Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4VFastSimulationModel.hh 68056 2013-03-13 14:44:48Z gcosmo $ 27 // 28 // 28 // << 29 // 29 //-------------------------------------------- 30 //--------------------------------------------------------------- 30 // 31 // 31 // G4VFastSimulationModel.hh 32 // G4VFastSimulationModel.hh 32 // 33 // 33 // Description: 34 // Description: 34 // Base class for fast simulation models. 35 // Base class for fast simulation models. 35 // 36 // 36 // History: 37 // History: 37 // Oct 97: Verderi && MoraDeFreitas - First 38 // Oct 97: Verderi && MoraDeFreitas - First Implementation. 38 // 39 // 39 //-------------------------------------------- 40 //--------------------------------------------------------------- 40 41 >> 42 41 #ifndef G4VFastSimulationModel_h 43 #ifndef G4VFastSimulationModel_h 42 #define G4VFastSimulationModel_h 44 #define G4VFastSimulationModel_h 43 45 44 #include "G4FastStep.hh" << 45 #include "G4FastTrack.hh" 46 #include "G4FastTrack.hh" >> 47 #include "G4FastStep.hh" >> 48 >> 49 //--------------------------- >> 50 // For possible future needs: >> 51 //--------------------------- >> 52 typedef G4Region G4Envelope; 46 53 47 //------------------------------------------- 54 //------------------------------------------- 48 // 55 // 49 // G4VFastSimulationModel class 56 // G4VFastSimulationModel class 50 // 57 // 51 //------------------------------------------- 58 //------------------------------------------- 52 59 53 // Class Description: 60 // Class Description: 54 // This is the abstract class for the implem << 61 // This is the abstract class for the implementation of parameterisations. 55 // You have to inherit from it to implement << 62 // You have to inherit from it to implement your concrete parameterisation 56 // model. 63 // model. 57 // 64 // 58 65 59 class G4VFastSimulationModel << 66 class G4VFastSimulationModel 60 { 67 { 61 public: << 68 public: // With description 62 // aName identifies the parameterisation m << 69 63 G4VFastSimulationModel(const G4String& aNa << 70 G4VFastSimulationModel(const G4String& aName); 64 << 71 // aName identifies the parameterisation model. 65 // This constructor allows you to get a qu << 72 66 // In addition to the model name, this con << 73 G4VFastSimulationModel(const G4String& aName, G4Envelope*, 67 // pointer. This volume will automatically << 74 G4bool IsUnique=FALSE); 68 // needed G4FastSimulationManager object i << 75 // This constructor allows you to get a quick "getting started". 69 // it the G4LogicalVolume pointer and the << 76 // In addition to the model name, this constructor accepts a G4LogicalVolume 70 // exists, the model is simply added to th << 77 // pointer. This volume will automatically becomes the envelope, and the 71 // G4VFastSimulationModel object will not << 78 // needed G4FastSimulationManager object is constructed if necessary giving 72 // in the constructor. << 79 // it the G4LogicalVolume pointer and the boolean value. If it already 73 // The boolean argument is there for optim << 80 // exists, the model is simply added to this manager. However the 74 // the G4LogicalVolume envelope is placed << 81 // G4VFastSimulationModel object will not keep track of the envelope given 75 // boolean value to "true" (an automated m << 82 // in the constructor. 76 G4VFastSimulationModel(const G4String& aNa << 83 // The boolean argument is there for optimization purpose: if you know that 77 << 84 // the G4LogicalVolume envelope is placed only once you can turn this 78 virtual ~G4VFastSimulationModel() = defaul << 85 // boolean value to "true" (an automated mechanism is foreseen here.) 79 << 86 80 // In your implementation, you have to ret << 87 public: // Without description 81 // applicable to the G4ParticleDefinition << 88 virtual ~G4VFastSimulationModel() {}; 82 // G4ParticleDefinition provides all intri << 89 83 // charge, spin, name ...). << 90 public: // With description 84 virtual G4bool IsApplicable(const G4Partic << 91 85 << 92 virtual G4bool IsApplicable(const G4ParticleDefinition&) = 0; 86 // You have to return "true" when the dyna << 93 // In your implementation, you have to return "true" when your model is 87 // parameterisation are fulfiled. The G4Fa << 94 // applicable to the G4ParticleDefinition passed to this method. The 88 // the current G4Track, gives simple acces << 95 // G4ParticleDefinition provides all intrisic particle informations (mass, 89 // (G4LogicalVolume, G4VSolid, G4AffineTra << 96 // charge, spin, name ...). 90 // global and the envelope local coordinat << 97 91 // the position, momentum expressed in the << 98 virtual G4bool ModelTrigger(const G4FastTrack &) = 0; 92 // Using those quantities and the G4VSolid << 99 // You have to return "true" when the dynamics conditions to trigger your 93 // easily check how far you are from the e << 100 // parameterisation are fulfiled. The G4FastTrack provides you access to 94 virtual G4bool ModelTrigger(const G4FastTr << 101 // the current G4Track, gives simple access to envelope related features 95 << 102 // (G4LogicalVolume, G4VSolid, G4AffineTransform references between the 96 // Your parameterisation properly said. Th << 103 // global and the envelope local coordinates systems) and simple access to 97 // input informations. The final state of << 104 // the position, momentum expressed in the envelope coordinate system. 98 // has to be returned through the G4FastSt << 105 // Using those quantities and the G4VSolid methods, you can for example 99 // described has "requests" the tracking w << 106 // easily check how far you are from the envelope boundary. 100 // parameterisation has been invoked. << 107 101 virtual void DoIt(const G4FastTrack&, G4Fa << 108 virtual void DoIt(const G4FastTrack&, G4FastStep&) = 0; 102 << 109 // Your parameterisation properly said. The G4FastTrack reference provides 103 // --------------------------- << 110 // input informations. The final state of the particles after parameterisation 104 // -- Idem for AtRest methods: << 111 // has to be returned through the G4FastStep reference. This final state is 105 // --------------------------- << 112 // described has "requests" the tracking will apply after your 106 // -- A default dummy implementation is pr << 113 // parameterisation has been invoked. 107 << 114 108 // You have to return "true" when the dyna << 115 // --------------------------- 109 // parameterisation are fulfiled. The G4Fa << 116 // -- Idem for AtRest methods: 110 // the current G4Track, gives simple acces << 117 // --------------------------- 111 // (G4LogicalVolume, G4VSolid, G4AffineTra << 118 // -- A default dummy implementation is provided. 112 // global and the envelope local coordinat << 119 113 // the position, momentum expressed in the << 120 virtual 114 // Using those quantities and the G4VSolid << 121 G4bool AtRestModelTrigger(const G4FastTrack&) {return false;} 115 // easily check how far you are from the e << 122 // You have to return "true" when the dynamics conditions to trigger your 116 virtual G4bool AtRestModelTrigger(const G4 << 123 // parameterisation are fulfiled. The G4FastTrack provides you access to 117 << 124 // the current G4Track, gives simple access to envelope related features 118 // Your parameterisation properly said. Th << 125 // (G4LogicalVolume, G4VSolid, G4AffineTransform references between the 119 // input informations. The final state of << 126 // global and the envelope local coordinates systems) and simple access to 120 // has to be returned through the G4FastSt << 127 // the position, momentum expressed in the envelope coordinate system. 121 // described has "requests" the tracking w << 128 // Using those quantities and the G4VSolid methods, you can for example 122 // parameterisation has been invoked. << 129 // easily check how far you are from the envelope boundary. 123 virtual void AtRestDoIt(const G4FastTrack& << 130 124 << 131 virtual 125 // Complete processing of any buffered or << 132 void AtRestDoIt (const G4FastTrack&, G4FastStep&) {} 126 virtual void Flush() {} << 133 // Your parameterisation properly said. The G4FastTrack reference provides 127 << 134 // input informations. The final state of the particles after parameterisation 128 // Useful public methods : << 135 // has to be returned through the G4FastStep reference. This final state is 129 const G4String GetName() const; << 136 // described has "requests" the tracking will apply after your 130 G4bool operator==(const G4VFastSimulationM << 137 // parameterisation has been invoked. 131 << 138 132 private: << 139 public: // Without description 133 //------------- << 140 134 // Model Name: << 141 // Useful public methods : 135 //------------- << 142 const G4String GetName() const; 136 G4String theModelName; << 143 G4bool operator == ( const G4VFastSimulationModel&) const; >> 144 >> 145 private: >> 146 //------------- >> 147 // Model Name: >> 148 //------------- >> 149 G4String theModelName; 137 }; 150 }; 138 151 139 inline const G4String G4VFastSimulationModel:: << 152 inline const G4String G4VFastSimulationModel::GetName() const 140 { 153 { 141 return theModelName; 154 return theModelName; 142 } 155 } 143 156 144 inline G4bool G4VFastSimulationModel::operator << 157 inline G4bool >> 158 G4VFastSimulationModel::operator == (const G4VFastSimulationModel& fsm) const 145 { 159 { 146 return this == &fsm; << 160 return (this==&fsm) ? true : false; 147 } 161 } 148 #endif 162 #endif 149 163