticleData>::iterator it = fParticleDataMap[k].find(name);
 88   if (it == fParticleDataMap[k].end()) {
 89     (fParticleDataMap[k])[name] = ParticleData(1, Ekin, Ekin, Ekin, meanLife);
 90   }
 91   else {
 92     ParticleData& data = it->second;
 93     data.fCount++;
 94     data.fEmean += Ekin;
 95     // update min max
 96     G4double emin = data.fEmin;
 97     if (Ekin < emin) data.fEmin = Ekin;
 98     G4double emax = data.fEmax;
 99     if (Ekin > emax) data.fEmax = Ekin;
100     data.fTmean = meanLife;
101   }
102 }
103 
104 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
105 
106 void Run::AddEdep(G4int i, G4double e)
107 {
108   if (e > 0.) {
109     fEdeposit[i] += e;
110     if (e < fEmin[i]) fEmin[i] = e;
111     if (e > fEmax[i]) fEmax[i] = e;
112   }
113 }
114 
115 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
116 
117 void Run::AddTotEdep(G4double e)
118 {
119   if (e > 0.) {
120     fTotEdep[0] += e;
121     if (e < fTotEdep[1]) fTotEdep[1] = e;
122     if (e > fTotEdep[2]) fTotEdep[2] = e;
123   }
124 }
125 
126 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
127 
128 void Run::AddEleak(G4double e)
129 {
130   if (e > 0.) {
131     fEleak[0] += e;
132     if (e < fEleak[1]) fEleak[1] = e;
133     if (e > fEleak[2]) fEleak[2] = e;
134   }
135 }
136 
137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
138 
139 void Run::AddEtotal(G4double e)
140 {
141   if (e > 0.) {
142     fEtotal[0] += e;
143     if (e < fEtotal[1]) fEtotal[1] = e;
144     if (e > fEtotal[2]) fEtotal[2] = e;
145   }
146 }
147 
148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
149 
150 void Run::AddTrackStatus(G4int i)
151 {
152   fStatus[i]++;
153 }
154 
155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
156 
157 void Run::Merge(const G4Run* run)
158 {
159   const Run* localRun = static_cast<const Run*>(run);
160 
161   // pass information about primary particle
162   fParticle = localRun->fParticle;
163   fEkin = localRun->fEkin;
164 
165   // Edep in absorbers
166   //
167   G4int nbOfAbsor = fDetector->GetNbOfAbsor();
168   for (G4int i = 1; i <= nbOfAbsor; ++i) {
169     fEdeposit[i] += localRun->fEdeposit[i];
170     // min, max
171     G4double min, max;
172     min = localRun->fEmin[i];
173     max = localRun->fEmax[i];
174     if (fEmin[i] > min) fEmin[i] = min;
175     if (fEmax[i] < max) fEmax[i] = max;
176   }
177 
178   for (G4int i = 0; i < 3; ++i)
179     fStatus[i] += localRun->fStatus[i];
180 
181   // total Edep
182   fTotEdep[0] += localRun->fTotEdep[0];
183   G4double min, max;
184   min = localRun->fTotEdep[1];
185   max = localRun->fTotEdep[2];
186   if (fTotEdep[1] > min) fTotEdep[1] = min;
187   if (fTotEdep[2] < max) fTotEdep[2] = max;
188 
189   // Eleak
190   fEleak[0] += localRun->fEleak[0];
191   min = localRun->fEleak[1];
192   max = localRun->fEleak[2];
193   if (fEleak[1] > min) fEleak[1] = min;
194   if (fEleak[2] < max) fEleak[2] = max;
195 
196   // Etotal
197   fEtotal[0] += localRun->fEtotal[0];
198   min = localRun->fEtotal[1];
199   max = localRun->fEtotal[2];
200   if (fEtotal[1] > min) fEtotal[1] = min;
201   if (fEtotal[2] < max) fEtotal[2] = max;
202 
203   // map: processes count
204   std::map<G4String, G4int>::const_iterator itp;
205   for (itp = localRun->fProcCounter.begin(); itp != localRun->fProcCounter.end(); ++itp) {
206     G4String procName = itp->first;
207     G4int localCount = itp->second;
208     if (fProcCounter.find(procName) == fProcCounter.end()) {
209       fProcCounter[procName] = localCount;
210     }
211     else {
212       fProcCounter[procName] += localCount;
213     }
214   }
215 
216   // map: created particles in absorbers count
217   for (G4int k = 0; k <= nbOfAbsor; ++k) {
218     std::map<G4String, ParticleData>::const_iterator itc;
219     for (itc = localRun->fParticleDataMap[k].begin(); itc != localRun->fParticleDataMap[k].end();
220          ++itc)
221     {
222       G4String name = itc->first;
223       const ParticleData& localData = itc->second;
224       if (fParticleDataMap[k].find(name) == fParticleDataMap[k].end()) {
225         (fParticleDataMap[k])[name] = ParticleData(
226           localData.fCount, localData.fEmean, localData.fEmin, localData.fEmax, localData.fTmean);
227       }
228       else {
229         ParticleData& data = (fParticleDataMap[k])[name];
230         data.fCount += localData.fCount;
231         data.fEmean += localData.fEmean;
232         G4double emin = localData.fEmin;
233         if (emin < data.fEmin) data.fEmin = emin;
234         G4double emax = localData.fEmax;
235         if (emax > data.fEmax) data.fEmax = emax;
236         data.fTmean = localData.fTmean;
237       }
238     }
239   }
240 
241   G4Run::Merge(run);
242 }
243 
244 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
245 
246 void Run::EndOfRun()
247 {
248   G4int prec = 5, wid = prec + 2;
249   G4int dfprec = G4cout.precision(prec);
250 
251   // run conditions
252   //
253   G4String partName = fParticle->GetParticleName();
254   G4int nbOfAbsor = fDetector->GetNbOfAbsor();
255 
256   G4cout << "\n ======================== run summary =====================\n";
257   G4cout << "\n The run is " << numberOfEvent << " " << partName << " of "
258          << G4BestUnit(fEkin, "Energy") << " through " << nbOfAbsor << " absorbers: \n";
259   for (G4int i = 1; i <= nbOfAbsor; i++) {
260     G4Material* material = fDetector->GetAbsorMaterial(i);
261     G4double thickness = fDetector->GetAbsorThickness(i);
262     G4double density = material->GetDensity();
263     G4cout << std::setw(5) << i << std::setw(10) << G4BestUnit(thickness, "Length") << " of "
264            << material->GetName() << " (density: " << G4BestUnit(density, "Volumic Mass") << ")"
265            << G4endl;
266   }
267 
268   if (numberOfEvent == 0) {
269     G4cout.precision(dfprec);
270     return;
271   }
272 
273   G4cout.precision(3);
274 
275   // frequency of processes
276   //
277   G4cout << "\n Process calls frequency :" << G4endl;
278   G4int index = 0;
279   std::map<G4String, G4int>::iterator it;
280   for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) {
281     G4String procName = it->first;
282     G4int count = it->second;
283     G4String space = " ";
284     if (++index % 3 == 0) space = "\n";
285     G4cout << " " << std::setw(20) << procName << "=" << std::setw(7) << count << space;
286   }
287   G4cout << G4endl;
288 
289   // Edep in absorbers
290   //
291   for (G4int i = 1; i <= nbOfAbsor; i++) {
292     fEdeposit[i] /= numberOfEvent;
293 
294     G4cout << "\n Edep in absorber " << i << " = " << G4BestUnit(fEdeposit[i], "Energy") << "\t("
295            << G4BestUnit(fEmin[i], "Energy") << "-->" << G4BestUnit(fEmax[i], "Energy") << ")";
296   }
297   G4cout << G4endl;
298 
299   if (nbOfAbsor > 1) {
300     fTotEdep[0] /= numberOfEvent;
301     G4cout << "\n Edep in all absorb = " << G4BestUnit(fTotEdep[0], "Energy") << "\t("
302            << G4BestUnit(fTotEdep[1], "Energy") << "-->" << G4BestUnit(fTotEdep[2], "Energy") << ")"
303            << G4endl;
304   }
305 
306   // Eleak
307   //
308   fEleak[0] /= numberOfEvent;
309   G4cout << " Energy leakage     = " << G4BestUnit(fEleak[0], "Energy") << "\t("
310          << G4BestUnit(fEleak[1], "Energy") << "-->" << G4BestUnit(fEleak[2], "Energy") << ")"
311          << G4endl;
312 
313   // Etotal
314   //
315   fEtotal[0] /= numberOfEvent;
316   G4cout << " Energy total       = " << G4BestUnit(fEtotal[0], "Energy") << "\t("
317          << G4BestUnit(fEtotal[1], "Energy") << "-->" << G4BestUnit(fEtotal[2], "Energy") << ")"
318          << G4endl;
319 
320   // particles count in absorbers
321   //
322   for (G4int k = 1; k <= nbOfAbsor; k++) {
323     G4cout << "\n List of created particles in absorber " << k << ":" << G4endl;
324 
325     std::map<G4String, ParticleData>::iterator itc;
326     for (itc = fParticleDataMap[k].begin(); itc != fParticleDataMap[k].end(); itc++) {
327       G4String name = itc->first;
328       ParticleData data = itc->second;
329       G4int count = data.fCount;
330       G4double eMean = data.fEmean / count;
331       G4double eMin = data.fEmin;
332       G4double eMax = data.fEmax;
333       G4double meanLife = data.fTmean;
334 
335       G4cout << "  " << std::setw(13) << name << ": " << std::setw(7) << count
336              << "  Emean = " << std::setw(wid) << G4BestUnit(eMean, "Energy") << "\t( "
337              << G4BestUnit(eMin, "Energy") << " --> " << G4BestUnit(eMax, "Energy") << ")";
338       if (meanLife >= 0.)
339         G4cout << "\tmean life = " << G4BestUnit(meanLife, "Time") << G4endl;
340       else
341         G4cout << "\tstable" << G4endl;
342     }
343   }
344   // particles emerging from absorbers
345   //
346   G4cout << "\n List of particles emerging from absorbers :" << G4endl;
347 
348   std::map<G4String, ParticleData>::iterator itc;
349   for (itc = fParticleDataMap[0].begin(); itc != fParticleDataMap[0].end(); itc++) {
350     G4String name = itc->first;
351     ParticleData data = itc->second;
352     G4int count = data.fCount;
353     G4double eMean = data.fEmean / count;
354     G4double eMin = data.fEmin;
355     G4double eMax = data.fEmax;
356     /// G4double meanLife = data.fTmean;
357 
358     G4cout << "  " << std::setw(13) << name << ": " << std::setw(7) << count
359            << "  Emean = " << std::setw(wid) << G4BestUnit(eMean, "Energy") << "\t( "
360            << G4BestUnit(eMin, "Energy") << " --> " << G4BestUnit(eMax, "Energy") << ")" << G4endl;
361   }
362 
363   // transmission coefficients
364   //
365   G4double dNofEvents = double(numberOfEvent);
366   G4double absorbed = 100. * fStatus[0] / dNofEvents;
367   G4double transmit = 100. * fStatus[1] / dNofEvents;
368   G4double reflected = 100. * fStatus[2] / dNofEvents;
369 
370   G4cout.precision(2);
371   G4cout << "\n Nb of events with primary absorbed = " << absorbed << " %,"
372          << "   transmit = " << transmit << " %,"
373          << "   reflected = " << reflected << " %" << G4endl;
374 
375   // normalize histograms of longitudinal energy profile
376   //
377   G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
378   G4int ih = 10;
379   G4double binWidth = analysisManager->GetH1Width(ih) * analysisManager->GetH1Unit(ih);
380   G4double fac = (1. / (numberOfEvent * binWidth)) * (mm / MeV);
381   analysisManager->ScaleH1(ih, fac);
382 
383   // remove all contents in fProcCounter, fCount
384   fProcCounter.clear();
385   for (G4int k = 0; k <= nbOfAbsor; k++)
386     fParticleDataMap[k].clear();
387 
388   // reset default formats
389   G4cout.precision(dfprec);
390 }
391 
392 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
393