Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 /// \file Run.cc 27 /// \brief Implementation of the Run class 28 // 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 33 #include "Run.hh" 34 35 #include "DetectorConstruction.hh" 36 #include "PrimaryGeneratorAction.hh" 37 38 #include "G4EmCalculator.hh" 39 #include "G4Gamma.hh" 40 #include "G4SystemOfUnits.hh" 41 #include "G4UnitsTable.hh" 42 43 #include <iomanip> 44 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 46 47 Run::Run(DetectorConstruction* det) : fDetector(det) {} 48 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 50 51 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy) 52 { 53 fParticle = particle; 54 fEkin = energy; 55 } 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 58 void Run::CountProcesses(G4String procName) 59 { 60 std::map<G4String, G4int>::iterator it = fProcCounter.find(procName); 61 if (it == fProcCounter.end()) { 62 fProcCounter[procName] = 1; 63 } 64 else { 65 fProcCounter[procName]++; 66 } 67 } 68 69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 70 71 void Run::SumTrack(G4double track) 72 { 73 fTotalCount++; 74 fSumTrack += track; 75 fSumTrack2 += track * track; 76 } 77 78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 79 80 void Run::SumeTransf(G4double energy) 81 { 82 fEnTransfer += energy; 83 } 84 85 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 86 87 void Run::Merge(const G4Run* run) 88 { 89 const Run* localRun = static_cast<const Run*>(run); 90 91 // pass information about primary particle 92 fParticle = localRun->fParticle; 93 fEkin = localRun->fEkin; 94 95 // map: processes count 96 std::map<G4String, G4int>::const_iterator it; 97 for (it = localRun->fProcCounter.begin(); it != localRun->fProcCounter.end(); ++it) { 98 G4String procName = it->first; 99 G4int localCount = it->second; 100 if (fProcCounter.find(procName) == fProcCounter.end()) { 101 fProcCounter[procName] = localCount; 102 } 103 else { 104 fProcCounter[procName] += localCount; 105 } 106 } 107 108 fTotalCount += localRun->fTotalCount; 109 fSumTrack += localRun->fSumTrack; 110 fSumTrack2 += localRun->fSumTrack2; 111 fEnTransfer += localRun->fEnTransfer; 112 113 G4Run::Merge(run); 114 } 115 116 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 117 118 void Run::EndOfRun() 119 { 120 G4int prec = 5; 121 G4int dfprec = G4cout.precision(prec); 122 123 // run condition 124 // 125 G4String partName = fParticle->GetParticleName(); 126 G4Material* material = fDetector->GetMaterial(); 127 G4double density = material->GetDensity(); 128 G4double tickness = fDetector->GetSize(); 129 130 G4cout << "\n ======================== run summary ======================\n"; 131 G4cout << "\n The run is: " << numberOfEvent << " " << partName << " of " 132 << G4BestUnit(fEkin, "Energy") << " through " << G4BestUnit(tickness, "Length") << " of " 133 << material->GetName() << " (density: " << G4BestUnit(density, "Volumic Mass") << ")" 134 << G4endl; 135 136 // frequency of processes 137 G4int survive = 0; 138 G4cout << "\n Process calls frequency --->"; 139 std::map<G4String, G4int>::iterator it; 140 for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) { 141 G4String procName = it->first; 142 G4int count = it->second; 143 G4cout << "\t" << procName << " = " << count; 144 if (procName == "Transportation") survive = count; 145 } 146 147 if (survive > 0) { 148 G4cout << "\n\n Nb of incident particles surviving after " 149 << G4BestUnit(fDetector->GetSize(), "Length") << " of " << material->GetName() << " : " 150 << survive << G4endl; 151 } 152 153 if (fTotalCount == 0) fTotalCount = 1; // force printing anyway 154 155 // compute mean free path and related quantities 156 // 157 G4double MeanFreePath = fSumTrack / fTotalCount; 158 G4double MeanTrack2 = fSumTrack2 / fTotalCount; 159 G4double rms = std::sqrt(std::fabs(MeanTrack2 - MeanFreePath * MeanFreePath)); 160 G4double CrossSection = 1. / MeanFreePath; 161 G4double massicMFP = MeanFreePath * density; 162 G4double massicCS = 1. / massicMFP; 163 164 G4cout << "\n\n MeanFreePath:\t" << G4BestUnit(MeanFreePath, "Length") << " +- " 165 << G4BestUnit(rms, "Length") << "\tmassic: " << G4BestUnit(massicMFP, "Mass/Surface") 166 << "\n CrossSection:\t" << CrossSection * cm << " cm^-1 " 167 << "\t\t\tmassic: " << G4BestUnit(massicCS, "Surface/Mass") << G4endl; 168 169 // compute energy transfer coefficient 170 // 171 G4double MeanTransfer = fEnTransfer / fTotalCount; 172 G4double massTransfCoef = massicCS * MeanTransfer / fEkin; 173 174 G4cout << "\n mean energy of charged secondaries: " << G4BestUnit(MeanTransfer, "Energy") 175 << "\n ---> mass_energy_transfer coef: " << G4BestUnit(massTransfCoef, "Surface/Mass") 176 << G4endl; 177 178 // check cross section from G4EmCalculator 179 // 180 G4cout << "\n Verification : " 181 << "crossSections from G4EmCalculator \n"; 182 183 G4EmCalculator emCalculator; 184 G4double sumc = 0.0; 185 for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) { 186 G4String procName = it->first; 187 G4double massSigma = 188 emCalculator.GetCrossSectionPerVolume(fEkin, fParticle, procName, material) / density; 189 if (fParticle == G4Gamma::Gamma()) 190 massSigma = 191 emCalculator.ComputeCrossSectionPerVolume(fEkin, fParticle, procName, material) / density; 192 sumc += massSigma; 193 G4cout << " " << procName << "= " << G4BestUnit(massSigma, "Surface/Mass"); 194 } 195 G4cout << " total= " << G4BestUnit(sumc, "Surface/Mass") << G4endl; 196 197 // remove all contents in fProcCounter 198 fProcCounter.clear(); 199 200 // restore default format 201 G4cout.precision(dfprec); 202 } 203 204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 205