Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/advanced/eRosita/physics/src/G4RDAtomicDeexcitation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 //
 28 // Authors: Elena Guardincerri (Elena.Guardincerri@ge.infn.it)
 29 //          Alfonso Mantero (Alfonso.Mantero@ge.infn.it)
 30 //
 31 // History:
 32 // -----------
 33 //  
 34 //  16 Sept 2001  First committed to cvs
 35 //  12 Sep  2003  Bug in auger production fixed
 36 //
 37 // -------------------------------------------------------------------
 38 
 39 #include "G4RDAtomicDeexcitation.hh"
 40 #include "Randomize.hh"
 41 #include "G4PhysicalConstants.hh"
 42 #include "G4SystemOfUnits.hh"
 43 #include "G4Gamma.hh"
 44 #include "G4Electron.hh"
 45 #include "G4RDAtomicTransitionManager.hh"
 46 #include "G4RDFluoTransition.hh"
 47 
 48 G4RDAtomicDeexcitation::G4RDAtomicDeexcitation():
 49   minGammaEnergy(100.*eV),
 50   minElectronEnergy(100.*eV),
 51   fAuger(false)
 52 {}
 53 
 54 G4RDAtomicDeexcitation::~G4RDAtomicDeexcitation()
 55 {}
 56 
 57 std::vector<G4DynamicParticle*>* G4RDAtomicDeexcitation::GenerateParticles(G4int Z,G4int givenShellId)
 58 { 
 59 
 60   std::vector<G4DynamicParticle*>* vectorOfParticles;
 61   
 62   vectorOfParticles = new std::vector<G4DynamicParticle*>;
 63   G4DynamicParticle* aParticle;
 64   G4int provShellId = 0;
 65   G4int counter = 0;
 66   
 67   // The aim of this loop is to generate more than one fluorecence photon 
 68   // from the same ionizing event 
 69   do
 70     {
 71       if (counter == 0) 
 72   // First call to GenerateParticles(...):
 73   // givenShellId is given by the process
 74   {
 75     provShellId = SelectTypeOfTransition(Z, givenShellId);
 76     //std::cout << "AtomicDeexcitation::Generate counter 0 - provShellId = "
 77     //<< provShellId << std::endl;
 78 
 79     if  ( provShellId >0) 
 80       {
 81         aParticle = GenerateFluorescence(Z,givenShellId,provShellId);  
 82         //std::cout << "AtomicDeexcitation::Generate Fluo counter 0 " << std::endl;
 83       }
 84     else if ( provShellId == -1)
 85       {
 86         aParticle = GenerateAuger(Z, givenShellId);
 87         //std::cout << "AtomicDeexcitation::Generate Auger counter 0 " << std::endl;
 88       }
 89     else
 90       {
 91         G4Exception("G4RDAtomicDeexcitation::GenerateParticles()",
 92                           "InvalidSetup", FatalException,
 93                           "Starting shell uncorrect: check it!");
 94       }
 95   }
 96       else 
 97   // Following calls to GenerateParticles(...):
 98   // newShellId is given by GenerateFluorescence(...)
 99   {
100     provShellId = SelectTypeOfTransition(Z,newShellId);
101     //std::cout << "AtomicDeexcitation::Generate counter 0 - provShellId = "
102     //<< provShellId << ", new ShellId = "<< newShellId
103     //<< std::endl;
104 
105 
106     if  (provShellId >0)
107       {
108         aParticle = GenerateFluorescence(Z,newShellId,provShellId);
109         //std::cout << "AtomicDeexcitation::Generate Fluo " << std::endl;
110       }
111     else if ( provShellId == -1)
112       {
113         aParticle = GenerateAuger(Z, newShellId);
114         //std::cout << "AtomicDeexcitation::Generate Auger " << std::endl;
115       }
116     else
117       {
118         G4Exception("G4RDAtomicDeexcitation::GenerateParticles()",
119                           "InvalidSetup", FatalException,
120                           "Starting shell uncorrect: check it!");
121       }
122   }
123       counter++;
124       if (aParticle != 0) {vectorOfParticles->push_back(aParticle);}
125       else {provShellId = -2;}
126     }
127   
128   // Look this in a particular way: only one auger emitted! //
129   while (provShellId > -2); 
130   
131   return vectorOfParticles;
132 }
133 
134 G4int G4RDAtomicDeexcitation::SelectTypeOfTransition(G4int Z, G4int shellId)
135 {
136   if (shellId <=0 ) 
137     {
138       G4Exception("G4RDAtomicDeexcitation::SelectTypeOfTransition()",
139                   "InvalidCondition", FatalException,
140                   "Zero or negative shellId!");
141     }
142 
143   const G4RDAtomicTransitionManager*  transitionManager = 
144         G4RDAtomicTransitionManager::Instance();
145   G4int provShellId = -1;
146   G4int shellNum = 0;
147   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);  
148   
149   //std::cout << "AtomicDeexcitation::SelectType -  NumberOfReachableShells = "
150   //<< maxNumOfShells<< std::endl;
151 
152   const G4RDFluoTransition* refShell = transitionManager->ReachableShell(Z,maxNumOfShells-1);
153 
154   // This loop gives shellNum the value of the index of shellId
155   // in the vector storing the list of the shells reachable through
156   // a radiative transition
157   if ( shellId <= refShell->FinalShellId())
158     {
159       while (shellId != transitionManager->ReachableShell(Z,shellNum)->FinalShellId())
160   {
161     if(shellNum ==maxNumOfShells-1)
162       {
163         break;
164       }
165     shellNum++;
166   }
167       G4int transProb = 0; //AM change 29/6/07 was 1
168    
169       G4double partialProb = G4UniformRand();      
170       G4double partSum = 0;
171       const G4RDFluoTransition* aShell = transitionManager->ReachableShell(Z,shellNum);      
172       G4int trSize =  (aShell->TransitionProbabilities()).size();
173     
174       // Loop over the shells wich can provide an electron for a 
175       // radiative transition towards shellId:
176       // in every loop the partial sum of the first transProb shells
177       // is calculated and compared with a random number [0,1].
178       // If the partial sum is greater, the shell whose index is transProb
179       // is chosen as the starting shell for a radiative transition
180       // and its identity is returned
181       // Else, terminateded the loop, -1 is returned
182       while(transProb < trSize){
183   
184    partSum += aShell->TransitionProbability(transProb);
185 
186    if(partialProb <= partSum)
187      {
188        provShellId = aShell->OriginatingShellId(transProb);
189        break;
190      }
191    transProb++;
192       }
193 
194       // here provShellId is the right one or is -1.
195       // if -1, the control is passed to the Auger generation part of the package 
196     }
197 
198 
199 
200   else 
201     {
202  
203      provShellId = -1;
204 
205     }
206   return provShellId;
207 }
208 
209 G4DynamicParticle* G4RDAtomicDeexcitation::GenerateFluorescence(G4int Z, 
210                     G4int shellId,
211                     G4int provShellId )
212 { 
213 
214 
215   const G4RDAtomicTransitionManager*  transitionManager = G4RDAtomicTransitionManager::Instance();
216   //  G4int provenienceShell = provShellId;
217 
218   //isotropic angular distribution for the outcoming photon
219   G4double newcosTh = 1.-2.*G4UniformRand();
220   G4double  newsinTh = std::sqrt(1.-newcosTh*newcosTh);
221   G4double newPhi = twopi*G4UniformRand();
222   
223   G4double xDir =  newsinTh*std::sin(newPhi);
224   G4double yDir = newsinTh*std::cos(newPhi);
225   G4double zDir = newcosTh;
226   
227   G4ThreeVector newGammaDirection(xDir,yDir,zDir);
228   
229   G4int shellNum = 0;
230   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);
231   
232   // find the index of the shell named shellId
233   while (shellId != transitionManager->
234    ReachableShell(Z,shellNum)->FinalShellId())
235     {
236       if(shellNum == maxNumOfShells-1)
237   {
238     break;
239   }
240       shellNum++;
241     }
242   // number of shell from wich an electron can reach shellId
243   size_t transitionSize = transitionManager->
244     ReachableShell(Z,shellNum)->OriginatingShellIds().size();
245   
246   size_t index = 0;
247   
248   // find the index of the shell named provShellId in the vector
249   // storing the shells from which shellId can be reached 
250   while (provShellId != transitionManager->
251    ReachableShell(Z,shellNum)->OriginatingShellId(index))
252     {
253       if(index ==  transitionSize-1)
254   {
255     break;
256   }
257       index++;
258     }
259   // energy of the gamma leaving provShellId for shellId
260   G4double transitionEnergy = transitionManager->
261     ReachableShell(Z,shellNum)->TransitionEnergy(index);
262   
263   // This is the shell where the new vacancy is: it is the same
264   // shell where the electron came from
265   newShellId = transitionManager->
266     ReachableShell(Z,shellNum)->OriginatingShellId(index);
267   
268   
269   G4DynamicParticle* newPart = new G4DynamicParticle(G4Gamma::Gamma(), 
270                  newGammaDirection,
271                  transitionEnergy);
272   return newPart;
273 }
274 
275 G4DynamicParticle* G4RDAtomicDeexcitation::GenerateAuger(G4int Z, G4int shellId)
276 {
277   if(!fAuger) return 0;
278   
279 
280   const G4RDAtomicTransitionManager*  transitionManager = 
281         G4RDAtomicTransitionManager::Instance();
282 
283 
284 
285   if (shellId <=0 ) 
286     {
287       G4Exception("G4RDAtomicDeexcitation::GenerateAuger()",
288                   "InvalidCondition", FatalException,
289                   "Zero or negative shellId!");
290     }
291   
292   // G4int provShellId = -1;
293   G4int maxNumOfShells = transitionManager->NumberOfReachableAugerShells(Z);  
294   
295   const G4RDAugerTransition* refAugerTransition = 
296         transitionManager->ReachableAugerShell(Z,maxNumOfShells-1);
297 
298 
299   // This loop gives to shellNum the value of the index of shellId
300   // in the vector storing the list of the vacancies in the variuos shells 
301   // that can originate a NON-radiative transition
302   
303   // ---- MGP ---- Next line commented out to remove compilation warning
304   // G4int p = refAugerTransition->FinalShellId();
305 
306   G4int shellNum = 0;
307 
308 
309   if ( shellId <= refAugerTransition->FinalShellId() ) 
310     //"FinalShellId" is final from the point of view of the elctron who makes the transition, 
311     // being the Id of the shell in which there is a vacancy
312     {
313       G4int pippo = transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId();
314       if (shellId  != pippo ) {
315   do { 
316     shellNum++;
317     if(shellNum == maxNumOfShells)
318       {
319 //          G4cout << "G4RDAtomicDeexcitation warning: No Auger transition found" <<  G4endl;
320 //        G4cout << "Absorbed enrgy deposited locally" << G4endl;
321         return 0;
322 //        //  G4Exception("G4RDAtomicDeexcitation: No Auger transition found");
323       }
324   }
325   while (shellId != (transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId()) ) ;
326       }
327     /*  {
328 
329     if(shellNum == maxNumOfShells-1)
330       {
331         G4Exception("G4RDAtomicDeexcitation: No Auger tramsition found");
332       }
333     shellNum++;
334     }*/
335     
336 
337 
338 
339       // Now we have that shellnum is the shellIndex of the shell named ShellId
340 
341       //      G4cout << " the index of the shell is: "<<shellNum<<G4endl;
342 
343       // But we have now to select two shells: one for the transition, 
344       // and another for the auger emission.
345 
346       G4int transitionLoopShellIndex = 0;      
347       G4double partSum = 0;
348       const G4RDAugerTransition* anAugerTransition = 
349             transitionManager->ReachableAugerShell(Z,shellNum);
350 
351       //      G4cout << " corresponding to the ID: "<< anAugerTransition->FinalShellId() << G4endl;
352 
353 
354       G4int transitionSize = 
355             (anAugerTransition->TransitionOriginatingShellIds())->size();
356       while (transitionLoopShellIndex < transitionSize) {
357 
358         std::vector<G4int>::const_iterator pos = 
359                anAugerTransition->TransitionOriginatingShellIds()->begin();
360 
361         G4int transitionLoopShellId = *(pos+transitionLoopShellIndex);
362         G4int numberOfPossibleAuger = 
363               (anAugerTransition->AugerTransitionProbabilities(transitionLoopShellId))->size();
364         G4int augerIndex = 0;
365         //      G4int partSum2 = 0;
366 
367 
368   if (augerIndex < numberOfPossibleAuger) {
369     
370     do 
371       {
372         G4double thisProb = anAugerTransition->AugerTransitionProbability(augerIndex, 
373                     transitionLoopShellId);
374         partSum += thisProb;
375         augerIndex++;
376         
377       } while (augerIndex < numberOfPossibleAuger);
378     }
379         transitionLoopShellIndex++;
380       }
381       
382 
383 
384       // Now we have the entire probability of an auger transition for the vacancy 
385       // located in shellNum (index of shellId) 
386 
387       // AM *********************** F I X E D **************************** AM
388       // Here we duplicate the previous loop, this time looking to the sum of the probabilities 
389       // to be under the random number shoot by G4 UniformRdandom. This could have been done in the 
390       // previuos loop, while integrating the probabilities. There is a bug that will be fixed 
391       // 5 minutes from now: a line:
392       // G4int numberOfPossibleAuger = (anAugerTransition->
393       // AugerTransitionProbabilities(transitionLoopShellId))->size();
394       // to be inserted.
395       // AM *********************** F I X E D **************************** AM
396 
397       // Remains to get the same result with a single loop.
398 
399       // AM *********************** F I X E D **************************** AM
400       // Another Bug: in EADL Auger Transition are normalized to all the transitions deriving from 
401       // a vacancy in one shell, but not all of these are present in data tables. So if a transition 
402       // doesn't occur in the main one a local energy deposition must occur, instead of (like now) 
403       // generating the last transition present in EADL data.
404       // AM *********************** F I X E D **************************** AM
405 
406 
407       G4double totalVacancyAugerProbability = partSum;
408 
409 
410       //And now we start to select the right auger transition and emission
411       G4int transitionRandomShellIndex = 0;
412       G4int transitionRandomShellId = 1;
413       G4int augerIndex = 0;
414       partSum = 0; 
415       G4double partialProb = G4UniformRand();
416       // G4int augerOriginatingShellId = 0;
417       
418       G4int numberOfPossibleAuger = 
419     (anAugerTransition->AugerTransitionProbabilities(transitionRandomShellId))->size();
420       G4bool foundFlag = false;
421 
422       while (transitionRandomShellIndex < transitionSize) {
423 
424         std::vector<G4int>::const_iterator pos = 
425                anAugerTransition->TransitionOriginatingShellIds()->begin();
426 
427         transitionRandomShellId = *(pos+transitionRandomShellIndex);
428         
429   augerIndex = 0;
430   numberOfPossibleAuger = (anAugerTransition-> 
431          AugerTransitionProbabilities(transitionRandomShellId))->size();
432 
433         while (augerIndex < numberOfPossibleAuger) {
434     G4double thisProb =anAugerTransition->AugerTransitionProbability(augerIndex, 
435                      transitionRandomShellId);
436 
437           partSum += thisProb;
438           
439           if (partSum >= (partialProb*totalVacancyAugerProbability) ) { // was /
440       foundFlag = true;
441       break;
442     }
443           augerIndex++;
444         }
445         if (partSum >= (partialProb*totalVacancyAugerProbability) ) {break;} // was /
446         transitionRandomShellIndex++;
447       }
448 
449       // Now we have the index of the shell from wich comes the auger electron (augerIndex), 
450       // and the id of the shell, from which the transition e- come (transitionRandomShellid)
451       // If no Transition has been found, 0 is returned.  
452 
453       if (!foundFlag) {return 0;}      
454       
455       // Isotropic angular distribution for the outcoming e-
456       G4double newcosTh = 1.-2.*G4UniformRand();
457       G4double  newsinTh = std::sqrt(1.-newcosTh*newcosTh);
458       G4double newPhi = twopi*G4UniformRand();
459       
460       G4double xDir =  newsinTh*std::sin(newPhi);
461       G4double yDir = newsinTh*std::cos(newPhi);
462       G4double zDir = newcosTh;
463       
464       G4ThreeVector newElectronDirection(xDir,yDir,zDir);
465       
466       // energy of the auger electron emitted
467       
468       
469       G4double transitionEnergy = anAugerTransition->AugerTransitionEnergy(augerIndex, transitionRandomShellId);
470       /*
471   G4cout << "AUger TransitionId " << anAugerTransition->FinalShellId() << G4endl;
472   G4cout << "augerIndex: " << augerIndex << G4endl;
473   G4cout << "transitionShellId: " << transitionRandomShellId << G4endl;
474       */
475       
476       // This is the shell where the new vacancy is: it is the same
477       // shell where the electron came from
478       newShellId = transitionRandomShellId;
479       
480       
481       G4DynamicParticle* newPart = new G4DynamicParticle(G4Electron::Electron(), 
482                newElectronDirection,
483                transitionEnergy);
484       return newPart;
485 
486     }
487   else 
488     {
489       //G4Exception("G4RDAtomicDeexcitation: no auger transition found");
490       return 0;
491     }
492   
493 }
494 
495 void G4RDAtomicDeexcitation::SetCutForSecondaryPhotons(G4double cut)
496 {
497   minGammaEnergy = cut;
498 }
499 
500 void G4RDAtomicDeexcitation::SetCutForAugerElectrons(G4double cut)
501 {
502   minElectronEnergy = cut;
503 }
504 
505 void G4RDAtomicDeexcitation::ActivateAugerElectronProduction(G4bool val)
506 {
507   fAuger = val;
508 }
509 
510 
511 
512 
513 
514 
515 
516