Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4CoupledTransportation.cc 74729 2013-10-21 08:51:35Z gcosmo $ 27 // 28 // 28 // ------------------------------------------- 29 // ------------------------------------------------------------ 29 // GEANT 4 class implementation 30 // GEANT 4 class implementation 30 // << 31 // =========================================== 31 // ======================================================================= >> 32 // Modified: >> 33 // 13 May 2006, J. Apostolakis: Revised for parallel navigation (PathFinder) >> 34 // 19 Jan 2006, P.MoraDeFreitas: Fix for suspended tracks (StartTracking) >> 35 // 11 Aug 2004, M.Asai: Add G4VSensitiveDetector* for updating stepPoint. >> 36 // 21 June 2003, J.Apostolakis: Calling field manager with >> 37 // track, to enable it to configure its accuracy >> 38 // 13 May 2003, J.Apostolakis: Zero field areas now taken into >> 39 // account correclty in all cases (thanks to W Pokorski). >> 40 // 29 June 2001, J.Apostolakis, D.Cote-Ahern, P.Gumplinger: >> 41 // correction for spin tracking >> 42 // 20 Febr 2001, J.Apostolakis: update for new FieldTrack >> 43 // 22 Sept 2000, V.Grichine: update of Kinetic Energy 32 // Created: 19 March 1997, J. Apostolakis 44 // Created: 19 March 1997, J. Apostolakis 33 // =========================================== 45 // ======================================================================= 34 46 35 #include "G4CoupledTransportation.hh" 47 #include "G4CoupledTransportation.hh" 36 #include "G4TransportationProcessType.hh" << 37 #include "G4TransportationLogger.hh" << 38 48 39 #include "G4PhysicalConstants.hh" 49 #include "G4PhysicalConstants.hh" 40 #include "G4SystemOfUnits.hh" 50 #include "G4SystemOfUnits.hh" >> 51 #include "G4TransportationProcessType.hh" 41 #include "G4ProductionCutsTable.hh" 52 #include "G4ProductionCutsTable.hh" 42 #include "G4ParticleTable.hh" 53 #include "G4ParticleTable.hh" 43 #include "G4ChordFinder.hh" 54 #include "G4ChordFinder.hh" 44 #include "G4Field.hh" 55 #include "G4Field.hh" 45 #include "G4FieldTrack.hh" << 46 #include "G4FieldManagerStore.hh" 56 #include "G4FieldManagerStore.hh" 47 #include "G4PathFinder.hh" << 48 << 49 #include "G4PropagatorInField.hh" << 50 #include "G4TransportationManager.hh" << 51 57 52 class G4VSensitiveDetector; 58 class G4VSensitiveDetector; 53 59 54 G4bool G4CoupledTransportation::fSignifyStepIn << 55 // This mode must apply to all threads << 56 << 57 ////////////////////////////////////////////// 60 ////////////////////////////////////////////////////////////////////////// 58 // 61 // 59 // Constructor 62 // Constructor 60 63 61 G4CoupledTransportation::G4CoupledTransportati 64 G4CoupledTransportation::G4CoupledTransportation( G4int verbosity ) 62 : G4Transportation( verbosity, "CoupledTrans << 65 : G4VProcess( G4String("CoupledTransportation"), fTransportation ), >> 66 fParticleIsLooping( false ), >> 67 fPreviousSftOrigin( 0.,0.,0. ), 63 fPreviousMassSafety( 0.0 ), 68 fPreviousMassSafety( 0.0 ), 64 fPreviousFullSafety( 0.0 ), 69 fPreviousFullSafety( 0.0 ), >> 70 65 fMassGeometryLimitedStep( false ), 71 fMassGeometryLimitedStep( false ), 66 fFirstStepInMassVolume( true ) << 72 fAnyGeometryLimitedStep( false ), >> 73 endpointDistance( -1.0 ), // fEndPointDistance( -1.0 ), >> 74 >> 75 fThreshold_Warning_Energy( 100 * MeV ), >> 76 fThreshold_Important_Energy( 250 * MeV ), >> 77 fThresholdTrials( 10 ), >> 78 fNoLooperTrials( 0 ), >> 79 fSumEnergyKilled( 0.0 ), fMaxEnergyKilled( 0.0 ), >> 80 fUseMagneticMoment( false ), >> 81 fVerboseLevel( verbosity ) 67 { 82 { >> 83 // set Process Sub Type 68 SetProcessSubType(static_cast<G4int>(COUPLED 84 SetProcessSubType(static_cast<G4int>(COUPLED_TRANSPORTATION)); 69 // SetVerboseLevel is called in the construc << 70 85 71 if( verboseLevel > 0 ) << 86 G4TransportationManager* transportMgr ; >> 87 >> 88 transportMgr = G4TransportationManager::GetTransportationManager() ; >> 89 >> 90 fMassNavigator = transportMgr->GetNavigatorForTracking() ; >> 91 fFieldPropagator = transportMgr->GetPropagatorInField() ; >> 92 // fGlobalFieldMgr = transportMgr->GetFieldManager() ; >> 93 fNavigatorId= transportMgr->ActivateNavigator( fMassNavigator ); >> 94 if( fVerboseLevel > 0 ) 72 { 95 { 73 G4cout << " G4CoupledTransportation constr 96 G4cout << " G4CoupledTransportation constructor: ----- " << G4endl; 74 G4cout << " Verbose level is " << verboseL << 97 G4cout << " Verbose level is " << fVerboseLevel << G4endl; 75 G4cout << " Reports First/Last in " << 98 G4cout << " Navigator Id obtained in G4CoupledTransportation constructor " 76 << (fSignifyStepInAnyVolume ? " any << 99 << fNavigatorId << G4endl; 77 << " geometry " << G4endl; << 78 } 100 } 79 fPathFinder= G4PathFinder::GetInstance(); 101 fPathFinder= G4PathFinder::GetInstance(); >> 102 fpSafetyHelper = transportMgr->GetSafetyHelper(); // New >> 103 >> 104 // Following assignment is to fix small memory leak from simple use of 'new' >> 105 static G4ThreadLocal G4TouchableHandle* pNullTouchableHandle = 0; >> 106 if ( !pNullTouchableHandle) { pNullTouchableHandle = new G4TouchableHandle; } >> 107 fCurrentTouchableHandle = *pNullTouchableHandle; >> 108 // Points to (G4VTouchable*) 0 >> 109 >> 110 G4FieldManager *globalFieldMgr= transportMgr->GetFieldManager(); >> 111 fGlobalFieldExists= globalFieldMgr ? globalFieldMgr->GetDetectorField() : 0 ; >> 112 >> 113 fEndGlobalTimeComputed = false; >> 114 fCandidateEndGlobalTime = 0; 80 } 115 } 81 116 82 ////////////////////////////////////////////// 117 ////////////////////////////////////////////////////////////////////////// 83 118 84 G4CoupledTransportation::~G4CoupledTransportat 119 G4CoupledTransportation::~G4CoupledTransportation() 85 { 120 { >> 121 // fCurrentTouchableHandle is a data member - no deletion required >> 122 >> 123 if( (fVerboseLevel > 0) || (fSumEnergyKilled > 0.0 ) ) >> 124 { >> 125 G4cout << " G4CoupledTransportation: Statistics for looping particles " << G4endl; >> 126 G4cout << " Sum of energy of loopers killed: " << fSumEnergyKilled << G4endl; >> 127 G4cout << " Max energy of loopers killed: " << fMaxEnergyKilled << G4endl; >> 128 } 86 } 129 } 87 130 88 ////////////////////////////////////////////// 131 ////////////////////////////////////////////////////////////////////////// 89 // 132 // 90 // Responsibilities: 133 // Responsibilities: 91 // Find whether the geometry limits the Ste 134 // Find whether the geometry limits the Step, and to what length 92 // Calculate the new value of the safety an 135 // Calculate the new value of the safety and return it. 93 // Store the final time, position and momen 136 // Store the final time, position and momentum. 94 137 95 G4double G4CoupledTransportation:: 138 G4double G4CoupledTransportation:: 96 AlongStepGetPhysicalInteractionLength( const G 139 AlongStepGetPhysicalInteractionLength( const G4Track& track, 97 G 140 G4double, // previousStepSize 98 G 141 G4double currentMinimumStep, 99 G 142 G4double& proposedSafetyForStart, 100 G 143 G4GPILSelection* selection ) 101 { 144 { 102 G4double geometryStepLength; 145 G4double geometryStepLength; 103 G4double startFullSafety= 0.0; // estimated << 146 G4double startMassSafety= 0.0; // estimated safety for start point (mass geometry) 104 G4double safetyProposal= -1.0; // local copy << 147 G4double startFullSafety= 0.0; // estimated safety for start point (all geometries) >> 148 G4double safetyProposal= -1.0; // local copy of proposal 105 149 106 G4ThreeVector EndUnitMomentum ; 150 G4ThreeVector EndUnitMomentum ; 107 G4double lengthAlongCurve = 0.0 ; << 151 G4double lengthAlongCurve=0.0 ; 108 152 109 fParticleIsLooping = false ; 153 fParticleIsLooping = false ; 110 154 111 // Initial actions moved to StartTrack() 155 // Initial actions moved to StartTrack() 112 // -------------------------------------- 156 // -------------------------------------- 113 // Note: in case another process changes tou 157 // Note: in case another process changes touchable handle 114 // it will be necessary to add here (for 158 // it will be necessary to add here (for all steps) 115 // fCurrentTouchableHandle = aTrack->GetTouc 159 // fCurrentTouchableHandle = aTrack->GetTouchableHandle(); 116 160 117 // GPILSelection is set to defaule value of 161 // GPILSelection is set to defaule value of CandidateForSelection 118 // It is a return value 162 // It is a return value 119 // 163 // 120 *selection = CandidateForSelection ; 164 *selection = CandidateForSelection ; 121 165 122 fFirstStepInMassVolume = fNewTrack || fMassG << 123 fFirstStepInVolume = fNewTrack || fGeome << 124 << 125 #ifdef G4DEBUG_TRANSPORT << 126 G4cout << " CoupledTransport::AlongStep GPI << 127 << " 1st-step: any= " <<fFirstStep << 128 << fGeometryLimitedStep << " ) " << 129 << " mass= " << fFirstStepI << 130 << fMassGeometryLimitedStep << " ) " << 131 << " newTrack= " << fNewTrack << G4e << 132 #endif << 133 << 134 // fLastStepInVolume= false; << 135 fNewTrack = false; << 136 << 137 // Get initial Energy/Momentum of the track 166 // Get initial Energy/Momentum of the track 138 // 167 // 139 const G4DynamicParticle* pParticle = tra 168 const G4DynamicParticle* pParticle = track.GetDynamicParticle() ; 140 const G4ParticleDefinition* pParticleDef = 169 const G4ParticleDefinition* pParticleDef = pParticle->GetDefinition() ; 141 G4ThreeVector startMomentumDir = pPart 170 G4ThreeVector startMomentumDir = pParticle->GetMomentumDirection() ; 142 G4ThreeVector startPosition = track 171 G4ThreeVector startPosition = track.GetPosition() ; 143 G4VPhysicalVolume* currentVolume= track.GetV 172 G4VPhysicalVolume* currentVolume= track.GetVolume(); 144 173 145 #ifdef G4DEBUG_TRANSPORT 174 #ifdef G4DEBUG_TRANSPORT 146 if( verboseLevel > 1 ) << 175 if( fVerboseLevel > 1 ) 147 { 176 { 148 G4cout << "G4CoupledTransportation::AlongS 177 G4cout << "G4CoupledTransportation::AlongStepGPIL> called in volume " 149 << currentVolume->GetName() << G4en 178 << currentVolume->GetName() << G4endl; 150 } 179 } 151 #endif 180 #endif 152 // G4double theTime = track.GetGlob 181 // G4double theTime = track.GetGlobalTime() ; 153 182 154 // The Step Point safety can be limited by o 183 // The Step Point safety can be limited by other geometries and/or the 155 // assumptions of any process - it's not alw 184 // assumptions of any process - it's not always the geometrical safety. 156 // We calculate the starting point's isotrop 185 // We calculate the starting point's isotropic safety here. 157 // 186 // 158 G4ThreeVector OriginShift = startPosition - 187 G4ThreeVector OriginShift = startPosition - fPreviousSftOrigin ; 159 G4double MagSqShift = OriginShift.mag2 188 G4double MagSqShift = OriginShift.mag2() ; >> 189 startMassSafety = 0.0; 160 startFullSafety= 0.0; 190 startFullSafety= 0.0; 161 191 162 // Recall that FullSafety <= MassSafety << 192 // Recall that FullSafety <= MassSafety 163 // Original: if( MagSqShift < sqr(fPreviousM 193 // Original: if( MagSqShift < sqr(fPreviousMassSafety) ) { 164 if( MagSqShift < sqr(fPreviousFullSafety) ) << 194 if( MagSqShift < sqr(fPreviousFullSafety) ) // Revision proposed by Alex H, 2 Oct 07 165 { 195 { 166 G4double mag_shift= std::sqrt(MagSqShift) 196 G4double mag_shift= std::sqrt(MagSqShift); >> 197 startMassSafety = std::max( (fPreviousMassSafety - mag_shift), 0.0); 167 startFullSafety = std::max( (fPreviousFul 198 startFullSafety = std::max( (fPreviousFullSafety - mag_shift), 0.0); 168 // Need to be consistent between full s 199 // Need to be consistent between full safety with Mass safety 169 // in order reproduce results in simple << 200 // in order reproduce results in simple case --> use same calculation method 170 // --> use same calculation method << 171 201 172 // Only compute full safety if massSafety 202 // Only compute full safety if massSafety > 0. Else it remains 0 173 // startFullSafety = fPathFinder->Compute << 203 // startFullSafety = fPathFinder->ComputeSafety( startPosition ); 174 } 204 } 175 205 176 // Is the particle charged or has it a magne 206 // Is the particle charged or has it a magnetic moment? 177 // 207 // 178 G4double particleCharge = pParticle->GetChar 208 G4double particleCharge = pParticle->GetCharge() ; 179 G4double magneticMoment = pParticle->GetMagn 209 G4double magneticMoment = pParticle->GetMagneticMoment() ; 180 G4double restMass = pParticle->GetMass << 210 G4double restMass = pParticleDef->GetPDGMass() ; 181 211 182 fMassGeometryLimitedStep = false ; // Set d 212 fMassGeometryLimitedStep = false ; // Set default - alex 183 fGeometryLimitedStep = false; << 213 fAnyGeometryLimitedStep = false; >> 214 >> 215 // fEndGlobalTimeComputed = false ; 184 216 185 // There is no need to locate the current vo 217 // There is no need to locate the current volume. It is Done elsewhere: 186 // On track construction 218 // On track construction 187 // By the tracking, after all AlongStepDoI 219 // By the tracking, after all AlongStepDoIts, in "Relocation" 188 220 189 // Check if the particle has a force, EM or 221 // Check if the particle has a force, EM or gravitational, exerted on it 190 // 222 // 191 G4FieldManager* fieldMgr= nullptr; << 223 G4FieldManager* fieldMgr=0; 192 G4bool fieldExertsForce = false ; 224 G4bool fieldExertsForce = false ; 193 225 194 const G4Field* ptrField= nullptr; << 226 G4bool gravityOn = false; >> 227 const G4Field* ptrField= 0; 195 228 196 fieldMgr = fFieldPropagator->FindAndSetField 229 fieldMgr = fFieldPropagator->FindAndSetFieldManager( track.GetVolume() ); 197 G4bool eligibleEM = (particleCharge != 0.0) << 230 if( fieldMgr != 0 ) 198 || ( fUseMagneticMoment && << 199 G4bool eligibleGrav = fUseGravity && (restM << 200 << 201 if( (fieldMgr!=nullptr) && (eligibleEM||elig << 202 { 231 { 203 // Message the field Manager, to configur 232 // Message the field Manager, to configure it for this track 204 // << 205 fieldMgr->ConfigureForTrack( &track ); 233 fieldMgr->ConfigureForTrack( &track ); >> 234 // Here it can transition from a null field-ptr to a finite field 206 235 207 // The above call can transition from a n << 208 // If the field manager has no field ptr, 236 // If the field manager has no field ptr, the field is zero 209 // by definition ( = there is no field ! << 237 // by definition ( = there is no field ! ) 210 // << 211 ptrField= fieldMgr->GetDetectorField(); 238 ptrField= fieldMgr->GetDetectorField(); 212 239 213 if( ptrField != nullptr) << 240 if( ptrField != 0) 214 { 241 { 215 fieldExertsForce = eligibleEM << 242 gravityOn= ptrField->IsGravityActive(); 216 || ( eligibleGrav && ptrField->I << 243 if( (particleCharge != 0.0) >> 244 || (fUseMagneticMoment && (magneticMoment != 0.0) ) >> 245 || (gravityOn && (restMass != 0.0)) >> 246 ) >> 247 { >> 248 fieldExertsForce = true; >> 249 } 217 } 250 } 218 } 251 } 219 G4double momentumMagnitude = pParticle->GetT 252 G4double momentumMagnitude = pParticle->GetTotalMomentum() ; 220 253 221 if( fieldExertsForce ) 254 if( fieldExertsForce ) 222 { 255 { 223 auto equationOfMotion= fFieldPropagator-> << 256 G4EquationOfMotion* equationOfMotion = 0; 224 << 257 225 G4ChargeState chargeState(particleCharge, << 258 // equationOfMotion = 226 magneticMoment, << 259 // (fFieldPropagator->GetChordFinder()->GetIntegrationDriver()->GetStepper()) 227 pParticleDef->G << 260 // ->GetEquationOfMotion(); >> 261 >> 262 // Consolidate into auxiliary method G4EquationOfMotion* GetEquationOfMotion() >> 263 G4MagIntegratorStepper* pStepper= 0; >> 264 >> 265 G4ChordFinder* pChordFinder= fFieldPropagator->GetChordFinder(); >> 266 if( pChordFinder ) >> 267 { >> 268 G4MagInt_Driver* pIntDriver= 0; >> 269 >> 270 pIntDriver= pChordFinder->GetIntegrationDriver(); >> 271 if( pIntDriver ) >> 272 { >> 273 pStepper= pIntDriver->GetStepper(); >> 274 } >> 275 if( pStepper ) >> 276 { >> 277 equationOfMotion= pStepper->GetEquationOfMotion(); >> 278 } >> 279 } >> 280 >> 281 G4ChargeState chargeState(particleCharge, // The charge can change (dynamic) >> 282 pParticleDef->GetPDGSpin(), >> 283 magneticMoment); >> 284 >> 285 // End of proto GetEquationOfMotion() 228 if( equationOfMotion ) 286 if( equationOfMotion ) 229 { 287 { 230 equationOfMotion->SetChargeMomentumMas 288 equationOfMotion->SetChargeMomentumMass( chargeState, 231 289 momentumMagnitude, 232 290 restMass ); 233 } 291 } 234 #ifdef G4DEBUG_TRANSPORT << 235 else << 236 { << 237 G4cerr << " ERROR in G4CoupledTranspor << 238 << "Cannot find valid Equation << 239 << " Unable to pass Charge, Mom << 240 } << 241 #endif << 242 } 292 } >> 293 G4ThreeVector spin = track.GetPolarization() ; >> 294 G4FieldTrack theFieldTrack = G4FieldTrack( startPosition, >> 295 track.GetMomentumDirection(), >> 296 0.0, >> 297 track.GetKineticEnergy(), >> 298 restMass, >> 299 0.0, // UNUSED: track.GetVelocity(), >> 300 track.GetGlobalTime(), // Lab. >> 301 track.GetProperTime(), // Part. >> 302 &spin ) ; 243 303 244 G4ThreeVector polarizationVec = track.GetPo << 245 G4FieldTrack aFieldTrack = G4FieldTrack(sta << 246 tra << 247 tra << 248 tra << 249 res << 250 par << 251 pol << 252 pPa << 253 0.0 << 254 pPa << 255 G4int stepNo= track.GetCurrentStepNumber(); 304 G4int stepNo= track.GetCurrentStepNumber(); 256 305 257 ELimited limitedStep; 306 ELimited limitedStep; 258 G4FieldTrack endTrackState('a'); // Defaul 307 G4FieldTrack endTrackState('a'); // Default values 259 308 260 fMassGeometryLimitedStep = false ; // de << 309 fMassGeometryLimitedStep = false ; // default 261 fGeometryLimitedStep = false; << 310 fAnyGeometryLimitedStep = false ; 262 if( currentMinimumStep > 0 ) 311 if( currentMinimumStep > 0 ) 263 { 312 { 264 G4double newMassSafety= 0.0; // tem 313 G4double newMassSafety= 0.0; // temp. for recalculation 265 314 266 // Do the Transport in the field (non re 315 // Do the Transport in the field (non recti-linear) 267 // 316 // 268 lengthAlongCurve = fPathFinder->ComputeS << 317 lengthAlongCurve = fPathFinder->ComputeStep( theFieldTrack, 269 318 currentMinimumStep, 270 << 319 fNavigatorId, 271 320 stepNo, 272 321 newMassSafety, 273 322 limitedStep, 274 323 endTrackState, 275 324 currentVolume ) ; >> 325 // G4cout << " PathFinder ComputeStep returns " << lengthAlongCurve << G4endl; 276 326 277 G4double newFullSafety= fPathFinder->Get 327 G4double newFullSafety= fPathFinder->GetCurrentSafety(); 278 // this was estimated already in step << 328 // this was estimated already in step above >> 329 // G4double newFullStep= fPathFinder->GetMinimumStep(); 279 330 280 if( limitedStep == kUnique || limitedSte 331 if( limitedStep == kUnique || limitedStep == kSharedTransport ) 281 { 332 { 282 fMassGeometryLimitedStep = true ; << 333 fMassGeometryLimitedStep = true ; 283 } 334 } 284 << 285 fGeometryLimitedStep = (fPathFinder->Get << 286 335 287 #ifdef G4DEBUG_TRANSPORT << 336 fAnyGeometryLimitedStep = (fPathFinder->GetNumberGeometriesLimitingStep() != 0); 288 if( fMassGeometryLimitedStep && !fGeomet << 337 >> 338 //#ifdef G4DEBUG_TRANSPORT >> 339 if( fMassGeometryLimitedStep && !fAnyGeometryLimitedStep ) 289 { 340 { 290 std::ostringstream message; << 341 G4cerr << " Error in determining geometries limiting the step" << G4endl; 291 message << " ERROR in determining geom << 342 G4cerr << " Limiting: mass=" << fMassGeometryLimitedStep 292 message << " Limiting: mass=" << fMa << 343 << " any= " << fAnyGeometryLimitedStep << G4endl; 293 << " any= " << fGeometryLimite << 344 G4Exception("G4CoupledTransportation::AlongStepGetPhysicalInteractionLength()", 294 message << "Incompatible conditions - << 345 "PathFinderConfused", FatalException, 295 G4Exception("G4CoupledTransportation:: << 346 "Incompatible conditions - was limited by a geometry?"); 296 "PathFinderConfused", Fata << 297 } 347 } 298 #endif << 348 //#endif >> 349 >> 350 // Other potential >> 351 // fAnyGeometryLimitedStep = newFullStep < currentMinimumStep; >> 352 // ^^^ Not good enough; >> 353 // Must compare with maximum requested step size >> 354 // (eg in case another process requested bigger, got this!) 299 355 300 geometryStepLength = std::min( lengthAlo 356 geometryStepLength = std::min( lengthAlongCurve, currentMinimumStep); 301 357 302 // Momentum: Magnitude and direction ca 358 // Momentum: Magnitude and direction can be changed too now ... 303 // 359 // 304 fMomentumChanged = true ; 360 fMomentumChanged = true ; 305 fTransportEndMomentumDir = endTrackState 361 fTransportEndMomentumDir = endTrackState.GetMomentumDir() ; 306 362 307 // Remember last safety origin & value. 363 // Remember last safety origin & value. 308 fPreviousSftOrigin = startPosition ; 364 fPreviousSftOrigin = startPosition ; 309 fPreviousMassSafety = newMassSafety ; 365 fPreviousMassSafety = newMassSafety ; 310 fPreviousFullSafety = newFullSafety ; 366 fPreviousFullSafety = newFullSafety ; 311 // fpSafetyHelper->SetCurrentSafety( new 367 // fpSafetyHelper->SetCurrentSafety( newFullSafety, startPosition); 312 368 313 #ifdef G4DEBUG_TRANSPORT 369 #ifdef G4DEBUG_TRANSPORT 314 if( verboseLevel > 1 ) << 370 if( fVerboseLevel > 1 ) 315 { 371 { 316 G4cout << "G4Transport:CompStep> " 372 G4cout << "G4Transport:CompStep> " 317 << " called the pathfinder for 373 << " called the pathfinder for a new step at " << startPosition 318 << " and obtained step = " << l 374 << " and obtained step = " << lengthAlongCurve << G4endl; 319 G4cout << " New safety (preStep) = " << 375 G4cout << " New safety (preStep) = " << newMassSafety >> 376 << " versus precalculated = " << startMassSafety << G4endl; 320 } 377 } 321 #endif 378 #endif 322 379 323 // Store as best estimate value 380 // Store as best estimate value >> 381 startMassSafety = newMassSafety ; 324 startFullSafety = newFullSafety ; 382 startFullSafety = newFullSafety ; 325 383 326 // Get the End-Position and End-Momentum 384 // Get the End-Position and End-Momentum (Dir-ection) 327 fTransportEndPosition = endTrackState.Ge 385 fTransportEndPosition = endTrackState.GetPosition() ; 328 fTransportEndKineticEnergy = endTrackSt 386 fTransportEndKineticEnergy = endTrackState.GetKineticEnergy() ; 329 } 387 } 330 else 388 else 331 { 389 { 332 geometryStepLength = lengthAlongCurve= 390 geometryStepLength = lengthAlongCurve= 0.0 ; 333 fMomentumChanged = false ; 391 fMomentumChanged = false ; 334 // fMassGeometryLimitedStep = false ; 392 // fMassGeometryLimitedStep = false ; // --- ??? 335 // fGeometryLimitedStep = true; << 393 // fAnyGeometryLimitedStep = true; 336 fTransportEndMomentumDir = track.GetMome 394 fTransportEndMomentumDir = track.GetMomentumDirection(); 337 fTransportEndKineticEnergy = track.GetK 395 fTransportEndKineticEnergy = track.GetKineticEnergy(); 338 396 339 fTransportEndPosition = startPosition; 397 fTransportEndPosition = startPosition; 340 << 398 // If the step length requested is 0, and we are on a boundary 341 endTrackState= aFieldTrack; // Ensures << 399 // then a boundary will also limit the step. >> 400 if( startMassSafety == 0.0 ) >> 401 { >> 402 fMassGeometryLimitedStep = true ; >> 403 fAnyGeometryLimitedStep = true; >> 404 } >> 405 // TODO: Add explicit logical status for being at a boundary 342 } 406 } 343 // G4FieldTrack aTrackState(endTrackState); 407 // G4FieldTrack aTrackState(endTrackState); 344 408 345 if( !fieldExertsForce ) 409 if( !fieldExertsForce ) 346 { 410 { 347 fParticleIsLooping = false ; 411 fParticleIsLooping = false ; 348 fMomentumChanged = false ; 412 fMomentumChanged = false ; 349 fEndGlobalTimeComputed = false ; 413 fEndGlobalTimeComputed = false ; >> 414 // G4cout << " global time is false " << G4endl; 350 } 415 } 351 else 416 else 352 { 417 { 353 fParticleIsLooping = fFieldPropagator->I << 354 418 355 #ifdef G4DEBUG_TRANSPORT 419 #ifdef G4DEBUG_TRANSPORT 356 if( verboseLevel > 1 ) << 420 if( fVerboseLevel > 1 ) 357 { 421 { 358 G4cout << " G4CT::CS End Position = " << 422 G4cout << " G4CT::CS End Position = " << fTransportEndPosition << G4endl; 359 << fTransportEndPosition << G4e << 423 G4cout << " G4CT::CS End Direction = " << fTransportEndMomentumDir << G4endl; 360 G4cout << " G4CT::CS End Direction = " << 361 << fTransportEndMomentumDir << << 362 } 424 } 363 #endif 425 #endif 364 if( fFieldPropagator->GetCurrentFieldMan 426 if( fFieldPropagator->GetCurrentFieldManager()->DoesFieldChangeEnergy() ) 365 { 427 { 366 // If the field can change energy, t 428 // If the field can change energy, then the time must be integrated 367 // - so this should have been upd 429 // - so this should have been updated 368 // 430 // 369 fCandidateEndGlobalTime = endTrack 431 fCandidateEndGlobalTime = endTrackState.GetLabTimeOfFlight(); 370 fEndGlobalTimeComputed = true; 432 fEndGlobalTimeComputed = true; 371 433 372 // was ( fCandidateEndGlobalTime != 434 // was ( fCandidateEndGlobalTime != track.GetGlobalTime() ); 373 // a cleaner way is to have FieldTra << 435 // a cleaner way is to have FieldTrack knowing whether time is updated. 374 // is updated << 375 } 436 } 376 else 437 else 377 { 438 { 378 // The energy should be unchanged by 439 // The energy should be unchanged by field transport, 379 // - so the time changed will be 440 // - so the time changed will be calculated elsewhere 380 // 441 // 381 fEndGlobalTimeComputed = false; 442 fEndGlobalTimeComputed = false; 382 443 383 #ifdef G4VERBOSE << 384 // Check that the integration preser 444 // Check that the integration preserved the energy 385 // - and if not correct this! 445 // - and if not correct this! 386 G4double startEnergy= track.GetKine 446 G4double startEnergy= track.GetKineticEnergy(); 387 G4double endEnergy= fTransportEndKi 447 G4double endEnergy= fTransportEndKineticEnergy; 388 448 >> 449 static G4ThreadLocal G4int no_inexact_steps=0; // , no_large_ediff; 389 G4double absEdiff = std::fabs(startE 450 G4double absEdiff = std::fabs(startEnergy- endEnergy); 390 if( (verboseLevel > 1) && ( absEdiff << 451 if( absEdiff > perMillion * endEnergy ) >> 452 { >> 453 no_inexact_steps++; >> 454 // Possible statistics keeping here ... >> 455 } >> 456 #ifdef G4VERBOSE >> 457 if( (fVerboseLevel > 1) && ( absEdiff > perThousand * endEnergy) ) 391 { 458 { 392 ReportInexactEnergy(startEnergy, e 459 ReportInexactEnergy(startEnergy, endEnergy); 393 } // end of if (verboseLevel) << 460 } // end of if (fVerboseLevel) 394 #endif 461 #endif 395 // Correct the energy for fields tha 462 // Correct the energy for fields that conserve it 396 // This - hides the integration err 463 // This - hides the integration error 397 // - but gives a better physic 464 // - but gives a better physical answer 398 fTransportEndKineticEnergy= track.Ge << 465 fTransportEndKineticEnergy= track.GetKineticEnergy(); 399 } 466 } 400 } 467 } 401 468 402 fEndPointDistance = (fTransportEndPosition << 469 endpointDistance = (fTransportEndPosition - startPosition).mag() ; 403 fTransportEndSpin = endTrackState.GetSpin(); << 470 fParticleIsLooping = fFieldPropagator->IsParticleLooping() ; 404 471 405 // Calculate the safety << 472 fTransportEndSpin = endTrackState.GetSpin(); 406 473 >> 474 // Calculate the safety 407 safetyProposal= startFullSafety; // used t 475 safetyProposal= startFullSafety; // used to be startMassSafety 408 // Changed to accomodate processes that ca << 476 // Changed to accomodate processes that cannot update the safety -- JA 22 Nov 06 409 477 410 // Update safety for the end-point, if becom 478 // Update safety for the end-point, if becomes negative at the end-point. 411 479 412 if( (startFullSafety < fEndPointDistance ) << 480 if( (startFullSafety < endpointDistance ) 413 && ( particleCharge != 0.0 ) ) // Onl << 481 && ( particleCharge != 0.0 ) ) // Only needed to prepare for Mult Scat. 414 // && !fGeometryLimitedStep ) // To-Try: << 482 // && !fAnyGeometryLimitedStep ) // To-Try: No safety update if at a boundary 415 { 483 { 416 G4double endFullSafety = 484 G4double endFullSafety = 417 fPathFinder->ComputeSafety( fTransport 485 fPathFinder->ComputeSafety( fTransportEndPosition); 418 // Expected mission -- only mass geome 486 // Expected mission -- only mass geometry's safety 419 // fLinearNavigator->ComputeSafety( << 487 // fMassNavigator->ComputeSafety( fTransportEndPosition) ; 420 // Yet discrete processes only have po 488 // Yet discrete processes only have poststep -- and this cannot 421 // currently revise the safety 489 // currently revise the safety 422 // ==> so we use the all-geometry sa 490 // ==> so we use the all-geometry safety as a precaution 423 491 424 fpSafetyHelper->SetCurrentSafety( endFul 492 fpSafetyHelper->SetCurrentSafety( endFullSafety, fTransportEndPosition); 425 // Pushing safety to Helper avoids rec 493 // Pushing safety to Helper avoids recalculation at this point 426 494 427 G4ThreeVector centerPt= G4ThreeVector(0. 495 G4ThreeVector centerPt= G4ThreeVector(0.0, 0.0, 0.0); // Used for return value 428 G4double endMassSafety= fPathFinder->Obt << 496 G4double endMassSafety= fPathFinder->ObtainSafety( fNavigatorId, centerPt); 429 // Retrieves the mass value from Path 497 // Retrieves the mass value from PathFinder (it calculated it) 430 498 431 fPreviousMassSafety = endMassSafety ; 499 fPreviousMassSafety = endMassSafety ; 432 fPreviousFullSafety = endFullSafety; 500 fPreviousFullSafety = endFullSafety; 433 fPreviousSftOrigin = fTransportEndPositi 501 fPreviousSftOrigin = fTransportEndPosition ; 434 502 435 // The convention (Stepping Manager's) i 503 // The convention (Stepping Manager's) is safety from the start point 436 // 504 // 437 safetyProposal = endFullSafety + fEndPoi << 505 safetyProposal = endFullSafety + endpointDistance; 438 // --> was endMassSafety 506 // --> was endMassSafety 439 // Changed to accomodate processes that << 507 // Changed to accomodate processes that cannot update the safety -- JA 22 Nov 06 >> 508 >> 509 // #define G4DEBUG_TRANSPORT 1 440 510 441 #ifdef G4DEBUG_TRANSPORT 511 #ifdef G4DEBUG_TRANSPORT 442 G4int prec= G4cout.precision(12) ; 512 G4int prec= G4cout.precision(12) ; 443 G4cout << "***CoupledTransportation::Alo << 513 G4cout << "***Transportation::AlongStepGPIL ** " << G4endl ; 444 G4cout << " Revised Safety at endpoint 514 G4cout << " Revised Safety at endpoint " << fTransportEndPosition 445 << " give safety values: Mass= 515 << " give safety values: Mass= " << endMassSafety 446 << " All= " << endFullSafety << 516 << " All= " << endFullSafety << G4endl ; 447 G4cout << " Adding endpoint distance " << 517 G4cout << " Adding endpoint distance " << endpointDistance 448 << " to obtain pseudo-safety= " 518 << " to obtain pseudo-safety= " << safetyProposal << G4endl ; 449 G4cout.precision(prec); 519 G4cout.precision(prec); 450 } 520 } 451 else 521 else 452 { 522 { 453 G4int prec= G4cout.precision(12) ; 523 G4int prec= G4cout.precision(12) ; 454 G4cout << "***CoupledTransportation::Alo << 524 G4cout << "***Transportation::AlongStepGPIL ** " << G4endl ; 455 G4cout << " Quick Safety estimate at en << 525 G4cout << " Quick Safety estimate at endpoint " << fTransportEndPosition 456 << fTransportEndPosition << 526 << " gives safety endpoint value = " << startFullSafety - endpointDistance 457 << " gives safety endpoint valu << 458 << startFullSafety - fEndPointDis << 459 << " using start-point value " < 527 << " using start-point value " << startFullSafety 460 << " and endpointDistance " << f << 528 << " and endpointDistance " << endpointDistance << G4endl; 461 G4cout.precision(prec); 529 G4cout.precision(prec); 462 #endif 530 #endif 463 } 531 } 464 532 465 proposedSafetyForStart= safetyProposal; 533 proposedSafetyForStart= safetyProposal; 466 fParticleChange.ProposeTrueStepLength(geomet 534 fParticleChange.ProposeTrueStepLength(geometryStepLength) ; 467 535 468 return geometryStepLength ; 536 return geometryStepLength ; 469 } 537 } 470 538 471 ////////////////////////////////////////////// << 539 ////////////////////////////////////////////////////////////////////////// >> 540 >> 541 G4VParticleChange* >> 542 G4CoupledTransportation::AlongStepDoIt( const G4Track& track, >> 543 const G4Step& stepData ) >> 544 { >> 545 static G4ThreadLocal G4int noCalls=0; >> 546 noCalls++; >> 547 >> 548 fParticleChange.Initialize(track) ; >> 549 // sets all its members to the value of corresponding members in G4Track >> 550 >> 551 // Code specific for Transport >> 552 // >> 553 fParticleChange.ProposePosition(fTransportEndPosition) ; >> 554 // G4cout << " G4CoupledTransportation::AlongStepDoIt" >> 555 // << " proposes position = " << fTransportEndPosition >> 556 // << " and end momentum direction = " << fTransportEndMomentumDir << G4endl; >> 557 fParticleChange.ProposeMomentumDirection(fTransportEndMomentumDir) ; >> 558 fParticleChange.ProposeEnergy(fTransportEndKineticEnergy) ; >> 559 fParticleChange.SetMomentumChanged(fMomentumChanged) ; >> 560 >> 561 fParticleChange.ProposePolarization(fTransportEndSpin); >> 562 >> 563 G4double deltaTime = 0.0 ; >> 564 >> 565 // Calculate Lab Time of Flight (ONLY if field Equations used it!) >> 566 // G4double endTime = fCandidateEndGlobalTime; >> 567 // G4double delta_time = endTime - startTime; >> 568 >> 569 G4double startTime = track.GetGlobalTime() ; >> 570 >> 571 if (!fEndGlobalTimeComputed) >> 572 { >> 573 G4double finalInverseVel= DBL_MAX, initialInverseVel=DBL_MAX; >> 574 >> 575 // The time was not integrated .. make the best estimate possible >> 576 // >> 577 G4double finalVelocity = track.GetVelocity() ; >> 578 if( finalVelocity > 0.0 ) { finalInverseVel= 1.0 / finalVelocity; } >> 579 G4double initialVelocity = stepData.GetPreStepPoint()->GetVelocity() ; >> 580 if( initialVelocity > 0.0 ) { initialInverseVel= 1.0 / initialVelocity; } >> 581 G4double stepLength = track.GetStepLength() ; >> 582 >> 583 if (finalVelocity > 0.0) >> 584 { >> 585 // deltaTime = stepLength/finalVelocity ; >> 586 G4double meanInverseVelocity = 0.5 * ( initialInverseVel + finalInverseVel ); >> 587 deltaTime = stepLength * meanInverseVelocity ; >> 588 // G4cout << " dt = s * mean(1/v) , with " << " s = " << stepLength >> 589 // << " mean(1/v)= " << meanInverseVelocity << G4endl; >> 590 } >> 591 else >> 592 { >> 593 deltaTime = stepLength * initialInverseVel ; >> 594 // G4cout << " dt = s / initV " << " s = " << stepLength >> 595 // << " 1 / initV= " << initialInverseVel << G4endl; >> 596 } // Could do with better estimate for final step (finalVelocity = 0) ? >> 597 >> 598 fCandidateEndGlobalTime = startTime + deltaTime ; >> 599 fParticleChange.ProposeLocalTime( track.GetLocalTime() + deltaTime) ; >> 600 >> 601 // G4cout << " Calculated global time from start = " << startTime << " and " >> 602 // << " delta time = " << deltaTime << G4endl; >> 603 } >> 604 else >> 605 { >> 606 deltaTime = fCandidateEndGlobalTime - startTime ; >> 607 fParticleChange.ProposeGlobalTime( fCandidateEndGlobalTime ) ; >> 608 // G4cout << " Calculated global time from candidate end time = " >> 609 // << fCandidateEndGlobalTime << " and start time = " << startTime << G4endl; >> 610 } >> 611 >> 612 // G4cout << " G4CoupledTransportation::AlongStepDoIt " >> 613 // << " flag whether computed time = " << fEndGlobalTimeComputed << " and " >> 614 // << " is proposes end time " << fCandidateEndGlobalTime << G4endl; >> 615 >> 616 // Now Correct by Lorentz factor to get "proper" deltaTime >> 617 >> 618 G4double restMass = track.GetDynamicParticle()->GetMass() ; >> 619 G4double deltaProperTime = deltaTime*( restMass/track.GetTotalEnergy() ) ; >> 620 >> 621 fParticleChange.ProposeProperTime(track.GetProperTime() + deltaProperTime) ; >> 622 //fParticleChange. ProposeTrueStepLength( track.GetStepLength() ) ; >> 623 >> 624 // If the particle is caught looping or is stuck (in very difficult >> 625 // boundaries) in a magnetic field (doing many steps) >> 626 // THEN this kills it ... >> 627 // >> 628 if ( fParticleIsLooping ) >> 629 { >> 630 G4double endEnergy= fTransportEndKineticEnergy; >> 631 >> 632 if( (endEnergy < fThreshold_Important_Energy) >> 633 || (fNoLooperTrials >= fThresholdTrials ) ) >> 634 { >> 635 // Kill the looping particle >> 636 // >> 637 fParticleChange.ProposeTrackStatus( fStopAndKill ) ; >> 638 >> 639 // 'Bare' statistics >> 640 fSumEnergyKilled += endEnergy; >> 641 if( endEnergy > fMaxEnergyKilled) { fMaxEnergyKilled= endEnergy; } >> 642 >> 643 #ifdef G4VERBOSE >> 644 if((fVerboseLevel > 1) && ( endEnergy > fThreshold_Warning_Energy )) >> 645 { >> 646 G4cout << " G4CoupledTransportation is killing track that is looping or stuck " << G4endl >> 647 << " This track has " << track.GetKineticEnergy() / MeV >> 648 << " MeV energy." << G4endl; >> 649 } >> 650 if( fVerboseLevel > 0 ) >> 651 { >> 652 G4cout << " Steps by this track: " << track.GetCurrentStepNumber() << G4endl; >> 653 } >> 654 #endif >> 655 fNoLooperTrials=0; >> 656 } >> 657 else >> 658 { >> 659 fNoLooperTrials ++; >> 660 #ifdef G4VERBOSE >> 661 if( (fVerboseLevel > 2) ) >> 662 { >> 663 G4cout << " ** G4CoupledTransportation::AlongStepDoIt(): Particle looping - " << G4endl >> 664 << " Number of consecutive problem step (this track) = " << fNoLooperTrials << G4endl >> 665 << " Steps by this track: " << track.GetCurrentStepNumber() << G4endl >> 666 << " Total no of calls to this method (all tracks) = " << noCalls << G4endl; >> 667 } >> 668 #endif >> 669 } >> 670 } >> 671 else >> 672 { >> 673 fNoLooperTrials=0; >> 674 } >> 675 >> 676 // Another (sometimes better way) is to use a user-limit maximum Step size >> 677 // to alleviate this problem .. >> 678 >> 679 // Add smooth curved trajectories to particle-change >> 680 // >> 681 // fParticleChange.SetPointerToVectorOfAuxiliaryPoints >> 682 // (fFieldPropagator->GimmeTrajectoryVectorAndForgetIt() ); >> 683 >> 684 return &fParticleChange ; >> 685 } >> 686 >> 687 ////////////////////////////////////////////////////////////////////////// >> 688 // >> 689 // This ensures that the PostStep action is always called, >> 690 // so that it can do the relocation if it is needed. >> 691 // >> 692 >> 693 G4double G4CoupledTransportation:: >> 694 PostStepGetPhysicalInteractionLength( const G4Track&, >> 695 G4double, // previousStepSize >> 696 G4ForceCondition* pForceCond ) >> 697 { >> 698 // Must act as PostStep action -- to relocate particle >> 699 *pForceCond = Forced ; >> 700 return DBL_MAX ; >> 701 } 472 702 473 void G4CoupledTransportation:: 703 void G4CoupledTransportation:: 474 ReportMove( G4ThreeVector OldVector, G4ThreeVe << 704 ReportMove( G4ThreeVector OldVector, G4ThreeVector NewVector, const G4String& Quantity ) 475 const G4String& Quantity ) << 476 { 705 { 477 G4ThreeVector moveVec = ( NewVector - OldV 706 G4ThreeVector moveVec = ( NewVector - OldVector ); 478 707 479 G4cerr << G4endl 708 G4cerr << G4endl 480 << "******************************* << 709 << "**************************************************************" << G4endl; 481 << G4endl; << 482 G4cerr << "Endpoint has moved between valu 710 G4cerr << "Endpoint has moved between value expected from TransportEndPosition " 483 << " and value from Track in PostSt 711 << " and value from Track in PostStepDoIt. " << G4endl 484 << "Change of " << Quantity << " is << 712 << "Change of " << Quantity << " is " << moveVec.mag() / mm << " mm long, " 485 << " mm long, " << 486 << " and its vector is " << (1.0/mm 713 << " and its vector is " << (1.0/mm) * moveVec << " mm " << G4endl 487 << "Endpoint of ComputeStep was " < 714 << "Endpoint of ComputeStep was " << OldVector 488 << " and current position to locate 715 << " and current position to locate is " << NewVector << G4endl; 489 } 716 } 490 717 491 ////////////////////////////////////////////// 718 ///////////////////////////////////////////////////////////////////////////// 492 719 493 G4VParticleChange* G4CoupledTransportation::Po 720 G4VParticleChange* G4CoupledTransportation::PostStepDoIt( const G4Track& track, 494 721 const G4Step& ) 495 { 722 { 496 G4TouchableHandle retCurrentTouchable ; // 723 G4TouchableHandle retCurrentTouchable ; // The one to return 497 724 498 // Initialize ParticleChange (by setting al 725 // Initialize ParticleChange (by setting all its members equal 499 // to correspond 726 // to corresponding members in G4Track) 500 // fParticleChange.Initialize(track) ; // T 727 // fParticleChange.Initialize(track) ; // To initialise TouchableChange 501 728 502 fParticleChange.ProposeTrackStatus(track.Get 729 fParticleChange.ProposeTrackStatus(track.GetTrackStatus()) ; 503 730 504 if( fSignifyStepInAnyVolume ) << 505 { << 506 fParticleChange.ProposeFirstStepInVolume( << 507 } << 508 else << 509 { << 510 fParticleChange.ProposeFirstStepInVolume( << 511 } << 512 << 513 // Check that the end position and direction 731 // Check that the end position and direction are preserved 514 // since call to AlongStepDoIt 732 // since call to AlongStepDoIt 515 733 516 #ifdef G4DEBUG_TRANSPORT 734 #ifdef G4DEBUG_TRANSPORT 517 if( ( verboseLevel > 0 ) << 735 if( ( fVerboseLevel > 0 ) && ((fTransportEndPosition - track.GetPosition()).mag2() >= 1.0e-16) ) 518 && ((fTransportEndPosition - track.GetPos << 519 { 736 { 520 ReportMove( track.GetPosition(), fTranspo << 737 ReportMove( track.GetPosition(), fTransportEndPosition, "End of Step Position" ); 521 "End of Step Position" ); << 522 G4cerr << " Problem in G4CoupledTransport 738 G4cerr << " Problem in G4CoupledTransportation::PostStepDoIt " << G4endl; 523 } 739 } 524 740 525 // If the Step was determined by the volume 741 // If the Step was determined by the volume boundary, relocate the particle 526 // The pathFinder will know that the geometr 742 // The pathFinder will know that the geometry limited the step (!?) 527 743 528 if( verboseLevel > 0 ) << 744 if( fVerboseLevel > 0 ) 529 { 745 { 530 G4cout << " Calling PathFinder::Locate() 746 G4cout << " Calling PathFinder::Locate() from " 531 << " G4CoupledTransportation::Post 747 << " G4CoupledTransportation::PostStepDoIt " << G4endl; 532 G4cout << " fGeometryLimitedStep is " < << 748 G4cout << " fAnyGeometryLimitedStep is " << fAnyGeometryLimitedStep << G4endl; >> 749 533 } 750 } 534 #endif 751 #endif 535 752 536 if(fGeometryLimitedStep) << 753 if(fAnyGeometryLimitedStep) 537 { 754 { 538 fPathFinder->Locate( track.GetPosition(), 755 fPathFinder->Locate( track.GetPosition(), 539 track.GetMomentumDire << 756 track.GetMomentumDirection(), 540 true); << 757 true); 541 758 542 // fCurrentTouchable will now become the p 759 // fCurrentTouchable will now become the previous touchable, 543 // and what was the previous will be freed 760 // and what was the previous will be freed. 544 // (Needed because the preStepPoint can po 761 // (Needed because the preStepPoint can point to the previous touchable) 545 762 546 fCurrentTouchableHandle= 763 fCurrentTouchableHandle= 547 fPathFinder->CreateTouchableHandle( G4Tr << 764 fPathFinder->CreateTouchableHandle( fNavigatorId ); 548 765 549 #ifdef G4DEBUG_TRANSPORT 766 #ifdef G4DEBUG_TRANSPORT 550 if( verboseLevel > 1 ) << 767 if( fVerboseLevel > 0 ) >> 768 { >> 769 G4cout << "G4CoupledTransportation::PostStepDoIt --- fNavigatorId = " >> 770 << fNavigatorId << G4endl; >> 771 } >> 772 if( fVerboseLevel > 1 ) 551 { 773 { 552 G4VPhysicalVolume* vol= fCurrentTouchab 774 G4VPhysicalVolume* vol= fCurrentTouchableHandle->GetVolume(); 553 G4cout << "CHECK !!!!!!!!!!! fCurrentTo << 775 G4cout << "CHECK !!!!!!!!!!! fCurrentTouchableHandle->GetVolume() = " << vol; 554 << vol; << 555 if( vol ) { G4cout << "Name=" << vol->G 776 if( vol ) { G4cout << "Name=" << vol->GetName(); } 556 G4cout << G4endl; 777 G4cout << G4endl; 557 } 778 } 558 #endif 779 #endif 559 780 560 // Check whether the particle is out of th 781 // Check whether the particle is out of the world volume 561 // If so it has exited and must be killed. 782 // If so it has exited and must be killed. 562 // 783 // 563 if( fCurrentTouchableHandle->GetVolume() = 784 if( fCurrentTouchableHandle->GetVolume() == 0 ) 564 { 785 { 565 fParticleChange.ProposeTrackStatus( fSt 786 fParticleChange.ProposeTrackStatus( fStopAndKill ) ; 566 } 787 } 567 retCurrentTouchable = fCurrentTouchableHan 788 retCurrentTouchable = fCurrentTouchableHandle ; 568 // fParticleChange.SetTouchableHandle( fCu 789 // fParticleChange.SetTouchableHandle( fCurrentTouchableHandle ) ; >> 790 >> 791 // Notify particle change that this is last step in volume >> 792 fParticleChange.ProposeLastStepInVolume(true); 569 } 793 } 570 else // fGeometryLimitedStep is false << 794 else // fAnyGeometryLimitedStep is false 571 { 795 { 572 #ifdef G4DEBUG_TRANSPORT 796 #ifdef G4DEBUG_TRANSPORT 573 if( verboseLevel > 1 ) << 797 if( fVerboseLevel > 1 ) 574 { 798 { 575 G4cout << "G4CoupledTransportation::Post << 799 G4cout << "G4CoupledTransportation::PostStepDoIt -- " 576 << " fGeometryLimitedStep = " << << 800 << " fAnyGeometryLimitedStep = " << fAnyGeometryLimitedStep 577 << " must be false " << G4endl; << 801 << " must be false " << G4endl; 578 } 802 } 579 #endif 803 #endif 580 // This serves only to move each of the Na 804 // This serves only to move each of the Navigator's location 581 // 805 // 582 // fLinearNavigator->LocateGlobalPointWith 806 // fLinearNavigator->LocateGlobalPointWithinVolume( track.GetPosition() ) ; 583 807 >> 808 // G4cout << "G4CoupledTransportation calling PathFinder::ReLocate() " << G4endl; 584 fPathFinder->ReLocate( track.GetPosition() 809 fPathFinder->ReLocate( track.GetPosition() ); 585 // track.GetMomentu 810 // track.GetMomentumDirection() ); 586 811 587 // Keep the value of the track's current T 812 // Keep the value of the track's current Touchable is retained, 588 // and use it to overwrite the (unset) on 813 // and use it to overwrite the (unset) one in particle change. 589 // Expect this must be fCurrentTouchable t 814 // Expect this must be fCurrentTouchable too 590 // - could it be different, eg at the st 815 // - could it be different, eg at the start of a step ? 591 // 816 // 592 retCurrentTouchable = track.GetTouchableHa 817 retCurrentTouchable = track.GetTouchableHandle() ; 593 // fParticleChange.SetTouchableHandle( tra 818 // fParticleChange.SetTouchableHandle( track.GetTouchableHandle() ) ; 594 } // endif ( fGeometryLimitedStep ) << 595 819 596 #ifdef G4DEBUG_NAVIGATION << 820 // Have not reached a boundary 597 G4cout << " CoupledTransport::AlongStep GPI << 821 fParticleChange.ProposeLastStepInVolume(false); 598 << " last-step: any= " << fGeometryL << 822 } // endif ( fAnyGeometryLimitedStep ) 599 << " mass= " << fMassGeometryLimitedS << 823 600 #endif << 824 const G4VPhysicalVolume* pNewVol = retCurrentTouchable->GetVolume() ; 601 << 825 const G4Material* pNewMaterial = 0 ; 602 if( fSignifyStepInAnyVolume ) << 826 const G4VSensitiveDetector* pNewSensitiveDetector = 0 ; 603 fParticleChange.ProposeLastStepInVolume(fG << 827 604 else << 828 if( pNewVol != 0 ) 605 fParticleChange.ProposeLastStepInVolume(f << 829 { 606 << 830 pNewMaterial= pNewVol->GetLogicalVolume()->GetMaterial(); 607 SetTouchableInformation(retCurrentTouchable) << 831 pNewSensitiveDetector= pNewVol->GetLogicalVolume()->GetSensitiveDetector(); >> 832 } >> 833 >> 834 // ( const_cast<G4Material *> pNewMaterial ) ; >> 835 // ( const_cast<G4VSensitiveDetetor *> pNewSensitiveDetector) ; >> 836 >> 837 fParticleChange.SetMaterialInTouchable( (G4Material *) pNewMaterial ) ; >> 838 fParticleChange.SetSensitiveDetectorInTouchable( (G4VSensitiveDetector *) pNewSensitiveDetector ) ; >> 839 // "temporarily" until Get/Set Material of ParticleChange, >> 840 // and StepPoint can be made const. >> 841 >> 842 const G4MaterialCutsCouple* pNewMaterialCutsCouple = 0; >> 843 if( pNewVol != 0 ) >> 844 { >> 845 pNewMaterialCutsCouple=pNewVol->GetLogicalVolume()->GetMaterialCutsCouple(); >> 846 if( pNewMaterialCutsCouple!=0 >> 847 && pNewMaterialCutsCouple->GetMaterial()!=pNewMaterial ) >> 848 { >> 849 // for parametrized volume >> 850 // >> 851 pNewMaterialCutsCouple = >> 852 G4ProductionCutsTable::GetProductionCutsTable() >> 853 ->GetMaterialCutsCouple(pNewMaterial, >> 854 pNewMaterialCutsCouple->GetProductionCuts()); >> 855 } >> 856 } >> 857 fParticleChange.SetMaterialCutsCoupleInTouchable( pNewMaterialCutsCouple ); >> 858 >> 859 // Must always set the touchable in ParticleChange, whether relocated or not >> 860 fParticleChange.SetTouchableHandle(retCurrentTouchable) ; 608 861 609 return &fParticleChange ; 862 return &fParticleChange ; 610 } 863 } 611 864 612 ////////////////////////////////////////////// << 613 // New method takes over the responsibility to 865 // New method takes over the responsibility to reset the state of 614 // G4CoupledTransportation object: << 866 // G4CoupledTransportation object: 615 // - at the start of a new track, and 867 // - at the start of a new track, and 616 // - on the resumption of a suspended tra 868 // - on the resumption of a suspended track. 617 // << 869 618 void 870 void 619 G4CoupledTransportation::StartTracking(G4Track 871 G4CoupledTransportation::StartTracking(G4Track* aTrack) 620 { 872 { 621 G4Transportation::StartTracking(aTrack); << 873 622 << 874 G4TransportationManager* transportMgr = >> 875 G4TransportationManager::GetTransportationManager(); >> 876 >> 877 // G4VProcess::StartTracking(aTrack); >> 878 >> 879 // The 'initialising' actions >> 880 // once taken in AlongStepGPIL -- if ( track.GetCurrentStepNumber()==1 ) >> 881 >> 882 // fStartedNewTrack= true; >> 883 >> 884 fMassNavigator = transportMgr->GetNavigatorForTracking() ; >> 885 fNavigatorId= transportMgr->ActivateNavigator( fMassNavigator ); // Confirm it! >> 886 >> 887 // if( fVerboseLevel > 1 ){ >> 888 // G4cout << " Navigator Id obtained in StartTracking " << fNavigatorId << G4endl; >> 889 // } 623 G4ThreeVector position = aTrack->GetPosition 890 G4ThreeVector position = aTrack->GetPosition(); 624 G4ThreeVector direction = aTrack->GetMomentu 891 G4ThreeVector direction = aTrack->GetMomentumDirection(); 625 892 >> 893 // if( fVerboseLevel > 1 ){ >> 894 // G4cout << " Calling PathFinder::PrepareNewTrack from " >> 895 // << " G4CoupledTransportation::StartTracking -- which calls Locate()" << G4endl; >> 896 // } 626 fPathFinder->PrepareNewTrack( position, dire 897 fPathFinder->PrepareNewTrack( position, direction); 627 // This implies a call to fPathFinder->Locat 898 // This implies a call to fPathFinder->Locate( position, direction ); 628 899 >> 900 // Global field, if any, must exist before tracking is started >> 901 fGlobalFieldExists= DoesGlobalFieldExist(); 629 // reset safety value and center 902 // reset safety value and center 630 // 903 // 631 fPreviousMassSafety = 0.0 ; 904 fPreviousMassSafety = 0.0 ; 632 fPreviousFullSafety = 0.0 ; 905 fPreviousFullSafety = 0.0 ; 633 fPreviousSftOrigin = G4ThreeVector(0.,0.,0.) 906 fPreviousSftOrigin = G4ThreeVector(0.,0.,0.) ; 634 } << 907 >> 908 // reset looping counter -- for motion in field >> 909 fNoLooperTrials= 0; >> 910 // Must clear this state .. else it depends on last track's value >> 911 // --> a better solution would set this from state of suspended track TODO ? >> 912 // Was if( aTrack->GetCurrentStepNumber()==1 ) { .. } 635 913 636 ////////////////////////////////////////////// << 914 // ChordFinder reset internal state >> 915 // >> 916 if( fGlobalFieldExists ) >> 917 { >> 918 fFieldPropagator->ClearPropagatorState(); >> 919 // Resets safety values, in case of overlaps. >> 920 >> 921 G4ChordFinder* chordF= fFieldPropagator->GetChordFinder(); >> 922 if( chordF ) { chordF->ResetStepEstimate(); } >> 923 } >> 924 >> 925 // Clear the chord finders of all fields (ie managers) derived objects >> 926 // >> 927 G4FieldManagerStore* fieldMgrStore = G4FieldManagerStore::GetInstance(); >> 928 fieldMgrStore->ClearAllChordFindersState(); >> 929 >> 930 #ifdef G4DEBUG_TRANSPORT >> 931 if( fVerboseLevel > 1 ) >> 932 { >> 933 G4cout << " Returning touchable handle " << fCurrentTouchableHandle << G4endl; >> 934 } >> 935 #endif >> 936 >> 937 // Update the current touchable handle (from the track's) >> 938 // >> 939 fCurrentTouchableHandle = aTrack->GetTouchableHandle(); >> 940 } 637 941 638 void 942 void 639 G4CoupledTransportation::EndTracking() 943 G4CoupledTransportation::EndTracking() 640 { 944 { 641 G4TransportationManager::GetTransportationMa 945 G4TransportationManager::GetTransportationManager()->InactivateAll(); 642 fPathFinder->EndTrack(); << 643 // Resets TransportationManager to use ord << 644 } 946 } 645 947 646 ////////////////////////////////////////////// << 647 << 648 void 948 void 649 G4CoupledTransportation:: 949 G4CoupledTransportation:: 650 ReportInexactEnergy(G4double startEnergy, G4do 950 ReportInexactEnergy(G4double startEnergy, G4double endEnergy) 651 { 951 { 652 static G4ThreadLocal G4int no_warnings= 0, w << 952 static G4ThreadLocal G4int no_warnings= 0, warnModulo=1, moduloFactor= 10, no_large_ediff= 0; 653 moduloFactor= 10, << 654 953 655 if( std::fabs(startEnergy- endEnergy) > perT 954 if( std::fabs(startEnergy- endEnergy) > perThousand * endEnergy ) 656 { 955 { 657 no_large_ediff ++; 956 no_large_ediff ++; 658 if( (no_large_ediff% warnModulo) == 0 ) 957 if( (no_large_ediff% warnModulo) == 0 ) 659 { 958 { 660 no_warnings++; 959 no_warnings++; 661 std::ostringstream message; << 960 G4cout << "WARNING - G4CoupledTransportation::AlongStepGetPIL() " 662 message << "Energy change in Step is abo << 961 << " Energy change in Step is above 1^-3 relative value. " << G4endl 663 << G4endl << 962 << " Relative change in 'tracking' step = " 664 << " Relative change in 'track << 963 << std::setw(15) << (endEnergy-startEnergy)/startEnergy << G4endl 665 << std::setw(15) << (endEnergy-s << 964 << " Starting E= " << std::setw(12) << startEnergy / MeV << " MeV " << G4endl 666 << G4endl << 965 << " Ending E= " << std::setw(12) << endEnergy / MeV << " MeV " << G4endl; 667 << " Starting E= " << std::set << 966 G4cout << " Energy has been corrected -- however, review" 668 << " MeV " << G4endl << 967 << " field propagation parameters for accuracy." << G4endl; 669 << " Ending E= " << std::set << 968 if( (fVerboseLevel > 2 ) || (no_warnings<4) || (no_large_ediff == warnModulo * moduloFactor) ) 670 << " MeV " << G4endl << 671 << "Energy has been corrected -- << 672 << " field propagation parameter << 673 if ( (verboseLevel > 2 ) || (no_warnings << 674 || (no_large_ediff == warnModulo * mod << 675 { 969 { 676 message << "These include EpsilonStepM << 970 G4cout << " These include EpsilonStepMax(/Min) in G4FieldManager " 677 << G4endl << 971 << " which determine fractional error per step for integrated quantities. " << G4endl 678 << "which determine fractional << 972 << " Note also the influence of the permitted number of integration steps." 679 << G4endl << 973 << G4endl; 680 << "Note also the influence of << 974 } 681 << G4endl; << 975 G4cerr << "ERROR - G4CoupledTransportation::AlongStepGetPIL()" << G4endl 682 } << 976 << " Bad 'endpoint'. Energy change detected" 683 message << "Bad 'endpoint'. Energy chang << 977 << " and corrected. " 684 << G4endl << 978 << " Has occurred already " 685 << "Has occurred already " << no << 979 << no_large_ediff << " times." << G4endl; 686 G4Exception("G4CoupledTransportation::Al << 687 "EnergyChange", JustWarning, << 688 if( no_large_ediff == warnModulo * modul 980 if( no_large_ediff == warnModulo * moduloFactor ) 689 { 981 { 690 warnModulo *= moduloFactor; 982 warnModulo *= moduloFactor; 691 } 983 } 692 } 984 } 693 } 985 } 694 } 986 } 695 987