Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/electromagnetic/TestEm2/src/Run.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 /// \file electromagnetic/TestEm2/src/Run.cc
 27 /// \brief Implementation of the Run class
 28 //
 29 //
 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32 
 33 #include "Run.hh"
 34 
 35 #include "EmAcceptance.hh"
 36 #include "PrimaryGeneratorAction.hh"
 37 
 38 #include "G4Run.hh"
 39 #include "G4SystemOfUnits.hh"
 40 #include "G4UnitsTable.hh"
 41 
 42 #include <iomanip>
 43 
 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 45 
 46 Run::Run(DetectorConstruction* det, PrimaryGeneratorAction* kin) : fDet(det), fKin(kin)
 47 {
 48   Reset();
 49 }
 50 
 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 52 
 53 void Run::Reset()
 54 {
 55   f_nLbin = fDet->GetnLtot();
 56   f_dEdL.resize(f_nLbin);
 57   fSumELongit.resize(f_nLbin);
 58   fSumELongitCumul.resize(f_nLbin);
 59   fSumE2Longit.resize(f_nLbin);
 60   fSumE2LongitCumul.resize(f_nLbin);
 61 
 62   f_nRbin = fDet->GetnRtot();
 63   f_dEdR.resize(f_nRbin);
 64   fSumERadial.resize(f_nRbin);
 65   fSumERadialCumul.resize(f_nRbin);
 66   fSumE2Radial.resize(f_nRbin);
 67   fSumE2RadialCumul.resize(f_nRbin);
 68 
 69   fChargedStep = 0.0;
 70   fNeutralStep = 0.0;
 71 
 72   fVerbose = 0;
 73 
 74   // initialize arrays of cumulative energy deposition
 75   //
 76   for (G4int i = 0; i < f_nLbin; ++i) {
 77     fSumELongit[i] = fSumE2Longit[i] = fSumELongitCumul[i] = fSumE2LongitCumul[i] = 0.;
 78   }
 79   for (G4int j = 0; j < f_nRbin; ++j) {
 80     fSumERadial[j] = fSumE2Radial[j] = fSumERadialCumul[j] = fSumE2RadialCumul[j] = 0.;
 81   }
 82   // initialize track length
 83   fSumChargTrLength = fSum2ChargTrLength = fSumNeutrTrLength = fSum2NeutrTrLength = 0.;
 84 }
 85 
 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 87 
 88 void Run::InitializePerEvent()
 89 {
 90   // initialize arrays of energy deposit per bin
 91   for (G4int i = 0; i < f_nLbin; ++i) {
 92     f_dEdL[i] = 0.;
 93   }
 94 
 95   for (G4int j = 0; j < f_nRbin; ++j) {
 96     f_dEdR[j] = 0.;
 97   }
 98 
 99   // initialize tracklength
100   fChargTrLength = fNeutrTrLength = 0.;
101 }
102 
103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
104 
105 void Run::FillPerEvent()
106 {
107   // accumulate statistic
108   //
109   G4double dLCumul = 0.;
110   for (G4int i = 0; i < f_nLbin; ++i) {
111     fSumELongit[i] += f_dEdL[i];
112     fSumE2Longit[i] += f_dEdL[i] * f_dEdL[i];
113     dLCumul += f_dEdL[i];
114     fSumELongitCumul[i] += dLCumul;
115     fSumE2LongitCumul[i] += dLCumul * dLCumul;
116   }
117 
118   G4double dRCumul = 0.;
119   for (G4int j = 0; j < f_nRbin; j++) {
120     fSumERadial[j] += f_dEdR[j];
121     fSumE2Radial[j] += f_dEdR[j] * f_dEdR[j];
122     dRCumul += f_dEdR[j];
123     fSumERadialCumul[j] += dRCumul;
124     fSumE2RadialCumul[j] += dRCumul * dRCumul;
125   }
126 
127   fSumChargTrLength += fChargTrLength;
128   fSum2ChargTrLength += fChargTrLength * fChargTrLength;
129   fSumNeutrTrLength += fNeutrTrLength;
130   fSum2NeutrTrLength += fNeutrTrLength * fNeutrTrLength;
131 
132   // fill histograms
133   //
134 
135   G4double Ekin = fKin->GetParticleGun()->GetParticleEnergy();
136   G4double mass = fKin->GetParticleGun()->GetParticleDefinition()->GetPDGMass();
137   G4double radl = fDet->GetMaterial()->GetRadlen();
138 
139   G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
140   analysisManager->FillH1(1, 100. * dLCumul / (Ekin + mass));
141   analysisManager->FillH1(2, fChargTrLength / radl);
142   analysisManager->FillH1(3, fNeutrTrLength / radl);
143 
144   // profiles
145   G4double norm = 100. / (Ekin + mass);
146   G4double dLradl = fDet->GetdLradl();
147   for (G4int i = 0; i < f_nLbin; ++i) {
148     G4double bin = (i + 0.5) * dLradl;
149     analysisManager->FillP1(0, bin, norm * f_dEdL[i] / dLradl);
150   }
151   G4double dRradl = fDet->GetdRradl();
152   for (G4int j = 0; j < f_nRbin; ++j) {
153     G4double bin = (j + 0.5) * dRradl;
154     analysisManager->FillP1(1, bin, norm * f_dEdR[j] / dRradl);
155   }
156 }
157 
158 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
159 
160 void Run::Merge(const G4Run* run)
161 {
162   const Run* localRun = static_cast<const Run*>(run);
163 
164   fChargedStep += localRun->fChargedStep;
165   fNeutralStep += localRun->fNeutralStep;
166 
167   for (G4int i = 0; i < f_nLbin; ++i) {
168     fSumELongit[i] += localRun->fSumELongit[i];
169     fSumE2Longit[i] += localRun->fSumE2Longit[i];
170     fSumELongitCumul[i] += localRun->fSumELongitCumul[i];
171     fSumE2LongitCumul[i] += localRun->fSumE2LongitCumul[i];
172   }
173 
174   for (G4int j = 0; j < f_nRbin; ++j) {
175     fSumERadial[j] += localRun->fSumERadial[j];
176     fSumE2Radial[j] += localRun->fSumE2Radial[j];
177     fSumERadialCumul[j] += localRun->fSumERadialCumul[j];
178     fSumE2RadialCumul[j] += localRun->fSumE2RadialCumul[j];
179   }
180 
181   fSumChargTrLength += localRun->fSumChargTrLength;
182   fSum2ChargTrLength += localRun->fSum2ChargTrLength;
183   fSumNeutrTrLength += localRun->fSumNeutrTrLength;
184   fSum2NeutrTrLength += localRun->fSum2NeutrTrLength;
185 
186   G4Run::Merge(run);
187 }
188 
189 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
190 
191 void Run::EndOfRun(G4double edep, G4double rms, G4double& limit)
192 {
193   G4int NbOfEvents = GetNumberOfEvent();
194 
195   G4double kinEnergy = fKin->GetParticleGun()->GetParticleEnergy();
196   assert(NbOfEvents * kinEnergy > 0);
197 
198   fChargedStep /= G4double(NbOfEvents);
199   fNeutralStep /= G4double(NbOfEvents);
200 
201   G4double mass = fKin->GetParticleGun()->GetParticleDefinition()->GetPDGMass();
202   G4double norme = 100. / (NbOfEvents * (kinEnergy + mass));
203 
204   // longitudinal
205   //
206   G4double dLradl = fDet->GetdLradl();
207 
208   MyVector MeanELongit(f_nLbin), rmsELongit(f_nLbin);
209   MyVector MeanELongitCumul(f_nLbin), rmsELongitCumul(f_nLbin);
210 
211   G4AnalysisManager* analysisManager = G4AnalysisManager::Instance();
212 
213   G4int i;
214   for (i = 0; i < f_nLbin; ++i) {
215     MeanELongit[i] = norme * fSumELongit[i];
216     rmsELongit[i] =
217       norme * std::sqrt(std::abs(NbOfEvents * fSumE2Longit[i] - fSumELongit[i] * fSumELongit[i]));
218 
219     MeanELongitCumul[i] = norme * fSumELongitCumul[i];
220     rmsELongitCumul[i] = norme
221                          * std::sqrt(std::abs(NbOfEvents * fSumE2LongitCumul[i]
222                                               - fSumELongitCumul[i] * fSumELongitCumul[i]));
223     G4double bin = (i + 0.5) * dLradl;
224     analysisManager->FillH1(4, bin, MeanELongit[i] / dLradl);
225     analysisManager->FillH1(5, bin, rmsELongit[i] / dLradl);
226     bin = (i + 1) * dLradl;
227     analysisManager->FillH1(6, bin, MeanELongitCumul[i]);
228     analysisManager->FillH1(7, bin, rmsELongitCumul[i]);
229   }
230 
231   // radial
232   //
233   G4double dRradl = fDet->GetdRradl();
234 
235   MyVector MeanERadial(f_nRbin), rmsERadial(f_nRbin);
236   MyVector MeanERadialCumul(f_nRbin), rmsERadialCumul(f_nRbin);
237 
238   for (i = 0; i < f_nRbin; ++i) {
239     MeanERadial[i] = norme * fSumERadial[i];
240     rmsERadial[i] =
241       norme * std::sqrt(std::abs(NbOfEvents * fSumE2Radial[i] - fSumERadial[i] * fSumERadial[i]));
242 
243     MeanERadialCumul[i] = norme * fSumERadialCumul[i];
244     rmsERadialCumul[i] = norme
245                          * std::sqrt(std::abs(NbOfEvents * fSumE2RadialCumul[i]
246                                               - fSumERadialCumul[i] * fSumERadialCumul[i]));
247 
248     G4double bin = (i + 0.5) * dRradl;
249     analysisManager->FillH1(8, bin, MeanERadial[i] / dRradl);
250     analysisManager->FillH1(9, bin, rmsERadial[i] / dRradl);
251     bin = (i + 1) * dRradl;
252     analysisManager->FillH1(10, bin, MeanERadialCumul[i]);
253     analysisManager->FillH1(11, bin, rmsERadialCumul[i]);
254   }
255 
256   // find Moliere confinement
257   //
258   const G4double EMoliere = 90.;
259   G4double iMoliere = 0.;
260   if ((MeanERadialCumul[0] <= EMoliere) && (MeanERadialCumul[f_nRbin - 1] >= EMoliere)) {
261     G4int imin = 0;
262     while ((imin < f_nRbin - 1) && (MeanERadialCumul[imin] < EMoliere)) {
263       ++imin;
264     }
265 
266     G4double del = MeanERadialCumul[imin + 1] - MeanERadialCumul[imin];
267     G4double ratio = (del > 0.0) ? (EMoliere - MeanERadialCumul[imin]) / del : 0.0;
268     iMoliere = 1. + imin + ratio;
269   }
270 
271   // track length
272   //
273   norme = 1. / (NbOfEvents * (fDet->GetMaterial()->GetRadlen()));
274   G4double MeanChargTrLength = norme * fSumChargTrLength;
275   G4double rmsChargTrLength =
276     norme
277     * std::sqrt(std::abs(NbOfEvents * fSum2ChargTrLength - fSumChargTrLength * fSumChargTrLength));
278 
279   G4double MeanNeutrTrLength = norme * fSumNeutrTrLength;
280   G4double rmsNeutrTrLength =
281     norme
282     * std::sqrt(std::abs(NbOfEvents * fSum2NeutrTrLength - fSumNeutrTrLength * fSumNeutrTrLength));
283 
284   // print
285   std::ios::fmtflags mode = G4cout.flags();
286   G4cout.setf(std::ios::fixed, std::ios::floatfield);
287   G4int prec = G4cout.precision(2);
288 
289   if (fVerbose) {
290     G4cout << "                 LOGITUDINAL PROFILE                   "
291            << "      CUMULATIVE LOGITUDINAL PROFILE" << G4endl << G4endl;
292 
293     G4cout << "        bin   "
294            << "           Mean         rms         "
295            << "        bin "
296            << "           Mean      rms \n"
297            << G4endl;
298 
299     for (i = 0; i < f_nLbin; ++i) {
300       G4double inf = i * dLradl, sup = inf + dLradl;
301 
302       G4cout << std::setw(8) << inf << "->" << std::setw(5) << sup << " radl: " << std::setw(7)
303              << MeanELongit[i] << "%  " << std::setw(9) << rmsELongit[i] << "%       "
304              << "      0->" << std::setw(5) << sup << " radl: " << std::setw(7)
305              << MeanELongitCumul[i] << "%  " << std::setw(7) << rmsELongitCumul[i] << "% "
306              << G4endl;
307     }
308 
309     G4cout << G4endl << G4endl << G4endl;
310 
311     G4cout << "                  RADIAL PROFILE                   "
312            << "      CUMULATIVE  RADIAL PROFILE" << G4endl << G4endl;
313 
314     G4cout << "        bin   "
315            << "           Mean         rms         "
316            << "        bin "
317            << "           Mean      rms \n"
318            << G4endl;
319 
320     for (i = 0; i < f_nRbin; ++i) {
321       G4double inf = i * dRradl, sup = inf + dRradl;
322 
323       G4cout << std::setw(8) << inf << "->" << std::setw(5) << sup << " radl: " << std::setw(7)
324              << MeanERadial[i] << "%  " << std::setw(9) << rmsERadial[i] << "%       "
325              << "      0->" << std::setw(5) << sup << " radl: " << std::setw(7)
326              << MeanERadialCumul[i] << "%  " << std::setw(7) << rmsERadialCumul[i] << "% "
327              << G4endl;
328     }
329   }
330 
331   G4cout << "\n ===== SUMMARY ===== \n" << G4endl;
332 
333   G4cout << " Total number of events:        " << NbOfEvents << "\n"
334          << " Mean number of charged steps:  " << fChargedStep << G4endl;
335   G4cout << " Mean number of neutral steps:  " << fNeutralStep << "\n" << G4endl;
336 
337   G4cout << " energy deposit : " << std::setw(7) << MeanELongitCumul[f_nLbin - 1] << " % E0 +- "
338          << std::setw(7) << rmsELongitCumul[f_nLbin - 1] << " % E0" << G4endl;
339   G4cout << " charged traklen: " << std::setw(7) << MeanChargTrLength << " radl +- " << std::setw(7)
340          << rmsChargTrLength << " radl" << G4endl;
341   G4cout << " neutral traklen: " << std::setw(7) << MeanNeutrTrLength << " radl +- " << std::setw(7)
342          << rmsNeutrTrLength << " radl" << G4endl;
343 
344   if (iMoliere > 0.) {
345     G4double RMoliere1 = iMoliere * fDet->GetdRradl();
346     G4double RMoliere2 = iMoliere * fDet->GetdRlength();
347     G4cout << "\n " << EMoliere << " % confinement: radius = " << RMoliere1 << " radl  ("
348            << G4BestUnit(RMoliere2, "Length") << ")"
349            << "\n"
350            << G4endl;
351   }
352 
353   G4cout.setf(mode, std::ios::floatfield);
354   G4cout.precision(prec);
355 
356   // Acceptance
357 
358   G4int nLbin = fDet->GetnLtot();
359   if (limit < DBL_MAX) {
360     EmAcceptance acc;
361     acc.BeginOfAcceptance("Total Energy in Absorber", NbOfEvents);
362     G4double e = MeanELongitCumul[nLbin - 1] / 100.;
363     G4double r = rmsELongitCumul[nLbin - 1] / 100.;
364     acc.EmAcceptanceGauss("Edep", NbOfEvents, e, edep, rms, limit);
365     acc.EmAcceptanceGauss("Erms", NbOfEvents, r, rms, rms, 2.0 * limit);
366     acc.EndOfAcceptance();
367   }
368   limit = DBL_MAX;
369 }
370 
371 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
372