Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // -------------------------------------------------------------------- 27 /// 28 // 29 // 30 // -------------------------------------------------------------- 31 // 32 // Author: A. Forti 33 // Maria Grazia Pia (Maria.Grazia.Pia@cern.ch) 34 // 35 // History: 36 // -------- 37 // 02/03/1999 A. Forti 1st implementation 38 // 14.03.2000 Veronique Lefebure; 39 // Change initialisation of lowestEnergyLimit from 1.22 to 1.022. 40 // Note that the hard coded value 1.022 should be used instead of 41 // 2*electron_mass_c2 in order to agree with the value of the data bank EPDL97 42 // 24.04.01 V.Ivanchenko remove RogueWave 43 // 27.07.01 F.Longo correct bug in energy distribution 44 // 21.01.03 V.Ivanchenko Cut per region 45 // 25.03.03 F.Longo fix in angular distribution of e+/e- 46 // 24.04.03 V.Ivanchenko - Cut per region mfpt 47 // 48 // -------------------------------------------------------------- 49 50 #include "G4LowEnergyGammaConversion.hh" 51 52 #include "Randomize.hh" 53 #include "G4PhysicalConstants.hh" 54 #include "G4SystemOfUnits.hh" 55 #include "G4ParticleDefinition.hh" 56 #include "G4Track.hh" 57 #include "G4Step.hh" 58 #include "G4ForceCondition.hh" 59 #include "G4Gamma.hh" 60 #include "G4Electron.hh" 61 #include "G4DynamicParticle.hh" 62 #include "G4VParticleChange.hh" 63 #include "G4ThreeVector.hh" 64 #include "G4Positron.hh" 65 #include "G4IonisParamElm.hh" 66 #include "G4Material.hh" 67 #include "G4RDVCrossSectionHandler.hh" 68 #include "G4RDCrossSectionHandler.hh" 69 #include "G4RDVEMDataSet.hh" 70 #include "G4RDVDataSetAlgorithm.hh" 71 #include "G4RDLogLogInterpolation.hh" 72 #include "G4RDVRangeTest.hh" 73 #include "G4RDRangeTest.hh" 74 #include "G4MaterialCutsCouple.hh" 75 76 G4LowEnergyGammaConversion::G4LowEnergyGammaConversion(const G4String& processName) 77 : G4VDiscreteProcess(processName), 78 lowEnergyLimit(1.022000*MeV), 79 highEnergyLimit(100*GeV), 80 intrinsicLowEnergyLimit(1.022000*MeV), 81 intrinsicHighEnergyLimit(100*GeV), 82 smallEnergy(2.*MeV) 83 84 { 85 if (lowEnergyLimit < intrinsicLowEnergyLimit || 86 highEnergyLimit > intrinsicHighEnergyLimit) 87 { 88 G4Exception("G4LowEnergyGammaConversion::G4LowEnergyGammaConversion()", 89 "OutOfRange", FatalException, 90 "Energy limit outside intrinsic process validity range!"); 91 } 92 93 // The following pointer is owned by G4DataHandler 94 95 crossSectionHandler = new G4RDCrossSectionHandler(); 96 crossSectionHandler->Initialise(0,1.0220*MeV,100.*GeV,400); 97 meanFreePathTable = 0; 98 rangeTest = new G4RDRangeTest; 99 100 if (verboseLevel > 0) 101 { 102 G4cout << GetProcessName() << " is created " << G4endl 103 << "Energy range: " 104 << lowEnergyLimit / MeV << " MeV - " 105 << highEnergyLimit / GeV << " GeV" 106 << G4endl; 107 } 108 } 109 110 G4LowEnergyGammaConversion::~G4LowEnergyGammaConversion() 111 { 112 delete meanFreePathTable; 113 delete crossSectionHandler; 114 delete rangeTest; 115 } 116 117 void G4LowEnergyGammaConversion::BuildPhysicsTable(const G4ParticleDefinition& ) 118 { 119 120 crossSectionHandler->Clear(); 121 G4String crossSectionFile = "pair/pp-cs-"; 122 crossSectionHandler->LoadData(crossSectionFile); 123 124 delete meanFreePathTable; 125 meanFreePathTable = crossSectionHandler->BuildMeanFreePathForMaterials(); 126 } 127 128 G4VParticleChange* G4LowEnergyGammaConversion::PostStepDoIt(const G4Track& aTrack, 129 const G4Step& aStep) 130 { 131 // The energies of the e+ e- secondaries are sampled using the Bethe - Heitler 132 // cross sections with Coulomb correction. A modified version of the random 133 // number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15). 134 135 // Note 1 : Effects due to the breakdown of the Born approximation at low 136 // energy are ignored. 137 // Note 2 : The differential cross section implicitly takes account of 138 // pair creation in both nuclear and atomic electron fields. However triplet 139 // prodution is not generated. 140 141 aParticleChange.Initialize(aTrack); 142 143 const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple(); 144 145 const G4DynamicParticle* incidentPhoton = aTrack.GetDynamicParticle(); 146 G4double photonEnergy = incidentPhoton->GetKineticEnergy(); 147 G4ParticleMomentum photonDirection = incidentPhoton->GetMomentumDirection(); 148 149 G4double epsilon ; 150 G4double epsilon0 = electron_mass_c2 / photonEnergy ; 151 152 // Do it fast if photon energy < 2. MeV 153 if (photonEnergy < smallEnergy ) 154 { 155 epsilon = epsilon0 + (0.5 - epsilon0) * G4UniformRand(); 156 } 157 else 158 { 159 // Select randomly one element in the current material 160 const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy); 161 162 if (element == 0) 163 { 164 G4cout << "G4LowEnergyGammaConversion::PostStepDoIt - element = 0" << G4endl; 165 } 166 G4IonisParamElm* ionisation = element->GetIonisation(); 167 if (ionisation == 0) 168 { 169 G4cout << "G4LowEnergyGammaConversion::PostStepDoIt - ionisation = 0" << G4endl; 170 } 171 172 // Extract Coulomb factor for this Element 173 G4double fZ = 8. * (ionisation->GetlogZ3()); 174 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb()); 175 176 // Limits of the screening variable 177 G4double screenFactor = 136. * epsilon0 / (element->GetIonisation()->GetZ3()) ; 178 G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ; 179 G4double screenMin = std::min(4.*screenFactor,screenMax) ; 180 181 // Limits of the energy sampling 182 G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ; 183 G4double epsilonMin = std::max(epsilon0,epsilon1); 184 G4double epsilonRange = 0.5 - epsilonMin ; 185 186 // Sample the energy rate of the created electron (or positron) 187 G4double screen; 188 G4double gReject ; 189 190 G4double f10 = ScreenFunction1(screenMin) - fZ; 191 G4double f20 = ScreenFunction2(screenMin) - fZ; 192 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.); 193 G4double normF2 = std::max(1.5 * f20,0.); 194 195 do { 196 if (normF1 / (normF1 + normF2) > G4UniformRand() ) 197 { 198 epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.3333) ; 199 screen = screenFactor / (epsilon * (1. - epsilon)); 200 gReject = (ScreenFunction1(screen) - fZ) / f10 ; 201 } 202 else 203 { 204 epsilon = epsilonMin + epsilonRange * G4UniformRand(); 205 screen = screenFactor / (epsilon * (1 - epsilon)); 206 gReject = (ScreenFunction2(screen) - fZ) / f20 ; 207 } 208 } while ( gReject < G4UniformRand() ); 209 210 } // End of epsilon sampling 211 212 // Fix charges randomly 213 214 G4double electronTotEnergy; 215 G4double positronTotEnergy; 216 217 if (CLHEP::RandBit::shootBit()) 218 { 219 electronTotEnergy = (1. - epsilon) * photonEnergy; 220 positronTotEnergy = epsilon * photonEnergy; 221 } 222 else 223 { 224 positronTotEnergy = (1. - epsilon) * photonEnergy; 225 electronTotEnergy = epsilon * photonEnergy; 226 } 227 228 // Scattered electron (positron) angles. ( Z - axis along the parent photon) 229 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211), 230 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977) 231 232 G4double u; 233 const G4double a1 = 0.625; 234 G4double a2 = 3. * a1; 235 // G4double d = 27. ; 236 237 // if (9. / (9. + d) > G4UniformRand()) 238 if (0.25 > G4UniformRand()) 239 { 240 u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ; 241 } 242 else 243 { 244 u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ; 245 } 246 247 G4double thetaEle = u*electron_mass_c2/electronTotEnergy; 248 G4double thetaPos = u*electron_mass_c2/positronTotEnergy; 249 G4double phi = twopi * G4UniformRand(); 250 251 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle); 252 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos); 253 254 255 // Kinematics of the created pair: 256 // the electron and positron are assumed to have a symetric angular 257 // distribution with respect to the Z axis along the parent photon 258 259 G4double localEnergyDeposit = 0. ; 260 261 aParticleChange.SetNumberOfSecondaries(2) ; 262 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ; 263 264 // Generate the electron only if with large enough range w.r.t. cuts and safety 265 266 G4double safety = aStep.GetPostStepPoint()->GetSafety(); 267 268 if (rangeTest->Escape(G4Electron::Electron(),couple,electronKineEnergy,safety)) 269 { 270 G4ThreeVector electronDirection (dxEle, dyEle, dzEle); 271 electronDirection.rotateUz(photonDirection); 272 273 G4DynamicParticle* particle1 = new G4DynamicParticle (G4Electron::Electron(), 274 electronDirection, 275 electronKineEnergy); 276 aParticleChange.AddSecondary(particle1) ; 277 } 278 else 279 { 280 localEnergyDeposit += electronKineEnergy ; 281 } 282 283 // The e+ is always created (even with kinetic energy = 0) for further annihilation 284 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ; 285 286 // Is the local energy deposit correct, if the positron is always created? 287 if (! (rangeTest->Escape(G4Positron::Positron(),couple,positronKineEnergy,safety))) 288 { 289 localEnergyDeposit += positronKineEnergy ; 290 positronKineEnergy = 0. ; 291 } 292 293 G4ThreeVector positronDirection (dxPos, dyPos, dzPos); 294 positronDirection.rotateUz(photonDirection); 295 296 // Create G4DynamicParticle object for the particle2 297 G4DynamicParticle* particle2 = new G4DynamicParticle(G4Positron::Positron(), 298 positronDirection, positronKineEnergy); 299 aParticleChange.AddSecondary(particle2) ; 300 301 aParticleChange.ProposeLocalEnergyDeposit(localEnergyDeposit) ; 302 303 // Kill the incident photon 304 aParticleChange.ProposeMomentumDirection(0.,0.,0.) ; 305 aParticleChange.ProposeEnergy(0.) ; 306 aParticleChange.ProposeTrackStatus(fStopAndKill) ; 307 308 // Reset NbOfInteractionLengthLeft and return aParticleChange 309 return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep); 310 } 311 312 G4bool G4LowEnergyGammaConversion::IsApplicable(const G4ParticleDefinition& particle) 313 { 314 return ( &particle == G4Gamma::Gamma() ); 315 } 316 317 G4double G4LowEnergyGammaConversion::GetMeanFreePath(const G4Track& track, 318 G4double, // previousStepSize 319 G4ForceCondition*) 320 { 321 const G4DynamicParticle* photon = track.GetDynamicParticle(); 322 G4double energy = photon->GetKineticEnergy(); 323 const G4MaterialCutsCouple* couple = track.GetMaterialCutsCouple(); 324 size_t materialIndex = couple->GetIndex(); 325 326 G4double meanFreePath; 327 if (energy > highEnergyLimit) meanFreePath = meanFreePathTable->FindValue(highEnergyLimit,materialIndex); 328 else if (energy < lowEnergyLimit) meanFreePath = DBL_MAX; 329 else meanFreePath = meanFreePathTable->FindValue(energy,materialIndex); 330 return meanFreePath; 331 } 332 333 G4double G4LowEnergyGammaConversion::ScreenFunction1(G4double screenVariable) 334 { 335 // Compute the value of the screening function 3*phi1 - phi2 336 337 G4double value; 338 339 if (screenVariable > 1.) 340 value = 42.24 - 8.368 * std::log(screenVariable + 0.952); 341 else 342 value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable); 343 344 return value; 345 } 346 347 G4double G4LowEnergyGammaConversion::ScreenFunction2(G4double screenVariable) 348 { 349 // Compute the value of the screening function 1.5*phi1 - 0.5*phi2 350 351 G4double value; 352 353 if (screenVariable > 1.) 354 value = 42.24 - 8.368 * std::log(screenVariable + 0.952); 355 else 356 value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable); 357 358 return value; 359 } 360