Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 ////////////////////////////////////////////// 26 //////////////////////////////////////////////////////////////////////// 27 // Optical Photon Boundary Process Class Imple 27 // Optical Photon Boundary Process Class Implementation 28 ////////////////////////////////////////////// 28 //////////////////////////////////////////////////////////////////////// 29 // 29 // 30 // File: G4OpBoundaryProcess.cc 30 // File: G4OpBoundaryProcess.cc 31 // Description: Discrete Process -- reflection 31 // Description: Discrete Process -- reflection/refraction at 32 // optical in 32 // optical interfaces 33 // Version: 1.1 33 // Version: 1.1 34 // Created: 1997-06-18 34 // Created: 1997-06-18 35 // Modified: 1998-05-25 - Correct parallel 35 // Modified: 1998-05-25 - Correct parallel component of polarization 36 // (thanks to: Stefa 36 // (thanks to: Stefano Magni + Giovanni Pieri) 37 // 1998-05-28 - NULL Rindex point 37 // 1998-05-28 - NULL Rindex pointer before reuse 38 // (thanks to: Stefa 38 // (thanks to: Stefano Magni) 39 // 1998-06-11 - delete *sint1 in 39 // 1998-06-11 - delete *sint1 in oblique reflection 40 // (thanks to: Giova 40 // (thanks to: Giovanni Pieri) 41 // 1998-06-19 - move from GetLoca << 41 // 1998-06-19 - move from GetLocalExitNormal() to the new 42 // method: GetLocalE 42 // method: GetLocalExitNormal(&valid) to get 43 // the surface norma 43 // the surface normal in all cases 44 // 1998-11-07 - NULL OpticalSurfa 44 // 1998-11-07 - NULL OpticalSurface pointer before use 45 // comparison not sh 45 // comparison not sharp for: std::abs(cost1) < 1.0 46 // remove sin1, sin2 46 // remove sin1, sin2 in lines 556,567 47 // (thanks to Stefan 47 // (thanks to Stefano Magni) 48 // 1999-10-10 - Accommodate chang 48 // 1999-10-10 - Accommodate changes done in DoAbsorption by 49 // changing logic in 49 // changing logic in DielectricMetal 50 // 2001-10-18 - avoid Linux (gcc- 50 // 2001-10-18 - avoid Linux (gcc-2.95.2) warning about variables 51 // might be used uni 51 // might be used uninitialized in this function 52 // moved E2_perp, E2 52 // moved E2_perp, E2_parl and E2_total out of 'if' 53 // 2003-11-27 - Modified line 168 53 // 2003-11-27 - Modified line 168-9 to reflect changes made to 54 // G4OpticalSurface 54 // G4OpticalSurface class ( by Fan Lei) 55 // 2004-02-02 - Set theStatus = U 55 // 2004-02-02 - Set theStatus = Undefined at start of DoIt 56 // 2005-07-28 - add G4ProcessType 56 // 2005-07-28 - add G4ProcessType to constructor 57 // 2006-11-04 - add capability of 57 // 2006-11-04 - add capability of calculating the reflectivity 58 // off a metal surfa << 58 // off a metal surface by way of a complex index 59 // of refraction - T << 59 // of refraction - Thanks to Sehwook Lee and John 60 // Hauptman (Dept. o 60 // Hauptman (Dept. of Physics - Iowa State Univ.) 61 // 2009-11-10 - add capability of 61 // 2009-11-10 - add capability of simulating surface reflections 62 // with Look-Up-Tabl 62 // with Look-Up-Tables (LUT) containing measured 63 // optical reflectan 63 // optical reflectance for a variety of surface 64 // treatments - Than 64 // treatments - Thanks to Martin Janecek and 65 // William Moses (La 65 // William Moses (Lawrence Berkeley National Lab.) 66 // 2013-06-01 - add the capabilit << 67 // of a dichronic fi << 68 // 2017-02-24 - add capability of << 69 // with Look-Up-Tabl << 70 // 66 // 71 // Author: Peter Gumplinger 67 // Author: Peter Gumplinger 72 // adopted from work by Werner Keil - April 68 // adopted from work by Werner Keil - April 2/96 >> 69 // mail: gum@triumf.ca 73 // 70 // 74 ////////////////////////////////////////////// 71 //////////////////////////////////////////////////////////////////////// 75 72 76 #include "G4OpBoundaryProcess.hh" << 77 << 78 #include "G4ios.hh" 73 #include "G4ios.hh" 79 #include "G4GeometryTolerance.hh" << 80 #include "G4LogicalBorderSurface.hh" << 81 #include "G4LogicalSkinSurface.hh" << 82 #include "G4OpProcessSubType.hh" 74 #include "G4OpProcessSubType.hh" 83 #include "G4OpticalParameters.hh" << 84 #include "G4ParallelWorldProcess.hh" << 85 #include "G4PhysicalConstants.hh" << 86 #include "G4SystemOfUnits.hh" << 87 #include "G4TransportationManager.hh" << 88 #include "G4VSensitiveDetector.hh" << 89 75 90 //....oooOO0OOooo........oooOO0OOooo........oo << 76 #include "G4OpBoundaryProcess.hh" >> 77 #include "G4GeometryTolerance.hh" >> 78 >> 79 ///////////////////////// >> 80 // Class Implementation >> 81 ///////////////////////// >> 82 >> 83 ////////////// >> 84 // Operators >> 85 ////////////// >> 86 >> 87 // G4OpBoundaryProcess::operator=(const G4OpBoundaryProcess &right) >> 88 // { >> 89 // } >> 90 >> 91 ///////////////// >> 92 // Constructors >> 93 ///////////////// >> 94 91 G4OpBoundaryProcess::G4OpBoundaryProcess(const 95 G4OpBoundaryProcess::G4OpBoundaryProcess(const G4String& processName, 92 G4Pro << 96 G4ProcessType type) 93 : G4VDiscreteProcess(processName, ptype) << 97 : G4VDiscreteProcess(processName, type) 94 { 98 { 95 Initialise(); << 99 if ( verboseLevel > 0) { >> 100 G4cout << GetProcessName() << " is created " << G4endl; >> 101 } 96 102 97 if(verboseLevel > 0) << 103 SetProcessSubType(fOpBoundary); 98 { << 99 G4cout << GetProcessName() << " is created << 100 } << 101 SetProcessSubType(fOpBoundary); << 102 104 103 fStatus = Undefined; << 105 theStatus = Undefined; 104 fModel = glisur; << 106 theModel = glisur; 105 fFinish = polished; << 107 theFinish = polished; 106 fReflectivity = 1.; << 108 theReflectivity = 1.; 107 fEfficiency = 0.; << 109 theEfficiency = 0.; 108 fTransmittance = 0.; << 109 fSurfaceRoughness = 0.; << 110 fProb_sl = 0.; << 111 fProb_ss = 0.; << 112 fProb_bs = 0.; << 113 << 114 fRealRIndexMPV = nullptr; << 115 fImagRIndexMPV = nullptr; << 116 fMaterial1 = nullptr; << 117 fMaterial2 = nullptr; << 118 fOpticalSurface = nullptr; << 119 fCarTolerance = G4GeometryTolerance::GetIn << 120 << 121 f_iTE = f_iTM = 0; << 122 fPhotonMomentum = 0.; << 123 fRindex1 = fRindex2 = 1.; << 124 fSint1 = 0.; << 125 fDichroicVector = nullptr; << 126 } << 127 110 128 //....oooOO0OOooo........oooOO0OOooo........oo << 111 prob_sl = 0.; 129 G4OpBoundaryProcess::~G4OpBoundaryProcess() = << 112 prob_ss = 0.; >> 113 prob_bs = 0.; 130 114 131 //....oooOO0OOooo........oooOO0OOooo........oo << 115 PropertyPointer = NULL; 132 void G4OpBoundaryProcess::PreparePhysicsTable( << 116 PropertyPointer1 = NULL; 133 { << 117 PropertyPointer2 = NULL; 134 Initialise(); << 135 } << 136 118 137 //....oooOO0OOooo........oooOO0OOooo........oo << 119 kCarTolerance = G4GeometryTolerance::GetInstance() 138 void G4OpBoundaryProcess::Initialise() << 120 ->GetSurfaceTolerance(); 139 { << 121 140 G4OpticalParameters* params = G4OpticalParam << 122 iTE = iTM = 0; 141 SetInvokeSD(params->GetBoundaryInvokeSD()); << 123 thePhotonMomentum = 0.; 142 SetVerboseLevel(params->GetBoundaryVerboseLe << 124 Rindex1 = Rindex2 = cost1 = cost2 = sint1 = sint2 = 0.; 143 } 125 } 144 126 145 //....oooOO0OOooo........oooOO0OOooo........oo << 127 // G4OpBoundaryProcess::G4OpBoundaryProcess(const G4OpBoundaryProcess &right) 146 G4VParticleChange* G4OpBoundaryProcess::PostSt << 128 // { 147 << 129 // } >> 130 >> 131 //////////////// >> 132 // Destructors >> 133 //////////////// >> 134 >> 135 G4OpBoundaryProcess::~G4OpBoundaryProcess(){} >> 136 >> 137 //////////// >> 138 // Methods >> 139 //////////// >> 140 >> 141 // PostStepDoIt >> 142 // ------------ >> 143 // >> 144 G4VParticleChange* >> 145 G4OpBoundaryProcess::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 148 { 146 { 149 fStatus = Undefined; << 147 theStatus = Undefined; 150 aParticleChange.Initialize(aTrack); << 151 aParticleChange.ProposeVelocity(aTrack.GetVe << 152 << 153 // Get hyperStep from G4ParallelWorldProces << 154 // NOTE: PostSetpDoIt of this process to be << 155 // G4ParallelWorldProcess! << 156 const G4Step* pStep = &aStep; << 157 const G4Step* hStep = G4ParallelWorldProcess << 158 if(hStep != nullptr) << 159 pStep = hStep; << 160 << 161 if(pStep->GetPostStepPoint()->GetStepStatus( << 162 { << 163 fMaterial1 = pStep->GetPreStepPoint()->Get << 164 fMaterial2 = pStep->GetPostStepPoint()->Ge << 165 } << 166 else << 167 { << 168 fStatus = NotAtBoundary; << 169 if(verboseLevel > 1) << 170 BoundaryProcessVerbose(); << 171 return G4VDiscreteProcess::PostStepDoIt(aT << 172 } << 173 148 174 G4VPhysicalVolume* thePrePV = pStep->GetPre << 149 aParticleChange.Initialize(aTrack); 175 G4VPhysicalVolume* thePostPV = pStep->GetPos << 176 150 177 if(verboseLevel > 1) << 151 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint(); 178 { << 152 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); 179 G4cout << " Photon at Boundary! " << G4end << 180 if(thePrePV != nullptr) << 181 G4cout << " thePrePV: " << thePrePV->Ge << 182 if(thePostPV != nullptr) << 183 G4cout << " thePostPV: " << thePostPV->G << 184 } << 185 153 186 G4double stepLength = aTrack.GetStepLength() << 154 if ( verboseLevel > 0 ) { 187 if(stepLength <= fCarTolerance) << 155 G4cout << " Photon at Boundary! " << G4endl; 188 { << 156 G4VPhysicalVolume* thePrePV = pPreStepPoint->GetPhysicalVolume(); 189 fStatus = StepTooSmall; << 157 G4VPhysicalVolume* thePostPV = pPostStepPoint->GetPhysicalVolume(); 190 if(verboseLevel > 1) << 158 if (thePrePV) G4cout << " thePrePV: " << thePrePV->GetName() << G4endl; 191 BoundaryProcessVerbose(); << 159 if (thePostPV) G4cout << " thePostPV: " << thePostPV->GetName() << G4endl; 192 << 160 } 193 G4MaterialPropertyVector* groupvel = nullp << 194 G4MaterialPropertiesTable* aMPT = fMateria << 195 if(aMPT != nullptr) << 196 { << 197 groupvel = aMPT->GetProperty(kGROUPVEL); << 198 } << 199 << 200 if(groupvel != nullptr) << 201 { << 202 aParticleChange.ProposeVelocity( << 203 groupvel->Value(fPhotonMomentum, idx_g << 204 } << 205 return G4VDiscreteProcess::PostStepDoIt(aT << 206 } << 207 else if (stepLength <= 10.*fCarTolerance && << 208 { // see bug 2510 << 209 ++fNumSmallStepWarnings; << 210 if(verboseLevel > 0) << 211 { << 212 G4ExceptionDescription ed; << 213 ed << "G4OpBoundaryProcess: " << 214 << "Opticalphoton step length: " << s << 215 << "This is larger than the threshold << 216 "to set status StepTooSmall." << G << 217 << "Boundary scattering may be incorr << 218 if(fNumSmallStepWarnings == 10) << 219 { << 220 ed << G4endl << "*** Step size warning << 221 } << 222 G4Exception("G4OpBoundaryProcess", "OpBo << 223 } << 224 } << 225 161 226 const G4DynamicParticle* aParticle = aTrack. << 162 if (pPostStepPoint->GetStepStatus() != fGeomBoundary){ >> 163 theStatus = NotAtBoundary; >> 164 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 165 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 166 } >> 167 if (aTrack.GetStepLength()<=kCarTolerance/2){ >> 168 theStatus = StepTooSmall; >> 169 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 170 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 171 } 227 172 228 fPhotonMomentum = aParticle->GetTotalMoment << 173 Material1 = pPreStepPoint -> GetMaterial(); 229 fOldMomentum = aParticle->GetMomentumDir << 174 Material2 = pPostStepPoint -> GetMaterial(); 230 fOldPolarization = aParticle->GetPolarizatio << 231 << 232 if(verboseLevel > 1) << 233 { << 234 G4cout << " Old Momentum Direction: " << f << 235 << " Old Polarization: " << f << 236 } << 237 175 238 G4ThreeVector theGlobalPoint = pStep->GetPos << 176 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 239 G4bool valid; << 240 177 241 // ID of Navigator which limits step << 178 thePhotonMomentum = aParticle->GetTotalMomentum(); 242 G4int hNavId = G4ParallelWorldProcess::GetHy << 179 OldMomentum = aParticle->GetMomentumDirection(); 243 auto iNav = G4TransportationManager::GetT << 180 OldPolarization = aParticle->GetPolarization(); 244 ->GetActiveNavigatorsIterator( << 245 fGlobalNormal = (iNav[hNavId])->GetGlobalExi << 246 << 247 if(valid) << 248 { << 249 fGlobalNormal = -fGlobalNormal; << 250 } << 251 else << 252 { << 253 G4ExceptionDescription ed; << 254 ed << " G4OpBoundaryProcess/PostStepDoIt() << 255 << " The Navigator reports that it retu << 256 G4Exception( << 257 "G4OpBoundaryProcess::PostStepDoIt", "Op << 258 "Invalid Surface Normal - Geometry must << 259 } << 260 181 261 if(fOldMomentum * fGlobalNormal > 0.0) << 182 if ( verboseLevel > 0 ) { 262 { << 183 G4cout << " Old Momentum Direction: " << OldMomentum << G4endl; 263 #ifdef G4OPTICAL_DEBUG << 184 G4cout << " Old Polarization: " << OldPolarization << G4endl; 264 G4ExceptionDescription ed; << 185 } 265 ed << " G4OpBoundaryProcess/PostStepDoIt() << 266 "wrong direction. " << 267 << G4endl << 268 << " The momentum of the photon arriv << 269 << " must exit the volume cross in th << 270 << " So it MUST have dot < 0 with the << 271 "volume (globalNormal)." << 272 << G4endl << " >> The dot product of << 273 << fOldMomentum * fGlobalNormal << G4en << 274 << " Old Momentum (during step) << 275 << " Global Normal (Exiting New Vol << 276 << G4endl; << 277 G4Exception("G4OpBoundaryProcess::PostStep << 278 EventMustBeAborted, // Or Jus << 279 // repeat << 280 ed, << 281 "Invalid Surface Normal - Geom << 282 "normal pointing in the right << 283 #else << 284 fGlobalNormal = -fGlobalNormal; << 285 #endif << 286 } << 287 186 288 G4MaterialPropertyVector* rIndexMPV = nullpt << 187 G4ThreeVector theGlobalPoint = pPostStepPoint->GetPosition(); 289 G4MaterialPropertiesTable* MPT = fMaterial1- << 290 if(MPT != nullptr) << 291 { << 292 rIndexMPV = MPT->GetProperty(kRINDEX); << 293 } << 294 if(rIndexMPV != nullptr) << 295 { << 296 fRindex1 = rIndexMPV->Value(fPhotonMomentu << 297 } << 298 else << 299 { << 300 fStatus = NoRINDEX; << 301 if(verboseLevel > 1) << 302 BoundaryProcessVerbose(); << 303 aParticleChange.ProposeLocalEnergyDeposit( << 304 aParticleChange.ProposeTrackStatus(fStopAn << 305 return G4VDiscreteProcess::PostStepDoIt(aT << 306 } << 307 188 308 fReflectivity = 1.; << 189 G4Navigator* theNavigator = 309 fEfficiency = 0.; << 190 G4TransportationManager::GetTransportationManager()-> 310 fTransmittance = 0.; << 191 GetNavigatorForTracking(); 311 fSurfaceRoughness = 0.; << 312 fModel = glisur; << 313 fFinish = polished; << 314 G4SurfaceType type = dielectric_dielectric; << 315 << 316 rIndexMPV = nullptr; << 317 fOpticalSurface = nullptr; << 318 << 319 G4LogicalSurface* surface = << 320 G4LogicalBorderSurface::GetSurface(thePreP << 321 if(surface == nullptr) << 322 { << 323 if(thePostPV->GetMotherLogical() == thePre << 324 { << 325 surface = G4LogicalSkinSurface::GetSurfa << 326 if(surface == nullptr) << 327 { << 328 surface = << 329 G4LogicalSkinSurface::GetSurface(the << 330 } << 331 } << 332 else << 333 { << 334 surface = G4LogicalSkinSurface::GetSurfa << 335 if(surface == nullptr) << 336 { << 337 surface = << 338 G4LogicalSkinSurface::GetSurface(the << 339 } << 340 } << 341 } << 342 192 343 if(surface != nullptr) << 193 G4ThreeVector theLocalPoint = theNavigator-> 344 { << 194 GetGlobalToLocalTransform(). 345 fOpticalSurface = << 195 TransformPoint(theGlobalPoint); 346 dynamic_cast<G4OpticalSurface*>(surface- << 347 } << 348 if(fOpticalSurface != nullptr) << 349 { << 350 type = fOpticalSurface->GetType(); << 351 fModel = fOpticalSurface->GetModel(); << 352 fFinish = fOpticalSurface->GetFinish(); << 353 << 354 G4MaterialPropertiesTable* sMPT = << 355 fOpticalSurface->GetMaterialPropertiesTa << 356 if(sMPT != nullptr) << 357 { << 358 if(fFinish == polishedbackpainted || fFi << 359 { << 360 rIndexMPV = sMPT->GetProperty(kRINDEX) << 361 if(rIndexMPV != nullptr) << 362 { << 363 fRindex2 = rIndexMPV->Value(fPhotonM << 364 } << 365 else << 366 { << 367 fStatus = NoRINDEX; << 368 if(verboseLevel > 1) << 369 BoundaryProcessVerbose(); << 370 aParticleChange.ProposeLocalEnergyDe << 371 aParticleChange.ProposeTrackStatus(f << 372 return G4VDiscreteProcess::PostStepD << 373 } << 374 } << 375 196 376 fRealRIndexMPV = sMPT->GetProperty(kREAL << 197 G4ThreeVector theLocalNormal; // Normal points back into volume 377 fImagRIndexMPV = sMPT->GetProperty(kIMAG << 198 378 f_iTE = f_iTM = 1; << 199 G4bool valid; 379 << 200 theLocalNormal = theNavigator->GetLocalExitNormal(&valid); 380 G4MaterialPropertyVector* pp; << 201 381 if((pp = sMPT->GetProperty(kREFLECTIVITY << 202 if (valid) { 382 { << 203 theLocalNormal = -theLocalNormal; 383 fReflectivity = pp->Value(fPhotonMomen << 384 } << 385 else if(fRealRIndexMPV && fImagRIndexMPV << 386 { << 387 CalculateReflectivity(); << 388 } << 389 << 390 if((pp = sMPT->GetProperty(kEFFICIENCY)) << 391 { << 392 fEfficiency = pp->Value(fPhotonMomentu << 393 } << 394 if((pp = sMPT->GetProperty(kTRANSMITTANC << 395 { << 396 fTransmittance = pp->Value(fPhotonMome << 397 } << 398 if(sMPT->ConstPropertyExists(kSURFACEROU << 399 { << 400 fSurfaceRoughness = sMPT->GetConstProp << 401 } << 402 << 403 if(fModel == unified) << 404 { << 405 fProb_sl = (pp = sMPT->GetProperty(kSP << 406 ? pp->Value(fPhotonMoment << 407 : 0.; << 408 fProb_ss = (pp = sMPT->GetProperty(kSP << 409 ? pp->Value(fPhotonMoment << 410 : 0.; << 411 fProb_bs = (pp = sMPT->GetProperty(kBA << 412 ? pp->Value(fPhotonMoment << 413 : 0.; << 414 } << 415 } // end of if(sMPT) << 416 else if(fFinish == polishedbackpainted || << 417 { << 418 aParticleChange.ProposeLocalEnergyDeposi << 419 aParticleChange.ProposeTrackStatus(fStop << 420 return G4VDiscreteProcess::PostStepDoIt( << 421 } << 422 } // end of if(fOpticalSurface) << 423 << 424 // DIELECTRIC-DIELECTRIC << 425 if(type == dielectric_dielectric) << 426 { << 427 if(fFinish == polished || fFinish == groun << 428 { << 429 if(fMaterial1 == fMaterial2) << 430 { << 431 fStatus = SameMaterial; << 432 if(verboseLevel > 1) << 433 BoundaryProcessVerbose(); << 434 return G4VDiscreteProcess::PostStepDoI << 435 } << 436 MPT = fMaterial2->GetMaterialPrope << 437 rIndexMPV = nullptr; << 438 if(MPT != nullptr) << 439 { << 440 rIndexMPV = MPT->GetProperty(kRINDEX); << 441 } << 442 if(rIndexMPV != nullptr) << 443 { << 444 fRindex2 = rIndexMPV->Value(fPhotonMom << 445 } << 446 else << 447 { << 448 fStatus = NoRINDEX; << 449 if(verboseLevel > 1) << 450 BoundaryProcessVerbose(); << 451 aParticleChange.ProposeLocalEnergyDepo << 452 aParticleChange.ProposeTrackStatus(fSt << 453 return G4VDiscreteProcess::PostStepDoI << 454 } << 455 } << 456 if(fFinish == polishedbackpainted || fFini << 457 { << 458 DielectricDielectric(); << 459 } << 460 else << 461 { << 462 G4double rand = G4UniformRand(); << 463 if(rand > fReflectivity + fTransmittance << 464 { << 465 DoAbsorption(); << 466 } << 467 else if(rand > fReflectivity) << 468 { << 469 fStatus = Transmission; << 470 fNewMomentum = fOldMomentum; << 471 fNewPolarization = fOldPolarization; << 472 } << 473 else << 474 { << 475 if(fFinish == polishedfrontpainted) << 476 { << 477 DoReflection(); << 478 } 204 } 479 else if(fFinish == groundfrontpainted) << 205 else { 480 { << 206 G4cerr << " G4OpBoundaryProcess/PostStepDoIt(): " 481 fStatus = LambertianReflection; << 207 << " The Navigator reports that it returned an invalid normal" 482 DoReflection(); << 208 << G4endl; >> 209 G4Exception("G4OpBoundaryProcess::PostStepDoIt", >> 210 "Invalid Surface Normal", >> 211 EventMustBeAborted, >> 212 "Geometry must return valid surface normal"); 483 } 213 } 484 else << 214 485 { << 215 theGlobalNormal = theNavigator->GetLocalToGlobalTransform(). 486 DielectricDielectric(); << 216 TransformAxis(theLocalNormal); >> 217 >> 218 if (OldMomentum * theGlobalNormal > 0.0) { >> 219 #ifdef G4DEBUG_OPTICAL >> 220 G4cerr << " G4OpBoundaryProcess/PostStepDoIt(): " >> 221 << " theGlobalNormal points the wrong direction " >> 222 << G4endl; >> 223 #endif >> 224 theGlobalNormal = -theGlobalNormal; 487 } 225 } 488 } << 226 489 } << 227 G4MaterialPropertiesTable* aMaterialPropertiesTable; 490 } << 228 G4MaterialPropertyVector* Rindex; 491 else if(type == dielectric_metal) << 229 492 { << 230 aMaterialPropertiesTable = Material1->GetMaterialPropertiesTable(); 493 DielectricMetal(); << 231 if (aMaterialPropertiesTable) { 494 } << 232 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); 495 else if(type == dielectric_LUT) << 233 } 496 { << 234 else { 497 DielectricLUT(); << 235 theStatus = NoRINDEX; 498 } << 236 if ( verboseLevel > 0) BoundaryProcessVerbose(); 499 else if(type == dielectric_LUTDAVIS) << 237 aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum); 500 { << 238 aParticleChange.ProposeTrackStatus(fStopAndKill); 501 DielectricLUTDAVIS(); << 239 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 502 } << 240 } 503 else if(type == dielectric_dichroic) << 241 504 { << 242 if (Rindex) { 505 DielectricDichroic(); << 243 Rindex1 = Rindex->GetProperty(thePhotonMomentum); 506 } << 244 } 507 else if(type == coated) << 245 else { 508 { << 246 theStatus = NoRINDEX; 509 CoatedDielectricDielectric(); << 247 if ( verboseLevel > 0) BoundaryProcessVerbose(); 510 } << 248 aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum); 511 else << 249 aParticleChange.ProposeTrackStatus(fStopAndKill); 512 { << 250 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 513 if(fNumBdryTypeWarnings <= 10) << 251 } 514 { << 252 515 ++fNumBdryTypeWarnings; << 253 theReflectivity = 1.; 516 if(verboseLevel > 0) << 254 theEfficiency = 0.; 517 { << 255 518 G4ExceptionDescription ed; << 256 theModel = glisur; 519 ed << " PostStepDoIt(): Illegal bounda << 257 theFinish = polished; 520 if(fNumBdryTypeWarnings == 10) << 258 521 { << 259 G4SurfaceType type = dielectric_dielectric; 522 ed << "** Boundary type warnings sto << 260 >> 261 Rindex = NULL; >> 262 OpticalSurface = NULL; >> 263 >> 264 G4LogicalSurface* Surface = NULL; >> 265 >> 266 Surface = G4LogicalBorderSurface::GetSurface >> 267 (pPreStepPoint ->GetPhysicalVolume(), >> 268 pPostStepPoint->GetPhysicalVolume()); >> 269 >> 270 if (Surface == NULL){ >> 271 G4bool enteredDaughter=(pPostStepPoint->GetPhysicalVolume() >> 272 ->GetMotherLogical() == >> 273 pPreStepPoint->GetPhysicalVolume() >> 274 ->GetLogicalVolume()); >> 275 if(enteredDaughter){ >> 276 Surface = G4LogicalSkinSurface::GetSurface >> 277 (pPostStepPoint->GetPhysicalVolume()-> >> 278 GetLogicalVolume()); >> 279 if(Surface == NULL) >> 280 Surface = G4LogicalSkinSurface::GetSurface >> 281 (pPreStepPoint->GetPhysicalVolume()-> >> 282 GetLogicalVolume()); >> 283 } >> 284 else { >> 285 Surface = G4LogicalSkinSurface::GetSurface >> 286 (pPreStepPoint->GetPhysicalVolume()-> >> 287 GetLogicalVolume()); >> 288 if(Surface == NULL) >> 289 Surface = G4LogicalSkinSurface::GetSurface >> 290 (pPostStepPoint->GetPhysicalVolume()-> >> 291 GetLogicalVolume()); >> 292 } >> 293 } >> 294 >> 295 if (Surface) OpticalSurface = >> 296 dynamic_cast <G4OpticalSurface*> (Surface->GetSurfaceProperty()); >> 297 >> 298 if (OpticalSurface) { >> 299 >> 300 type = OpticalSurface->GetType(); >> 301 theModel = OpticalSurface->GetModel(); >> 302 theFinish = OpticalSurface->GetFinish(); >> 303 >> 304 aMaterialPropertiesTable = OpticalSurface-> >> 305 GetMaterialPropertiesTable(); >> 306 >> 307 if (aMaterialPropertiesTable) { >> 308 >> 309 if (theFinish == polishedbackpainted || >> 310 theFinish == groundbackpainted ) { >> 311 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); >> 312 if (Rindex) { >> 313 Rindex2 = Rindex->GetProperty(thePhotonMomentum); >> 314 } >> 315 else { >> 316 theStatus = NoRINDEX; >> 317 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 318 aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum); >> 319 aParticleChange.ProposeTrackStatus(fStopAndKill); >> 320 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 321 } >> 322 } >> 323 >> 324 PropertyPointer = >> 325 aMaterialPropertiesTable->GetProperty("REFLECTIVITY"); >> 326 PropertyPointer1 = >> 327 aMaterialPropertiesTable->GetProperty("REALRINDEX"); >> 328 PropertyPointer2 = >> 329 aMaterialPropertiesTable->GetProperty("IMAGINARYRINDEX"); >> 330 >> 331 iTE = 1; >> 332 iTM = 1; >> 333 >> 334 if (PropertyPointer) { >> 335 >> 336 theReflectivity = >> 337 PropertyPointer->GetProperty(thePhotonMomentum); >> 338 >> 339 } else if (PropertyPointer1 && PropertyPointer2) { >> 340 >> 341 CalculateReflectivity(); >> 342 >> 343 } >> 344 >> 345 PropertyPointer = >> 346 aMaterialPropertiesTable->GetProperty("EFFICIENCY"); >> 347 if (PropertyPointer) { >> 348 theEfficiency = >> 349 PropertyPointer->GetProperty(thePhotonMomentum); >> 350 } >> 351 >> 352 if ( theModel == unified ) { >> 353 PropertyPointer = >> 354 aMaterialPropertiesTable->GetProperty("SPECULARLOBECONSTANT"); >> 355 if (PropertyPointer) { >> 356 prob_sl = >> 357 PropertyPointer->GetProperty(thePhotonMomentum); >> 358 } else { >> 359 prob_sl = 0.0; >> 360 } >> 361 >> 362 PropertyPointer = >> 363 aMaterialPropertiesTable->GetProperty("SPECULARSPIKECONSTANT"); >> 364 if (PropertyPointer) { >> 365 prob_ss = >> 366 PropertyPointer->GetProperty(thePhotonMomentum); >> 367 } else { >> 368 prob_ss = 0.0; >> 369 } >> 370 >> 371 PropertyPointer = >> 372 aMaterialPropertiesTable->GetProperty("BACKSCATTERCONSTANT"); >> 373 if (PropertyPointer) { >> 374 prob_bs = >> 375 PropertyPointer->GetProperty(thePhotonMomentum); >> 376 } else { >> 377 prob_bs = 0.0; >> 378 } >> 379 } >> 380 } >> 381 else if (theFinish == polishedbackpainted || >> 382 theFinish == groundbackpainted ) { >> 383 aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum); >> 384 aParticleChange.ProposeTrackStatus(fStopAndKill); >> 385 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 386 } >> 387 } >> 388 >> 389 if (type == dielectric_dielectric ) { >> 390 if (theFinish == polished || theFinish == ground ) { >> 391 >> 392 if (Material1 == Material2){ >> 393 theStatus = SameMaterial; >> 394 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 395 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 396 } >> 397 aMaterialPropertiesTable = >> 398 Material2->GetMaterialPropertiesTable(); >> 399 if (aMaterialPropertiesTable) >> 400 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); >> 401 if (Rindex) { >> 402 Rindex2 = Rindex->GetProperty(thePhotonMomentum); >> 403 } >> 404 else { >> 405 theStatus = NoRINDEX; >> 406 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 407 aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum); >> 408 aParticleChange.ProposeTrackStatus(fStopAndKill); >> 409 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 410 } >> 411 } >> 412 } >> 413 >> 414 if (type == dielectric_metal) { >> 415 >> 416 DielectricMetal(); >> 417 >> 418 // Uncomment the following lines if you wish to have >> 419 // Transmission instead of Absorption >> 420 // if (theStatus == Absorption) { >> 421 // return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 422 // } >> 423 >> 424 } >> 425 else if (type == dielectric_LUT) { >> 426 >> 427 DielectricLUT(); >> 428 >> 429 } >> 430 else if (type == dielectric_dielectric) { >> 431 >> 432 if ( theFinish == polishedbackpainted || >> 433 theFinish == groundbackpainted ) { >> 434 DielectricDielectric(); >> 435 } >> 436 else { >> 437 if ( !G4BooleanRand(theReflectivity) ) { >> 438 DoAbsorption(); >> 439 } >> 440 else { >> 441 if ( theFinish == polishedfrontpainted ) { >> 442 DoReflection(); >> 443 } >> 444 else if ( theFinish == groundfrontpainted ) { >> 445 theStatus = LambertianReflection; >> 446 DoReflection(); >> 447 } >> 448 else { >> 449 DielectricDielectric(); >> 450 } >> 451 } >> 452 } 523 } 453 } 524 G4Exception("G4OpBoundaryProcess", "Op << 454 else { 525 } << 526 } << 527 return G4VDiscreteProcess::PostStepDoIt(aT << 528 } << 529 455 530 fNewMomentum = fNewMomentum.unit(); << 456 G4cerr << " Error: G4BoundaryProcess: illegal boundary type " << G4endl; 531 fNewPolarization = fNewPolarization.unit(); << 457 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 532 458 533 if(verboseLevel > 1) << 459 } 534 { << 535 G4cout << " New Momentum Direction: " << f << 536 << " New Polarization: " << f << 537 BoundaryProcessVerbose(); << 538 } << 539 460 540 aParticleChange.ProposeMomentumDirection(fNe << 461 NewMomentum = NewMomentum.unit(); 541 aParticleChange.ProposePolarization(fNewPola << 462 NewPolarization = NewPolarization.unit(); 542 463 543 if(fStatus == FresnelRefraction || fStatus = << 464 if ( verboseLevel > 0) { 544 { << 465 G4cout << " New Momentum Direction: " << NewMomentum << G4endl; 545 // not all surface types check that fMater << 466 G4cout << " New Polarization: " << NewPolarization << G4endl; 546 G4MaterialPropertiesTable* aMPT = fMateria << 467 BoundaryProcessVerbose(); 547 G4MaterialPropertyVector* groupvel = nullp << 468 } 548 if(aMPT != nullptr) << 469 549 { << 470 aParticleChange.ProposeMomentumDirection(NewMomentum); 550 groupvel = aMPT->GetProperty(kGROUPVEL); << 471 aParticleChange.ProposePolarization(NewPolarization); 551 } << 552 if(groupvel != nullptr) << 553 { << 554 aParticleChange.ProposeVelocity( << 555 groupvel->Value(fPhotonMomentum, idx_g << 556 } << 557 } << 558 472 559 if(fStatus == Detection && fInvokeSD) << 473 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 560 InvokeSD(pStep); << 561 return G4VDiscreteProcess::PostStepDoIt(aTra << 562 } 474 } 563 475 564 //....oooOO0OOooo........oooOO0OOooo........oo << 565 void G4OpBoundaryProcess::BoundaryProcessVerbo 476 void G4OpBoundaryProcess::BoundaryProcessVerbose() const 566 { 477 { 567 G4cout << " *** "; << 478 if ( theStatus == Undefined ) 568 if(fStatus == Undefined) << 479 G4cout << " *** Undefined *** " << G4endl; 569 G4cout << "Undefined"; << 480 if ( theStatus == FresnelRefraction ) 570 else if(fStatus == Transmission) << 481 G4cout << " *** FresnelRefraction *** " << G4endl; 571 G4cout << "Transmission"; << 482 if ( theStatus == FresnelReflection ) 572 else if(fStatus == FresnelRefraction) << 483 G4cout << " *** FresnelReflection *** " << G4endl; 573 G4cout << "FresnelRefraction"; << 484 if ( theStatus == TotalInternalReflection ) 574 else if(fStatus == FresnelReflection) << 485 G4cout << " *** TotalInternalReflection *** " << G4endl; 575 G4cout << "FresnelReflection"; << 486 if ( theStatus == LambertianReflection ) 576 else if(fStatus == TotalInternalReflection) << 487 G4cout << " *** LambertianReflection *** " << G4endl; 577 G4cout << "TotalInternalReflection"; << 488 if ( theStatus == LobeReflection ) 578 else if(fStatus == LambertianReflection) << 489 G4cout << " *** LobeReflection *** " << G4endl; 579 G4cout << "LambertianReflection"; << 490 if ( theStatus == SpikeReflection ) 580 else if(fStatus == LobeReflection) << 491 G4cout << " *** SpikeReflection *** " << G4endl; 581 G4cout << "LobeReflection"; << 492 if ( theStatus == BackScattering ) 582 else if(fStatus == SpikeReflection) << 493 G4cout << " *** BackScattering *** " << G4endl; 583 G4cout << "SpikeReflection"; << 494 if ( theStatus == PolishedLumirrorAirReflection ) 584 else if(fStatus == BackScattering) << 495 G4cout << " *** PolishedLumirrorAirReflection *** " << G4endl; 585 G4cout << "BackScattering"; << 496 if ( theStatus == PolishedLumirrorGlueReflection ) 586 else if(fStatus == PolishedLumirrorAirReflec << 497 G4cout << " *** PolishedLumirrorGlueReflection *** " << G4endl; 587 G4cout << "PolishedLumirrorAirReflection"; << 498 if ( theStatus == PolishedAirReflection ) 588 else if(fStatus == PolishedLumirrorGlueRefle << 499 G4cout << " *** PolishedAirReflection *** " << G4endl; 589 G4cout << "PolishedLumirrorGlueReflection" << 500 if ( theStatus == PolishedTeflonAirReflection ) 590 else if(fStatus == PolishedAirReflection) << 501 G4cout << " *** PolishedTeflonAirReflection *** " << G4endl; 591 G4cout << "PolishedAirReflection"; << 502 if ( theStatus == PolishedTiOAirReflection ) 592 else if(fStatus == PolishedTeflonAirReflecti << 503 G4cout << " *** PolishedTiOAirReflection *** " << G4endl; 593 G4cout << "PolishedTeflonAirReflection"; << 504 if ( theStatus == PolishedTyvekAirReflection ) 594 else if(fStatus == PolishedTiOAirReflection) << 505 G4cout << " *** PolishedTyvekAirReflection *** " << G4endl; 595 G4cout << "PolishedTiOAirReflection"; << 506 if ( theStatus == PolishedVM2000AirReflection ) 596 else if(fStatus == PolishedTyvekAirReflectio << 507 G4cout << " *** PolishedVM2000AirReflection *** " << G4endl; 597 G4cout << "PolishedTyvekAirReflection"; << 508 if ( theStatus == PolishedVM2000GlueReflection ) 598 else if(fStatus == PolishedVM2000AirReflecti << 509 G4cout << " *** PolishedVM2000GlueReflection *** " << G4endl; 599 G4cout << "PolishedVM2000AirReflection"; << 510 if ( theStatus == EtchedLumirrorAirReflection ) 600 else if(fStatus == PolishedVM2000GlueReflect << 511 G4cout << " *** EtchedLumirrorAirReflection *** " << G4endl; 601 G4cout << "PolishedVM2000GlueReflection"; << 512 if ( theStatus == EtchedLumirrorGlueReflection ) 602 else if(fStatus == EtchedLumirrorAirReflecti << 513 G4cout << " *** EtchedLumirrorGlueReflection *** " << G4endl; 603 G4cout << "EtchedLumirrorAirReflection"; << 514 if ( theStatus == EtchedAirReflection ) 604 else if(fStatus == EtchedLumirrorGlueReflect << 515 G4cout << " *** EtchedAirReflection *** " << G4endl; 605 G4cout << "EtchedLumirrorGlueReflection"; << 516 if ( theStatus == EtchedTeflonAirReflection ) 606 else if(fStatus == EtchedAirReflection) << 517 G4cout << " *** EtchedTeflonAirReflection *** " << G4endl; 607 G4cout << "EtchedAirReflection"; << 518 if ( theStatus == EtchedTiOAirReflection ) 608 else if(fStatus == EtchedTeflonAirReflection << 519 G4cout << " *** EtchedTiOAirReflection *** " << G4endl; 609 G4cout << "EtchedTeflonAirReflection"; << 520 if ( theStatus == EtchedTyvekAirReflection ) 610 else if(fStatus == EtchedTiOAirReflection) << 521 G4cout << " *** EtchedTyvekAirReflection *** " << G4endl; 611 G4cout << "EtchedTiOAirReflection"; << 522 if ( theStatus == EtchedVM2000AirReflection ) 612 else if(fStatus == EtchedTyvekAirReflection) << 523 G4cout << " *** EtchedVM2000AirReflection *** " << G4endl; 613 G4cout << "EtchedTyvekAirReflection"; << 524 if ( theStatus == EtchedVM2000GlueReflection ) 614 else if(fStatus == EtchedVM2000AirReflection << 525 G4cout << " *** EtchedVM2000GlueReflection *** " << G4endl; 615 G4cout << "EtchedVM2000AirReflection"; << 526 if ( theStatus == GroundLumirrorAirReflection ) 616 else if(fStatus == EtchedVM2000GlueReflectio << 527 G4cout << " *** GroundLumirrorAirReflection *** " << G4endl; 617 G4cout << "EtchedVM2000GlueReflection"; << 528 if ( theStatus == GroundLumirrorGlueReflection ) 618 else if(fStatus == GroundLumirrorAirReflecti << 529 G4cout << " *** GroundLumirrorGlueReflection *** " << G4endl; 619 G4cout << "GroundLumirrorAirReflection"; << 530 if ( theStatus == GroundAirReflection ) 620 else if(fStatus == GroundLumirrorGlueReflect << 531 G4cout << " *** GroundAirReflection *** " << G4endl; 621 G4cout << "GroundLumirrorGlueReflection"; << 532 if ( theStatus == GroundTeflonAirReflection ) 622 else if(fStatus == GroundAirReflection) << 533 G4cout << " *** GroundTeflonAirReflection *** " << G4endl; 623 G4cout << "GroundAirReflection"; << 534 if ( theStatus == GroundTiOAirReflection ) 624 else if(fStatus == GroundTeflonAirReflection << 535 G4cout << " *** GroundTiOAirReflection *** " << G4endl; 625 G4cout << "GroundTeflonAirReflection"; << 536 if ( theStatus == GroundTyvekAirReflection ) 626 else if(fStatus == GroundTiOAirReflection) << 537 G4cout << " *** GroundTyvekAirReflection *** " << G4endl; 627 G4cout << "GroundTiOAirReflection"; << 538 if ( theStatus == GroundVM2000AirReflection ) 628 else if(fStatus == GroundTyvekAirReflection) << 539 G4cout << " *** GroundVM2000AirReflection *** " << G4endl; 629 G4cout << "GroundTyvekAirReflection"; << 540 if ( theStatus == GroundVM2000GlueReflection ) 630 else if(fStatus == GroundVM2000AirReflection << 541 G4cout << " *** GroundVM2000GlueReflection *** " << G4endl; 631 G4cout << "GroundVM2000AirReflection"; << 542 if ( theStatus == Absorption ) 632 else if(fStatus == GroundVM2000GlueReflectio << 543 G4cout << " *** Absorption *** " << G4endl; 633 G4cout << "GroundVM2000GlueReflection"; << 544 if ( theStatus == Detection ) 634 else if(fStatus == Absorption) << 545 G4cout << " *** Detection *** " << G4endl; 635 G4cout << "Absorption"; << 546 if ( theStatus == NotAtBoundary ) 636 else if(fStatus == Detection) << 547 G4cout << " *** NotAtBoundary *** " << G4endl; 637 G4cout << "Detection"; << 548 if ( theStatus == SameMaterial ) 638 else if(fStatus == NotAtBoundary) << 549 G4cout << " *** SameMaterial *** " << G4endl; 639 G4cout << "NotAtBoundary"; << 550 if ( theStatus == StepTooSmall ) 640 else if(fStatus == SameMaterial) << 551 G4cout << " *** StepTooSmall *** " << G4endl; 641 G4cout << "SameMaterial"; << 552 if ( theStatus == NoRINDEX ) 642 else if(fStatus == StepTooSmall) << 553 G4cout << " *** NoRINDEX *** " << G4endl; 643 G4cout << "StepTooSmall"; << 644 else if(fStatus == NoRINDEX) << 645 G4cout << "NoRINDEX"; << 646 else if(fStatus == Dichroic) << 647 G4cout << "Dichroic Transmission"; << 648 else if(fStatus == CoatedDielectricReflectio << 649 G4cout << "Coated Dielectric Reflection"; << 650 else if(fStatus == CoatedDielectricRefractio << 651 G4cout << "Coated Dielectric Refraction"; << 652 else if(fStatus == CoatedDielectricFrustrate << 653 G4cout << "Coated Dielectric Frustrated Tr << 654 << 655 G4cout << " ***" << G4endl; << 656 } 554 } 657 555 658 //....oooOO0OOooo........oooOO0OOooo........oo << 556 G4ThreeVector 659 G4ThreeVector G4OpBoundaryProcess::GetFacetNor << 557 G4OpBoundaryProcess::GetFacetNormal(const G4ThreeVector& Momentum, 660 const G4ThreeVector& momentum, const G4Three << 558 const G4ThreeVector& Normal ) const 661 { 559 { 662 G4ThreeVector facetNormal; << 560 G4ThreeVector FacetNormal; 663 if(fModel == unified || fModel == LUT || fMo << 561 664 { << 562 if (theModel == unified || theModel == LUT) { 665 /* This function codes alpha to a random v << 563 666 distribution p(alpha) = g(alpha; 0, sigma_ << 564 /* This function code alpha to a random value taken from the 667 for alpha > 0 and alpha < 90, where g(alph << 565 distribution p(alpha) = g(alpha; 0, sigma_alpha)*std::sin(alpha), 668 gaussian distribution with mean 0 and stan << 566 for alpha > 0 and alpha < 90, where g(alpha; 0, sigma_alpha) 669 << 567 is a gaussian distribution with mean 0 and standard deviation 670 G4double sigma_alpha = 0.0; << 568 sigma_alpha. */ 671 if(fOpticalSurface) << 569 672 sigma_alpha = fOpticalSurface->GetSigmaA << 570 G4double alpha; 673 if(sigma_alpha == 0.0) << 571 674 { << 572 G4double sigma_alpha = 0.0; 675 return normal; << 573 if (OpticalSurface) sigma_alpha = OpticalSurface->GetSigmaAlpha(); 676 } << 574 677 << 575 G4double f_max = std::min(1.0,4.*sigma_alpha); 678 G4double f_max = std::min(1.0, 4. * sigma_ << 576 679 G4double alpha, phi, sinAlpha; << 577 do { 680 << 578 do { 681 do << 579 alpha = G4RandGauss::shoot(0.0,sigma_alpha); 682 { // Loop checking, 13-Aug-2015, Peter Gu << 580 } while (G4UniformRand()*f_max > std::sin(alpha) || alpha >= halfpi ); 683 do << 581 684 { // Loop checking, 13-Aug-2015, Peter << 582 G4double phi = G4UniformRand()*twopi; 685 alpha = G4RandGauss::shoot(0.0, sig << 583 686 sinAlpha = std::sin(alpha); << 584 G4double SinAlpha = std::sin(alpha); 687 } while(G4UniformRand() * f_max > sinAlp << 585 G4double CosAlpha = std::cos(alpha); 688 << 586 G4double SinPhi = std::sin(phi); 689 phi = G4UniformRand() * twopi; << 587 G4double CosPhi = std::cos(phi); 690 facetNormal.set(sinAlpha * std::cos(phi) << 588 691 std::cos(alpha)); << 589 G4double unit_x = SinAlpha * CosPhi; 692 facetNormal.rotateUz(normal); << 590 G4double unit_y = SinAlpha * SinPhi; 693 } while(momentum * facetNormal >= 0.0); << 591 G4double unit_z = CosAlpha; 694 } << 592 695 else << 593 FacetNormal.setX(unit_x); 696 { << 594 FacetNormal.setY(unit_y); 697 G4double polish = 1.0; << 595 FacetNormal.setZ(unit_z); 698 if(fOpticalSurface) << 596 699 polish = fOpticalSurface->GetPolish(); << 597 G4ThreeVector tmpNormal = Normal; 700 if(polish < 1.0) << 598 701 { << 599 FacetNormal.rotateUz(tmpNormal); 702 do << 600 } while (Momentum * FacetNormal >= 0.0); 703 { // Loop checking, 13-Aug-2015, Peter << 601 } 704 G4ThreeVector smear; << 602 else { 705 do << 603 706 { // Loop checking, 13-Aug-2015, Pete << 604 G4double polish = 1.0; 707 smear.setX(2. * G4UniformRand() - 1. << 605 if (OpticalSurface) polish = OpticalSurface->GetPolish(); 708 smear.setY(2. * G4UniformRand() - 1. << 606 709 smear.setZ(2. * G4UniformRand() - 1. << 607 if (polish < 1.0) { 710 } while(smear.mag2() > 1.0); << 608 do { 711 facetNormal = normal + (1. - polish) * << 609 G4ThreeVector smear; 712 } while(momentum * facetNormal >= 0.0); << 610 do { 713 facetNormal = facetNormal.unit(); << 611 smear.setX(2.*G4UniformRand()-1.0); 714 } << 612 smear.setY(2.*G4UniformRand()-1.0); 715 else << 613 smear.setZ(2.*G4UniformRand()-1.0); 716 { << 614 } while (smear.mag()>1.0); 717 facetNormal = normal; << 615 smear = (1.-polish) * smear; 718 } << 616 FacetNormal = Normal + smear; 719 } << 617 } while (Momentum * FacetNormal >= 0.0); 720 return facetNormal; << 618 FacetNormal = FacetNormal.unit(); >> 619 } >> 620 else { >> 621 FacetNormal = Normal; >> 622 } >> 623 } >> 624 return FacetNormal; 721 } 625 } 722 626 723 //....oooOO0OOooo........oooOO0OOooo........oo << 724 void G4OpBoundaryProcess::DielectricMetal() 627 void G4OpBoundaryProcess::DielectricMetal() 725 { 628 { 726 G4int n = 0; << 629 G4int n = 0; 727 G4double rand; << 728 G4ThreeVector A_trans; << 729 << 730 do << 731 { << 732 ++n; << 733 rand = G4UniformRand(); << 734 if(rand > fReflectivity && n == 1) << 735 { << 736 if(rand > fReflectivity + fTransmittance << 737 { << 738 DoAbsorption(); << 739 } << 740 else << 741 { << 742 fStatus = Transmission; << 743 fNewMomentum = fOldMomentum; << 744 fNewPolarization = fOldPolarization; << 745 } << 746 break; << 747 } << 748 else << 749 { << 750 if(fRealRIndexMPV && fImagRIndexMPV) << 751 { << 752 if(n > 1) << 753 { << 754 CalculateReflectivity(); << 755 if(!G4BooleanRand(fReflectivity)) << 756 { << 757 DoAbsorption(); << 758 break; << 759 } << 760 } << 761 } << 762 if(fModel == glisur || fFinish == polish << 763 { << 764 DoReflection(); << 765 } << 766 else << 767 { << 768 if(n == 1) << 769 ChooseReflection(); << 770 if(fStatus == LambertianReflection) << 771 { << 772 DoReflection(); << 773 } << 774 else if(fStatus == BackScattering) << 775 { << 776 fNewMomentum = -fOldMomentum; << 777 fNewPolarization = -fOldPolarization << 778 } << 779 else << 780 { << 781 if(fStatus == LobeReflection) << 782 { << 783 if(!fRealRIndexMPV || !fImagRIndex << 784 { << 785 fFacetNormal = GetFacetNormal(fO << 786 } << 787 // else << 788 // case of complex rindex needs t << 789 } << 790 fNewMomentum = << 791 fOldMomentum - 2. * fOldMomentum * << 792 630 793 if(f_iTE > 0 && f_iTM > 0) << 631 do { 794 { << 795 fNewPolarization = << 796 -fOldPolarization + << 797 (2. * fOldPolarization * fFacetN << 798 } << 799 else if(f_iTE > 0) << 800 { << 801 A_trans = (fSint1 > 0.0) ? fOldMom << 802 : fOldPol << 803 fNewPolarization = -A_trans; << 804 } << 805 else if(f_iTM > 0) << 806 { << 807 fNewPolarization = << 808 -fNewMomentum.cross(A_trans).uni << 809 } << 810 } << 811 } << 812 fOldMomentum = fNewMomentum; << 813 fOldPolarization = fNewPolarization; << 814 } << 815 // Loop checking, 13-Aug-2015, Peter Gumpl << 816 } while(fNewMomentum * fGlobalNormal < 0.0); << 817 } << 818 632 819 //....oooOO0OOooo........oooOO0OOooo........oo << 633 n++; 820 void G4OpBoundaryProcess::DielectricLUT() << 821 { << 822 G4int thetaIndex, phiIndex; << 823 G4double angularDistVal, thetaRad, phiRad; << 824 G4ThreeVector perpVectorTheta, perpVectorPhi << 825 << 826 fStatus = G4OpBoundaryProcessStatus( << 827 G4int(fFinish) + (G4int(NoRINDEX) - G4int( << 828 << 829 G4int thetaIndexMax = fOpticalSurface->GetTh << 830 G4int phiIndexMax = fOpticalSurface->GetPh << 831 << 832 G4double rand; << 833 << 834 do << 835 { << 836 rand = G4UniformRand(); << 837 if(rand > fReflectivity) << 838 { << 839 if(rand > fReflectivity + fTransmittance << 840 { << 841 DoAbsorption(); << 842 } << 843 else << 844 { << 845 fStatus = Transmission; << 846 fNewMomentum = fOldMomentum; << 847 fNewPolarization = fOldPolarization; << 848 } << 849 break; << 850 } << 851 else << 852 { << 853 // Calculate Angle between Normal and Ph << 854 G4double anglePhotonToNormal = fOldMomen << 855 // Round to closest integer: LBNL model << 856 G4int angleIncident = (G4int)std::lrint( << 857 << 858 // Take random angles THETA and PHI, << 859 // and see if below Probability - if not << 860 do << 861 { << 862 thetaIndex = (G4int)G4RandFlat::shootI << 863 phiIndex = (G4int)G4RandFlat::shootI << 864 // Find probability with the new indec << 865 angularDistVal = fOpticalSurface->GetA << 866 angleIncident, thetaIndex, phiIndex) << 867 // Loop checking, 13-Aug-2015, Peter G << 868 } while(!G4BooleanRand(angularDistVal)); << 869 << 870 thetaRad = G4double(-90 + 4 * thetaIndex << 871 phiRad = G4double(-90 + 5 * phiIndex) << 872 // Rotate Photon Momentum in Theta, then << 873 fNewMomentum = -fOldMomentum; << 874 << 875 perpVectorTheta = fNewMomentum.cross(fGl << 876 if(perpVectorTheta.mag() < fCarTolerance << 877 { << 878 perpVectorTheta = fNewMomentum.orthogo << 879 } << 880 fNewMomentum = << 881 fNewMomentum.rotate(anglePhotonToNorma << 882 perpVectorPhi = perpVectorTheta.cross(fN << 883 fNewMomentum = fNewMomentum.rotate(-phi << 884 << 885 // Rotate Polarization too: << 886 fFacetNormal = (fNewMomentum - fOldM << 887 fNewPolarization = -fOldPolarization + << 888 (2. * fOldPolarizatio << 889 } << 890 // Loop checking, 13-Aug-2015, Peter Gumpl << 891 } while(fNewMomentum * fGlobalNormal <= 0.0) << 892 } << 893 634 894 //....oooOO0OOooo........oooOO0OOooo........oo << 635 if( !G4BooleanRand(theReflectivity) && n == 1 ) { 895 void G4OpBoundaryProcess::DielectricLUTDAVIS() << 896 { << 897 G4int angindex, random, angleIncident; << 898 G4double reflectivityValue, elevation, azimu << 899 G4double anglePhotonToNormal; << 900 << 901 G4int lutbin = fOpticalSurface->GetLUTbins( << 902 G4double rand = G4UniformRand(); << 903 << 904 G4double sinEl; << 905 G4ThreeVector u, vNorm, w; << 906 << 907 do << 908 { << 909 anglePhotonToNormal = fOldMomentum.angle(- << 910 << 911 // Davis model has 90 reflection bins: rou << 912 // don't allow angleIncident to be 90 for << 913 angleIncident = std::min( << 914 static_cast<G4int>(std::floor(anglePhoto << 915 reflectivityValue = fOpticalSurface->GetRe << 916 << 917 if(rand > reflectivityValue) << 918 { << 919 if(fEfficiency > 0.) << 920 { << 921 DoAbsorption(); << 922 break; << 923 } << 924 else << 925 { << 926 fStatus = Transmission; << 927 << 928 if(angleIncident <= 0.01) << 929 { << 930 fNewMomentum = fOldMomentum; << 931 break; << 932 } << 933 636 934 do << 637 // Comment out DoAbsorption and uncomment theStatus = Absorption; 935 { << 638 // if you wish to have Transmission instead of Absorption 936 random = (G4int)G4RandFlat::shootInt << 639 937 angindex = << 640 DoAbsorption(); 938 (((random * 2) - 1)) + angleIncide << 641 // theStatus = Absorption; 939 << 642 break; 940 azimuth = << 643 941 fOpticalSurface->GetAngularDistrib << 644 } 942 elevation = fOpticalSurface->GetAngu << 645 else { 943 } while(elevation == 0. && azimuth == << 646 944 << 647 if (PropertyPointer1 && PropertyPointer2) { 945 sinEl = std::sin(elevation); << 648 if ( n > 1 ) { 946 vNorm = (fGlobalNormal.cross(fOldMomen << 649 CalculateReflectivity(); 947 u = vNorm.cross(fGlobalNormal) * ( << 650 if ( !G4BooleanRand(theReflectivity) ) { 948 vNorm *= (sinEl * std::sin(azimuth)); << 651 DoAbsorption(); 949 // fGlobalNormal shouldn't be modified << 652 break; 950 w = (fGlobalNormal *= std:: << 653 } 951 fNewMomentum = u + vNorm + w; << 654 } 952 << 655 } 953 // Rotate Polarization too: << 656 954 fFacetNormal = (fNewMomentum - fOl << 657 if ( theModel == glisur || theFinish == polished ) { 955 fNewPolarization = -fOldPolarization + << 658 956 << 659 DoReflection(); 957 } << 660 958 } << 661 } else { 959 else << 662 960 { << 663 if ( n == 1 ) ChooseReflection(); 961 fStatus = LobeReflection; << 664 962 << 665 if ( theStatus == LambertianReflection ) { 963 if(angleIncident == 0) << 666 DoReflection(); 964 { << 667 } 965 fNewMomentum = -fOldMomentum; << 668 else if ( theStatus == BackScattering ) { 966 break; << 669 NewMomentum = -OldMomentum; 967 } << 670 NewPolarization = -OldPolarization; 968 << 671 } 969 do << 672 else { 970 { << 673 971 random = (G4int)G4RandFlat::shootInt << 674 if(theStatus==LobeReflection){ 972 angindex = (((random * 2) - 1)) + (ang << 675 if ( PropertyPointer1 && PropertyPointer2 ){ 973 << 676 } else { 974 azimuth = fOpticalSurface->GetAngularD << 677 theFacetNormal = 975 elevation = fOpticalSurface->GetAngula << 678 GetFacetNormal(OldMomentum,theGlobalNormal); 976 } while(elevation == 0. && azimuth == 0. << 679 } 977 << 680 } 978 sinEl = std::sin(elevation); << 681 979 vNorm = (fGlobalNormal.cross(fOldMomentu << 682 G4double PdotN = OldMomentum * theFacetNormal; 980 u = vNorm.cross(fGlobalNormal) * (si << 683 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; 981 vNorm *= (sinEl * std::sin(azimuth)); << 684 G4double EdotN = OldPolarization * theFacetNormal; 982 // fGlobalNormal shouldn't be modified h << 685 983 w = (fGlobalNormal *= std::cos(elevation << 686 G4ThreeVector A_trans, A_paral; 984 << 687 985 fNewMomentum = u + vNorm + w; << 688 if (sint1 > 0.0 ) { 986 << 689 A_trans = OldMomentum.cross(theFacetNormal); 987 // Rotate Polarization too: (needs revis << 690 A_trans = A_trans.unit(); 988 fNewPolarization = fOldPolarization; << 691 } else { 989 } << 692 A_trans = OldPolarization; 990 } while(fNewMomentum * fGlobalNormal <= 0.0) << 693 } 991 } << 694 A_paral = NewMomentum.cross(A_trans); >> 695 A_paral = A_paral.unit(); >> 696 >> 697 if(iTE>0&&iTM>0) { >> 698 NewPolarization = >> 699 -OldPolarization + (2.*EdotN)*theFacetNormal; >> 700 } else if (iTE>0) { >> 701 NewPolarization = -A_trans; >> 702 } else if (iTM>0) { >> 703 NewPolarization = -A_paral; >> 704 } >> 705 >> 706 } 992 707 993 //....oooOO0OOooo........oooOO0OOooo........oo << 708 } 994 void G4OpBoundaryProcess::DielectricDichroic() << 995 { << 996 // Calculate Angle between Normal and Photon << 997 G4double anglePhotonToNormal = fOldMomentum. << 998 709 999 // Round it to closest integer << 710 OldMomentum = NewMomentum; 1000 G4double angleIncident = std::floor(180. / << 711 OldPolarization = NewPolarization; 1001 712 1002 if(!fDichroicVector) << 713 } 1003 { << 1004 if(fOpticalSurface) << 1005 fDichroicVector = fOpticalSurface->GetD << 1006 } << 1007 714 1008 if(fDichroicVector) << 715 } while (NewMomentum * theGlobalNormal < 0.0); 1009 { << 716 } 1010 G4double wavelength = h_Planck * c_light << 1011 fTransmittance = fDichroicVector->Va << 1012 i << 1013 perCent; << 1014 // G4cout << "wavelength: " << std::flo << 1015 // << "nm" << << 1016 // G4cout << "Incident angle: " << angl << 1017 // G4cout << "Transmittance: " << 1018 // << std::floor(fTransmittance/ << 1019 } << 1020 else << 1021 { << 1022 G4ExceptionDescription ed; << 1023 ed << " G4OpBoundaryProcess/DielectricDic << 1024 << " The dichroic surface has no G4Phy << 1025 G4Exception("G4OpBoundaryProcess::Dielect << 1026 FatalException, ed, << 1027 "A dichroic surface must have << 1028 } << 1029 717 1030 if(!G4BooleanRand(fTransmittance)) << 718 void G4OpBoundaryProcess::DielectricLUT() 1031 { // Not transmitted, so reflect << 719 { 1032 if(fModel == glisur || fFinish == polishe << 720 G4int thetaIndex, phiIndex; 1033 { << 721 G4double AngularDistributionValue, thetaRad, phiRad, EdotN; 1034 DoReflection(); << 722 G4ThreeVector PerpendicularVectorTheta, PerpendicularVectorPhi; 1035 } << 723 1036 else << 724 theStatus = G4OpBoundaryProcessStatus(G4int(theFinish) + 1037 { << 725 (G4int(NoRINDEX)-G4int(groundbackpainted))); 1038 ChooseReflection(); << 726 1039 if(fStatus == LambertianReflection) << 727 G4int thetaIndexMax = OpticalSurface->GetThetaIndexMax(); 1040 { << 728 G4int phiIndexMax = OpticalSurface->GetPhiIndexMax(); 1041 DoReflection(); << 729 1042 } << 730 do { 1043 else if(fStatus == BackScattering) << 731 if ( !G4BooleanRand(theReflectivity) ) // Not reflected, so Absorbed 1044 { << 732 DoAbsorption(); 1045 fNewMomentum = -fOldMomentum; << 733 else { 1046 fNewPolarization = -fOldPolarization; << 734 // Calculate Angle between Normal and Photon Momentum 1047 } << 735 G4double anglePhotonToNormal = 1048 else << 736 OldMomentum.angle(-theGlobalNormal); 1049 { << 737 // Round it to closest integer 1050 G4double PdotN, EdotN; << 738 G4int angleIncident = G4int(std::floor(180/pi*anglePhotonToNormal+0.5)); 1051 do << 739 1052 { << 740 // Take random angles THETA and PHI, 1053 if(fStatus == LobeReflection) << 741 // and see if below Probability - if not - Redo 1054 { << 742 do { 1055 fFacetNormal = GetFacetNormal(fOl << 743 thetaIndex = CLHEP::RandFlat::shootInt(thetaIndexMax-1); 1056 } << 744 phiIndex = CLHEP::RandFlat::shootInt(phiIndexMax-1); 1057 PdotN = fOldMomentum * fFace << 745 // Find probability with the new indeces from LUT 1058 fNewMomentum = fOldMomentum - (2. * << 746 AngularDistributionValue = OpticalSurface -> 1059 // Loop checking, 13-Aug-2015, Pete << 747 GetAngularDistributionValue(angleIncident, 1060 } while(fNewMomentum * fGlobalNormal << 748 thetaIndex, 1061 << 749 phiIndex); 1062 EdotN = fOldPolarization * << 750 } while ( !G4BooleanRand(AngularDistributionValue) ); 1063 fNewPolarization = -fOldPolarization << 751 1064 } << 752 thetaRad = (-90 + 4*thetaIndex)*pi/180; 1065 } << 753 phiRad = (-90 + 5*phiIndex)*pi/180; 1066 } << 754 // Rotate Photon Momentum in Theta, then in Phi 1067 else << 755 NewMomentum = -OldMomentum; 1068 { << 756 PerpendicularVectorTheta = NewMomentum.cross(theGlobalNormal); 1069 fStatus = Dichroic; << 757 if (PerpendicularVectorTheta.mag() > kCarTolerance ) { 1070 fNewMomentum = fOldMomentum; << 758 PerpendicularVectorPhi = 1071 fNewPolarization = fOldPolarization; << 759 PerpendicularVectorTheta.cross(NewMomentum); 1072 } << 760 } >> 761 else { >> 762 PerpendicularVectorTheta = NewMomentum.orthogonal(); >> 763 PerpendicularVectorPhi = >> 764 PerpendicularVectorTheta.cross(NewMomentum); >> 765 } >> 766 NewMomentum = >> 767 NewMomentum.rotate(anglePhotonToNormal-thetaRad, >> 768 PerpendicularVectorTheta); >> 769 NewMomentum = NewMomentum.rotate(-phiRad,PerpendicularVectorPhi); >> 770 // Rotate Polarization too: >> 771 theFacetNormal = (NewMomentum - OldMomentum).unit(); >> 772 EdotN = OldPolarization * theFacetNormal; >> 773 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal; >> 774 } >> 775 } while (NewMomentum * theGlobalNormal <= 0.0); 1073 } 776 } 1074 777 1075 //....oooOO0OOooo........oooOO0OOooo........o << 1076 void G4OpBoundaryProcess::DielectricDielectri 778 void G4OpBoundaryProcess::DielectricDielectric() 1077 { 779 { 1078 G4bool inside = false; << 780 G4bool Inside = false; 1079 G4bool swap = false; << 781 G4bool Swap = false; 1080 << 1081 if(fFinish == polished) << 1082 { << 1083 fFacetNormal = fGlobalNormal; << 1084 } << 1085 else << 1086 { << 1087 fFacetNormal = GetFacetNormal(fOldMomentu << 1088 } << 1089 G4double cost1 = -fOldMomentum * fFacetNorm << 1090 G4double cost2 = 0.; << 1091 G4double sint2 = 0.; << 1092 << 1093 G4bool surfaceRoughnessCriterionPass = true << 1094 if(fSurfaceRoughness != 0. && fRindex1 > fR << 1095 { << 1096 G4double wavelength = h_Pl << 1097 G4double surfaceRoughnessCriterion = std: << 1098 (4. * pi * fSurfaceRoughness * fRindex1 << 1099 surfaceRoughnessCriterionPass = G4Boolean << 1100 } << 1101 << 1102 leap: << 1103 << 1104 G4bool through = false; << 1105 G4bool done = false; << 1106 << 1107 G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 1108 G4double E1_perp, E1_parl; << 1109 G4double s1, s2, E2_perp, E2_parl, E2_total << 1110 G4double E2_abs, C_parl, C_perp; << 1111 G4double alpha; << 1112 << 1113 do << 1114 { << 1115 if(through) << 1116 { << 1117 swap = !swap; << 1118 through = false; << 1119 fGlobalNormal = -fGlobalNormal; << 1120 G4SwapPtr(fMaterial1, fMaterial2); << 1121 G4SwapObj(&fRindex1, &fRindex2); << 1122 } << 1123 << 1124 if(fFinish == polished) << 1125 { << 1126 fFacetNormal = fGlobalNormal; << 1127 } << 1128 else << 1129 { << 1130 fFacetNormal = GetFacetNormal(fOldMomen << 1131 } << 1132 << 1133 cost1 = -fOldMomentum * fFacetNormal; << 1134 if(std::abs(cost1) < 1.0 - fCarTolerance) << 1135 { << 1136 fSint1 = std::sqrt(1. - cost1 * cost1); << 1137 sint2 = fSint1 * fRindex1 / fRindex2; << 1138 // this isn't a sine as we might expect << 1139 } << 1140 else << 1141 { << 1142 fSint1 = 0.0; << 1143 sint2 = 0.0; << 1144 } << 1145 << 1146 // TOTAL INTERNAL REFLECTION << 1147 if(sint2 >= 1.0) << 1148 { << 1149 swap = false; << 1150 << 1151 fStatus = TotalInternalReflection; << 1152 if(!surfaceRoughnessCriterionPass) << 1153 fStatus = LambertianReflection; << 1154 if(fModel == unified && fFinish != poli << 1155 ChooseReflection(); << 1156 if(fStatus == LambertianReflection) << 1157 { << 1158 DoReflection(); << 1159 } << 1160 else if(fStatus == BackScattering) << 1161 { << 1162 fNewMomentum = -fOldMomentum; << 1163 fNewPolarization = -fOldPolarization; << 1164 } << 1165 else << 1166 { << 1167 fNewMomentum = << 1168 fOldMomentum - 2. * fOldMomentum * << 1169 fNewPolarization = -fOldPolarization << 1170 << 1171 } << 1172 } << 1173 // NOT TIR << 1174 else if(sint2 < 1.0) << 1175 { << 1176 // Calculate amplitude for transmission << 1177 if(cost1 > 0.0) << 1178 { << 1179 cost2 = std::sqrt(1. - sint2 * sint2) << 1180 } << 1181 else << 1182 { << 1183 cost2 = -std::sqrt(1. - sint2 * sint2 << 1184 } << 1185 << 1186 if(fSint1 > 0.0) << 1187 { << 1188 A_trans = (fOldMomentum.cross(fFacetN << 1189 E1_perp = fOldPolarization * A_trans; << 1190 E1pp = E1_perp * A_trans; << 1191 E1pl = fOldPolarization - E1pp; << 1192 E1_parl = E1pl.mag(); << 1193 } << 1194 else << 1195 { << 1196 A_trans = fOldPolarization; << 1197 // Here we Follow Jackson's conventio << 1198 // component = 1 in case of a ray per << 1199 E1_perp = 0.0; << 1200 E1_parl = 1.0; << 1201 } << 1202 << 1203 s1 = fRindex1 * cost1; << 1204 E2_perp = 2. * s1 * E1_perp / (fRindex << 1205 E2_parl = 2. * s1 * E1_parl / (fRindex << 1206 E2_total = E2_perp * E2_perp + E2_parl << 1207 s2 = fRindex2 * cost2 * E2_total; << 1208 << 1209 // D.Sawkey, 24 May 24 << 1210 // Transmittance has already been taken << 1211 // For e.g. specular surfaces, the rati << 1212 // reflection should be given by the ma << 1213 // TRANSMITTANCE << 1214 //if(fTransmittance > 0.) << 1215 // transCoeff = fTransmittance; << 1216 //else if(cost1 != 0.0) << 1217 if(cost1 != 0.0) << 1218 transCoeff = s2 / s1; << 1219 else << 1220 transCoeff = 0.0; << 1221 << 1222 // NOT TIR: REFLECTION << 1223 if(!G4BooleanRand(transCoeff)) << 1224 { << 1225 swap = false; << 1226 fStatus = FresnelReflection; << 1227 << 1228 if(!surfaceRoughnessCriterionPass) << 1229 fStatus = LambertianReflection; << 1230 if(fModel == unified && fFinish != po << 1231 ChooseReflection(); << 1232 if(fStatus == LambertianReflection) << 1233 { << 1234 DoReflection(); << 1235 } << 1236 else if(fStatus == BackScattering) << 1237 { << 1238 fNewMomentum = -fOldMomentum; << 1239 fNewPolarization = -fOldPolarizatio << 1240 } << 1241 else << 1242 { << 1243 fNewMomentum = << 1244 fOldMomentum - 2. * fOldMomentum << 1245 if(fSint1 > 0.0) << 1246 { // incident ray oblique << 1247 E2_parl = fRindex2 * E2_parl / f << 1248 E2_perp = E2_perp - E1_perp; << 1249 E2_total = E2_perp * E2_perp + E2 << 1250 A_paral = (fNewMomentum.cross(A_ << 1251 E2_abs = std::sqrt(E2_total); << 1252 C_parl = E2_parl / E2_abs; << 1253 C_perp = E2_perp / E2_abs; << 1254 << 1255 fNewPolarization = C_parl * A_par << 1256 } << 1257 else << 1258 { // incident ray perpendicular << 1259 if(fRindex2 > fRindex1) << 1260 { << 1261 fNewPolarization = -fOldPolariz << 1262 } << 1263 else << 1264 { << 1265 fNewPolarization = fOldPolariza << 1266 } << 1267 } << 1268 } << 1269 } << 1270 // NOT TIR: TRANSMISSION << 1271 else << 1272 { << 1273 inside = !inside; << 1274 through = true; << 1275 fStatus = FresnelRefraction; << 1276 << 1277 if(fSint1 > 0.0) << 1278 { // incident ray oblique << 1279 alpha = cost1 - cost2 * (fRi << 1280 fNewMomentum = (fOldMomentum + alph << 1281 A_paral = (fNewMomentum.cross( << 1282 E2_abs = std::sqrt(E2_total); << 1283 C_parl = E2_parl / E2_abs; << 1284 C_perp = E2_perp / E2_abs; << 1285 << 1286 fNewPolarization = C_parl * A_paral << 1287 } << 1288 else << 1289 { // incident ray perpendicular << 1290 fNewMomentum = fOldMomentum; << 1291 fNewPolarization = fOldPolarization << 1292 } << 1293 } << 1294 } << 1295 << 1296 fOldMomentum = fNewMomentum.unit(); << 1297 fOldPolarization = fNewPolarization.unit( << 1298 << 1299 if(fStatus == FresnelRefraction) << 1300 { << 1301 done = (fNewMomentum * fGlobalNormal <= << 1302 } << 1303 else << 1304 { << 1305 done = (fNewMomentum * fGlobalNormal >= << 1306 } << 1307 // Loop checking, 13-Aug-2015, Peter Gump << 1308 } while(!done); << 1309 << 1310 if(inside && !swap) << 1311 { << 1312 if(fFinish == polishedbackpainted || fFin << 1313 { << 1314 G4double rand = G4UniformRand(); << 1315 if(rand > fReflectivity + fTransmittanc << 1316 { << 1317 DoAbsorption(); << 1318 } << 1319 else if(rand > fReflectivity) << 1320 { << 1321 fStatus = Transmission; << 1322 fNewMomentum = fOldMomentum; << 1323 fNewPolarization = fOldPolarization; << 1324 } << 1325 else << 1326 { << 1327 if(fStatus != FresnelRefraction) << 1328 { << 1329 fGlobalNormal = -fGlobalNormal; << 1330 } << 1331 else << 1332 { << 1333 swap = !swap; << 1334 G4SwapPtr(fMaterial1, fMaterial2); << 1335 G4SwapObj(&fRindex1, &fRindex2); << 1336 } << 1337 if(fFinish == groundbackpainted) << 1338 fStatus = LambertianReflection; << 1339 782 1340 DoReflection(); << 783 leap: 1341 784 1342 fGlobalNormal = -fGlobalNormal; << 785 G4bool Through = false; 1343 fOldMomentum = fNewMomentum; << 786 G4bool Done = false; 1344 787 1345 goto leap; << 788 do { 1346 } << 789 1347 } << 790 if (Through) { 1348 } << 791 Swap = !Swap; >> 792 Through = false; >> 793 theGlobalNormal = -theGlobalNormal; >> 794 G4SwapPtr(Material1,Material2); >> 795 G4SwapObj(&Rindex1,&Rindex2); >> 796 } >> 797 >> 798 if ( theFinish == polished ) { >> 799 theFacetNormal = theGlobalNormal; >> 800 } >> 801 else { >> 802 theFacetNormal = >> 803 GetFacetNormal(OldMomentum,theGlobalNormal); >> 804 } >> 805 >> 806 G4double PdotN = OldMomentum * theFacetNormal; >> 807 G4double EdotN = OldPolarization * theFacetNormal; >> 808 >> 809 cost1 = - PdotN; >> 810 if (std::abs(cost1) < 1.0-kCarTolerance){ >> 811 sint1 = std::sqrt(1.-cost1*cost1); >> 812 sint2 = sint1*Rindex1/Rindex2; // *** Snell's Law *** >> 813 } >> 814 else { >> 815 sint1 = 0.0; >> 816 sint2 = 0.0; >> 817 } >> 818 >> 819 if (sint2 >= 1.0) { >> 820 >> 821 // Simulate total internal reflection >> 822 >> 823 if (Swap) Swap = !Swap; >> 824 >> 825 theStatus = TotalInternalReflection; >> 826 >> 827 if ( theModel == unified && theFinish != polished ) >> 828 ChooseReflection(); >> 829 >> 830 if ( theStatus == LambertianReflection ) { >> 831 DoReflection(); >> 832 } >> 833 else if ( theStatus == BackScattering ) { >> 834 NewMomentum = -OldMomentum; >> 835 NewPolarization = -OldPolarization; >> 836 } >> 837 else { >> 838 >> 839 PdotN = OldMomentum * theFacetNormal; >> 840 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 841 EdotN = OldPolarization * theFacetNormal; >> 842 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal; >> 843 >> 844 } >> 845 } >> 846 else if (sint2 < 1.0) { >> 847 >> 848 // Calculate amplitude for transmission (Q = P x N) >> 849 >> 850 if (cost1 > 0.0) { >> 851 cost2 = std::sqrt(1.-sint2*sint2); >> 852 } >> 853 else { >> 854 cost2 = -std::sqrt(1.-sint2*sint2); >> 855 } >> 856 >> 857 G4ThreeVector A_trans, A_paral, E1pp, E1pl; >> 858 G4double E1_perp, E1_parl; >> 859 >> 860 if (sint1 > 0.0) { >> 861 A_trans = OldMomentum.cross(theFacetNormal); >> 862 A_trans = A_trans.unit(); >> 863 E1_perp = OldPolarization * A_trans; >> 864 E1pp = E1_perp * A_trans; >> 865 E1pl = OldPolarization - E1pp; >> 866 E1_parl = E1pl.mag(); >> 867 } >> 868 else { >> 869 A_trans = OldPolarization; >> 870 // Here we Follow Jackson's conventions and we set the >> 871 // parallel component = 1 in case of a ray perpendicular >> 872 // to the surface >> 873 E1_perp = 0.0; >> 874 E1_parl = 1.0; >> 875 } >> 876 >> 877 G4double s1 = Rindex1*cost1; >> 878 G4double E2_perp = 2.*s1*E1_perp/(Rindex1*cost1+Rindex2*cost2); >> 879 G4double E2_parl = 2.*s1*E1_parl/(Rindex2*cost1+Rindex1*cost2); >> 880 G4double E2_total = E2_perp*E2_perp + E2_parl*E2_parl; >> 881 G4double s2 = Rindex2*cost2*E2_total; >> 882 >> 883 G4double TransCoeff; >> 884 >> 885 if (cost1 != 0.0) { >> 886 TransCoeff = s2/s1; >> 887 } >> 888 else { >> 889 TransCoeff = 0.0; >> 890 } >> 891 >> 892 G4double E2_abs, C_parl, C_perp; >> 893 >> 894 if ( !G4BooleanRand(TransCoeff) ) { >> 895 >> 896 // Simulate reflection >> 897 >> 898 if (Swap) Swap = !Swap; >> 899 >> 900 theStatus = FresnelReflection; >> 901 >> 902 if ( theModel == unified && theFinish != polished ) >> 903 ChooseReflection(); >> 904 >> 905 if ( theStatus == LambertianReflection ) { >> 906 DoReflection(); >> 907 } >> 908 else if ( theStatus == BackScattering ) { >> 909 NewMomentum = -OldMomentum; >> 910 NewPolarization = -OldPolarization; >> 911 } >> 912 else { >> 913 >> 914 PdotN = OldMomentum * theFacetNormal; >> 915 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 916 >> 917 if (sint1 > 0.0) { // incident ray oblique >> 918 >> 919 E2_parl = Rindex2*E2_parl/Rindex1 - E1_parl; >> 920 E2_perp = E2_perp - E1_perp; >> 921 E2_total = E2_perp*E2_perp + E2_parl*E2_parl; >> 922 A_paral = NewMomentum.cross(A_trans); >> 923 A_paral = A_paral.unit(); >> 924 E2_abs = std::sqrt(E2_total); >> 925 C_parl = E2_parl/E2_abs; >> 926 C_perp = E2_perp/E2_abs; >> 927 >> 928 NewPolarization = C_parl*A_paral + C_perp*A_trans; >> 929 >> 930 } >> 931 >> 932 else { // incident ray perpendicular >> 933 >> 934 if (Rindex2 > Rindex1) { >> 935 NewPolarization = - OldPolarization; >> 936 } >> 937 else { >> 938 NewPolarization = OldPolarization; >> 939 } >> 940 >> 941 } >> 942 } >> 943 } >> 944 else { // photon gets transmitted >> 945 >> 946 // Simulate transmission/refraction >> 947 >> 948 Inside = !Inside; >> 949 Through = true; >> 950 theStatus = FresnelRefraction; >> 951 >> 952 if (sint1 > 0.0) { // incident ray oblique >> 953 >> 954 G4double alpha = cost1 - cost2*(Rindex2/Rindex1); >> 955 NewMomentum = OldMomentum + alpha*theFacetNormal; >> 956 NewMomentum = NewMomentum.unit(); >> 957 PdotN = -cost2; >> 958 A_paral = NewMomentum.cross(A_trans); >> 959 A_paral = A_paral.unit(); >> 960 E2_abs = std::sqrt(E2_total); >> 961 C_parl = E2_parl/E2_abs; >> 962 C_perp = E2_perp/E2_abs; >> 963 >> 964 NewPolarization = C_parl*A_paral + C_perp*A_trans; >> 965 >> 966 } >> 967 else { // incident ray perpendicular >> 968 >> 969 NewMomentum = OldMomentum; >> 970 NewPolarization = OldPolarization; >> 971 >> 972 } >> 973 } >> 974 } >> 975 >> 976 OldMomentum = NewMomentum.unit(); >> 977 OldPolarization = NewPolarization.unit(); >> 978 >> 979 if (theStatus == FresnelRefraction) { >> 980 Done = (NewMomentum * theGlobalNormal <= 0.0); >> 981 } >> 982 else { >> 983 Done = (NewMomentum * theGlobalNormal >= 0.0); >> 984 } >> 985 >> 986 } while (!Done); >> 987 >> 988 if (Inside && !Swap) { >> 989 if( theFinish == polishedbackpainted || >> 990 theFinish == groundbackpainted ) { >> 991 >> 992 if( !G4BooleanRand(theReflectivity) ) { >> 993 DoAbsorption(); >> 994 } >> 995 else { >> 996 if (theStatus != FresnelRefraction ) { >> 997 theGlobalNormal = -theGlobalNormal; >> 998 } >> 999 else { >> 1000 Swap = !Swap; >> 1001 G4SwapPtr(Material1,Material2); >> 1002 G4SwapObj(&Rindex1,&Rindex2); >> 1003 } >> 1004 if ( theFinish == groundbackpainted ) >> 1005 theStatus = LambertianReflection; >> 1006 >> 1007 DoReflection(); >> 1008 >> 1009 theGlobalNormal = -theGlobalNormal; >> 1010 OldMomentum = NewMomentum; >> 1011 >> 1012 goto leap; >> 1013 } >> 1014 } >> 1015 } 1349 } 1016 } 1350 1017 1351 //....oooOO0OOooo........oooOO0OOooo........o << 1018 // GetMeanFreePath 1352 G4double G4OpBoundaryProcess::GetMeanFreePath << 1019 // --------------- >> 1020 // >> 1021 G4double G4OpBoundaryProcess::GetMeanFreePath(const G4Track& , >> 1022 G4double , 1353 1023 G4ForceCondition* condition) 1354 { 1024 { 1355 *condition = Forced; << 1025 *condition = Forced; 1356 return DBL_MAX; << 1026 >> 1027 return DBL_MAX; 1357 } 1028 } 1358 1029 1359 //....oooOO0OOooo........oooOO0OOooo........o << 1030 G4double G4OpBoundaryProcess::GetIncidentAngle() 1360 G4double G4OpBoundaryProcess::GetIncidentAngl << 1361 { 1031 { 1362 return pi - std::acos(fOldMomentum * fFacet << 1032 G4double PdotN = OldMomentum * theFacetNormal; 1363 (fOldMomentum.mag() * << 1033 G4double magP= OldMomentum.mag(); >> 1034 G4double magN= theFacetNormal.mag(); >> 1035 G4double incidentangle = pi - std::acos(PdotN/(magP*magN)); >> 1036 >> 1037 return incidentangle; 1364 } 1038 } 1365 1039 1366 //....oooOO0OOooo........oooOO0OOooo........o << 1367 G4double G4OpBoundaryProcess::GetReflectivity 1040 G4double G4OpBoundaryProcess::GetReflectivity(G4double E1_perp, 1368 1041 G4double E1_parl, 1369 1042 G4double incidentangle, 1370 << 1043 G4double RealRindex, 1371 << 1044 G4double ImaginaryRindex) 1372 { 1045 { 1373 G4complex reflectivity, reflectivity_TE, re << 1374 G4complex N1(fRindex1, 0.), N2(realRindex, << 1375 G4complex cosPhi; << 1376 1046 1377 G4complex u(1., 0.); // unit number 1 << 1047 G4complex Reflectivity, Reflectivity_TE, Reflectivity_TM; >> 1048 G4complex N(RealRindex, ImaginaryRindex); >> 1049 G4complex CosPhi; 1378 1050 1379 G4complex numeratorTE; // E1_perp=1 E1_par << 1051 G4complex u(1,0); //unit number 1 1380 G4complex numeratorTM; // E1_parl=1 E1_per << 1052 >> 1053 G4complex numeratorTE; // E1_perp=1 E1_parl=0 -> TE polarization >> 1054 G4complex numeratorTM; // E1_parl=1 E1_perp=0 -> TM polarization 1381 G4complex denominatorTE, denominatorTM; 1055 G4complex denominatorTE, denominatorTM; 1382 G4complex rTM, rTE; 1056 G4complex rTM, rTE; 1383 1057 1384 G4MaterialPropertiesTable* MPT = fMaterial1 << 1385 G4MaterialPropertyVector* ppR = MPT->GetPr << 1386 G4MaterialPropertyVector* ppI = MPT->GetPr << 1387 if(ppR && ppI) << 1388 { << 1389 G4double rRindex = ppR->Value(fPhotonMome << 1390 G4double iRindex = ppI->Value(fPhotonMome << 1391 N1 = G4complex(rRindex, iRi << 1392 } << 1393 << 1394 // Following two equations, rTM and rTE, ar 1058 // Following two equations, rTM and rTE, are from: "Introduction To Modern 1395 // Optics" written by Fowles 1059 // Optics" written by Fowles 1396 cosPhi = std::sqrt(u - ((std::sin(incidenta << 1397 (N1 * N1) / (N2 * N << 1398 1060 1399 numeratorTE = N1 * std::cos(incidentangle << 1061 CosPhi=std::sqrt(u-((std::sin(incidentangle)*std::sin(incidentangle))/(N*N))); 1400 denominatorTE = N1 * std::cos(incidentangle << 1062 1401 rTE = numeratorTE / denominatorTE << 1063 numeratorTE = std::cos(incidentangle) - N*CosPhi; 1402 << 1064 denominatorTE = std::cos(incidentangle) + N*CosPhi; 1403 numeratorTM = N2 * std::cos(incidentangle << 1065 rTE = numeratorTE/denominatorTE; 1404 denominatorTM = N2 * std::cos(incidentangle << 1066 1405 rTM = numeratorTM / denominatorTM << 1067 numeratorTM = N*std::cos(incidentangle) - CosPhi; >> 1068 denominatorTM = N*std::cos(incidentangle) + CosPhi; >> 1069 rTM = numeratorTM/denominatorTM; 1406 1070 1407 // This is my (PG) calculaton for reflectiv << 1071 // This is my calculaton for reflectivity on a metalic surface 1408 // depending on the fraction of TE and TM p 1072 // depending on the fraction of TE and TM polarization 1409 // when TE polarization, E1_parl=0 and E1_p 1073 // when TE polarization, E1_parl=0 and E1_perp=1, R=abs(rTE)^2 and 1410 // when TM polarization, E1_parl=1 and E1_p 1074 // when TM polarization, E1_parl=1 and E1_perp=0, R=abs(rTM)^2 1411 1075 1412 reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 1076 Reflectivity_TE = (rTE*conj(rTE))*(E1_perp*E1_perp) 1413 (E1_perp * E1_perp + E1_p << 1077 / (E1_perp*E1_perp + E1_parl*E1_parl); 1414 reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 1078 Reflectivity_TM = (rTM*conj(rTM))*(E1_parl*E1_parl) 1415 (E1_perp * E1_perp + E1_p << 1079 / (E1_perp*E1_perp + E1_parl*E1_parl); 1416 reflectivity = reflectivity_TE + reflectivi << 1080 Reflectivity = Reflectivity_TE + Reflectivity_TM; 1417 << 1081 1418 do << 1082 do { 1419 { << 1083 if(G4UniformRand()*real(Reflectivity) > real(Reflectivity_TE)) 1420 if(G4UniformRand() * real(reflectivity) > << 1084 {iTE = -1;}else{iTE = 1;} 1421 { << 1085 if(G4UniformRand()*real(Reflectivity) > real(Reflectivity_TM)) 1422 f_iTE = -1; << 1086 {iTM = -1;}else{iTM = 1;} 1423 } << 1087 } while(iTE<0&&iTM<0); 1424 else << 1088 1425 { << 1089 return real(Reflectivity); 1426 f_iTE = 1; << 1427 } << 1428 if(G4UniformRand() * real(reflectivity) > << 1429 { << 1430 f_iTM = -1; << 1431 } << 1432 else << 1433 { << 1434 f_iTM = 1; << 1435 } << 1436 // Loop checking, 13-Aug-2015, Peter Gump << 1437 } while(f_iTE < 0 && f_iTM < 0); << 1438 1090 1439 return real(reflectivity); << 1440 } 1091 } 1441 1092 1442 //....oooOO0OOooo........oooOO0OOooo........o << 1443 void G4OpBoundaryProcess::CalculateReflectivi 1093 void G4OpBoundaryProcess::CalculateReflectivity() 1444 { 1094 { 1445 G4double realRindex = fRealRIndexMPV->Value << 1095 G4double RealRindex = 1446 G4double imaginaryRindex = << 1096 PropertyPointer1->GetProperty(thePhotonMomentum); 1447 fImagRIndexMPV->Value(fPhotonMomentum, id << 1097 G4double ImaginaryRindex = >> 1098 PropertyPointer2->GetProperty(thePhotonMomentum); 1448 1099 1449 // calculate FacetNormal 1100 // calculate FacetNormal 1450 if(fFinish == ground) << 1101 if ( theFinish == ground ) { 1451 { << 1102 theFacetNormal = 1452 fFacetNormal = GetFacetNormal(fOldMomentu << 1103 GetFacetNormal(OldMomentum, theGlobalNormal); 1453 } << 1104 } else { 1454 else << 1105 theFacetNormal = theGlobalNormal; 1455 { << 1456 fFacetNormal = fGlobalNormal; << 1457 } 1106 } 1458 1107 1459 G4double cost1 = -fOldMomentum * fFacetNorm << 1108 G4double PdotN = OldMomentum * theFacetNormal; 1460 if(std::abs(cost1) < 1.0 - fCarTolerance) << 1109 cost1 = -PdotN; 1461 { << 1110 1462 fSint1 = std::sqrt(1. - cost1 * cost1); << 1111 if (std::abs(cost1) < 1.0 - kCarTolerance) { 1463 } << 1112 sint1 = std::sqrt(1. - cost1*cost1); 1464 else << 1113 } else { 1465 { << 1114 sint1 = 0.0; 1466 fSint1 = 0.0; << 1467 } 1115 } 1468 1116 1469 G4ThreeVector A_trans, A_paral, E1pp, E1pl; 1117 G4ThreeVector A_trans, A_paral, E1pp, E1pl; 1470 G4double E1_perp, E1_parl; 1118 G4double E1_perp, E1_parl; 1471 1119 1472 if(fSint1 > 0.0) << 1120 if (sint1 > 0.0 ) { 1473 { << 1121 A_trans = OldMomentum.cross(theFacetNormal); 1474 A_trans = (fOldMomentum.cross(fFacetNorma << 1122 A_trans = A_trans.unit(); 1475 E1_perp = fOldPolarization * A_trans; << 1123 E1_perp = OldPolarization * A_trans; 1476 E1pp = E1_perp * A_trans; << 1124 E1pp = E1_perp * A_trans; 1477 E1pl = fOldPolarization - E1pp; << 1125 E1pl = OldPolarization - E1pp; 1478 E1_parl = E1pl.mag(); << 1126 E1_parl = E1pl.mag(); 1479 } << 1127 } 1480 else << 1128 else { 1481 { << 1129 A_trans = OldPolarization; 1482 A_trans = fOldPolarization; << 1130 // Here we Follow Jackson's conventions and we set the 1483 // Here we Follow Jackson's conventions a << 1131 // parallel component = 1 in case of a ray perpendicular 1484 // component = 1 in case of a ray perpend << 1132 // to the surface 1485 E1_perp = 0.0; << 1133 E1_perp = 0.0; 1486 E1_parl = 1.0; << 1134 E1_parl = 1.0; 1487 } 1135 } 1488 1136 >> 1137 //calculate incident angle 1489 G4double incidentangle = GetIncidentAngle() 1138 G4double incidentangle = GetIncidentAngle(); 1490 1139 1491 // calculate the reflectivity depending on << 1140 //calculate the reflectivity depending on incident angle, 1492 // polarization and complex refractive << 1141 //polarization and complex refractive 1493 fReflectivity = GetReflectivity(E1_perp, E1 << 1494 imaginaryRi << 1495 } << 1496 << 1497 //....oooOO0OOooo........oooOO0OOooo........o << 1498 G4bool G4OpBoundaryProcess::InvokeSD(const G4 << 1499 { << 1500 G4Step aStep = *pStep; << 1501 aStep.AddTotalEnergyDeposit(fPhotonMomentum << 1502 << 1503 G4VSensitiveDetector* sd = aStep.GetPostSte << 1504 if(sd != nullptr) << 1505 return sd->Hit(&aStep); << 1506 else << 1507 return false; << 1508 } << 1509 << 1510 //....oooOO0OOooo........oooOO0OOooo........o << 1511 inline void G4OpBoundaryProcess::SetInvokeSD( << 1512 { << 1513 fInvokeSD = flag; << 1514 G4OpticalParameters::Instance()->SetBoundar << 1515 } << 1516 << 1517 //....oooOO0OOooo........oooOO0OOooo........o << 1518 void G4OpBoundaryProcess::SetVerboseLevel(G4i << 1519 { << 1520 verboseLevel = verbose; << 1521 G4OpticalParameters::Instance()->SetBoundar << 1522 } << 1523 << 1524 //....oooOO0OOooo........oooOO0OOooo........o << 1525 void G4OpBoundaryProcess::CoatedDielectricDie << 1526 { << 1527 G4MaterialPropertyVector* pp = nullptr; << 1528 << 1529 G4MaterialPropertiesTable* MPT = fMaterial2 << 1530 if((pp = MPT->GetProperty(kRINDEX))) << 1531 { << 1532 fRindex2 = pp->Value(fPhotonMomentum, idx << 1533 } << 1534 << 1535 MPT = fOpticalSurface->GetMaterialPropertie << 1536 if((pp = MPT->GetProperty(kCOATEDRINDEX))) << 1537 { << 1538 fCoatedRindex = pp->Value(fPhotonMomentum << 1539 } << 1540 if(MPT->ConstPropertyExists(kCOATEDTHICKNES << 1541 { << 1542 fCoatedThickness = MPT->GetConstProperty( << 1543 } << 1544 if(MPT->ConstPropertyExists(kCOATEDFRUSTRAT << 1545 { << 1546 fCoatedFrustratedTransmission = << 1547 (G4bool)MPT->GetConstProperty(kCOATEDFR << 1548 } << 1549 << 1550 G4double sintTL; << 1551 G4double wavelength = h_Planck * c_light / << 1552 G4double PdotN; << 1553 G4double E1_perp, E1_parl; << 1554 G4double s1, E2_perp, E2_parl, E2_total, tr << 1555 G4double E2_abs, C_parl, C_perp; << 1556 G4double alpha; << 1557 G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 1558 //G4bool Inside = false; << 1559 //G4bool Swap = false; << 1560 G4bool through = false; << 1561 G4bool done = false; << 1562 << 1563 do { << 1564 if (through) << 1565 { << 1566 //Swap = !Swap; << 1567 through = false; << 1568 fGlobalNormal = -fGlobalNormal; << 1569 G4SwapPtr(fMaterial1, fMaterial2); << 1570 G4SwapObj(&fRindex1, &fRindex2); << 1571 } << 1572 << 1573 if(fFinish == polished) << 1574 { << 1575 fFacetNormal = fGlobalNormal; << 1576 } << 1577 else << 1578 { << 1579 fFacetNormal = GetFacetNormal(fOldMomen << 1580 } << 1581 << 1582 PdotN = fOldMomentum * fFacetNormal; << 1583 G4double cost1 = -PdotN; << 1584 G4double sint2, cost2 = 0.; << 1585 << 1586 if (std::abs(cost1) < 1.0 - fCarTolerance << 1587 { << 1588 fSint1 = std::sqrt(1. - cost1 * cost1); << 1589 sint2 = fSint1 * fRindex1 / fRindex2; << 1590 sintTL = fSint1 * fRindex1 / fCoatedRin << 1591 } else << 1592 { << 1593 fSint1 = 0.0; << 1594 sint2 = 0.0; << 1595 sintTL = 0.0; << 1596 } << 1597 << 1598 if (fSint1 > 0.0) << 1599 { << 1600 A_trans = fOldMomentum.cross(fFacetNorm << 1601 A_trans = A_trans.unit(); << 1602 E1_perp = fOldPolarization * A_trans; << 1603 E1pp = E1_perp * A_trans; << 1604 E1pl = fOldPolarization - E1pp; << 1605 E1_parl = E1pl.mag(); << 1606 } << 1607 else << 1608 { << 1609 A_trans = fOldPolarization; << 1610 E1_perp = 0.0; << 1611 E1_parl = 1.0; << 1612 } << 1613 << 1614 s1 = fRindex1 * cost1; << 1615 << 1616 if (cost1 > 0.0) << 1617 { << 1618 cost2 = std::sqrt(1. - sint2 * sint2); << 1619 } << 1620 else << 1621 { << 1622 cost2 = -std::sqrt(1. - sint2 * sint2); << 1623 } << 1624 << 1625 transCoeff = 0.0; << 1626 << 1627 if (sintTL >= 1.0) << 1628 { // --> Angle > Angle Limit << 1629 //Swap = false; << 1630 } << 1631 E2_perp = 2. * s1 * E1_perp / (fRindex1 * << 1632 E2_parl = 2. * s1 * E1_parl / (fRindex2 * << 1633 E2_total = E2_perp * E2_perp + E2_parl * << 1634 << 1635 transCoeff = 1. - GetReflectivityThroughT << 1636 sintTL, E1_perp, E1_p << 1637 if (!G4BooleanRand(transCoeff)) << 1638 { << 1639 if(verboseLevel > 2) << 1640 G4cout << "Reflection from " << fMate << 1641 << fMaterial2->GetName() << G4 << 1642 << 1643 //Swap = false; << 1644 << 1645 if (sintTL >= 1.0) << 1646 { << 1647 fStatus = TotalInternalReflection; << 1648 } << 1649 else << 1650 { << 1651 fStatus = CoatedDielectricReflection; << 1652 } << 1653 << 1654 PdotN = fOldMomentum * fFacetNormal; << 1655 fNewMomentum = fOldMomentum - (2. * Pdo << 1656 << 1657 if (fSint1 > 0.0) { // incident ray o << 1658 << 1659 E2_parl = fRindex2 * E2_parl / fRinde << 1660 E2_perp = E2_perp - E1_perp; << 1661 E2_total = E2_perp * E2_perp + E2_par << 1662 A_paral = fNewMomentum.cross(A_trans) << 1663 A_paral = A_paral.unit(); << 1664 E2_abs = std::sqrt(E2_total); << 1665 C_parl = E2_parl / E2_abs; << 1666 C_perp = E2_perp / E2_abs; << 1667 << 1668 fNewPolarization = C_parl * A_paral + << 1669 << 1670 } << 1671 else << 1672 { // incident ray perpend << 1673 if (fRindex2 > fRindex1) << 1674 { << 1675 fNewPolarization = -fOldPolarizatio << 1676 } << 1677 else << 1678 { << 1679 fNewPolarization = fOldPolarization << 1680 } << 1681 } << 1682 1142 1683 } else { // photon gets transmitted << 1143 theReflectivity = 1684 if (verboseLevel > 2) << 1144 GetReflectivity(E1_perp, E1_parl, incidentangle, 1685 G4cout << "Transmission from " << fMa << 1145 RealRindex, ImaginaryRindex); 1686 << fMaterial2->GetName() << G4 << 1687 << 1688 //Inside = !Inside; << 1689 through = true; << 1690 << 1691 if (fEfficiency > 0.) << 1692 { << 1693 DoAbsorption(); << 1694 return; << 1695 } << 1696 else << 1697 { << 1698 if (sintTL >= 1.0) << 1699 { << 1700 fStatus = CoatedDielectricFrustrate << 1701 } << 1702 else << 1703 { << 1704 fStatus = CoatedDielectricRefractio << 1705 } << 1706 << 1707 if (fSint1 > 0.0) { // incident << 1708 << 1709 alpha = cost1 - cost2 * (fRindex2 / << 1710 fNewMomentum = fOldMomentum + alpha << 1711 fNewMomentum = fNewMomentum.unit(); << 1712 A_paral = fNewMomentum.cross(A_tran << 1713 A_paral = A_paral.unit(); << 1714 E2_abs = std::sqrt(E2_total); << 1715 C_parl = E2_parl / E2_abs; << 1716 C_perp = E2_perp / E2_abs; << 1717 << 1718 fNewPolarization = C_parl * A_paral << 1719 << 1720 } << 1721 else << 1722 { // incident ray pe << 1723 fNewMomentum = fOldMomentum; << 1724 fNewPolarization = fOldPolarization << 1725 } << 1726 } << 1727 } << 1728 << 1729 fOldMomentum = fNewMomentum.unit(); << 1730 fOldPolarization = fNewPolarization.unit( << 1731 if ((fStatus == CoatedDielectricFrustrate << 1732 (fStatus == CoatedDielectricRefractio << 1733 { << 1734 done = (fNewMomentum * fGlobalNormal <= << 1735 } << 1736 else << 1737 { << 1738 done = (fNewMomentum * fGlobalNormal >= << 1739 } << 1740 << 1741 } while (!done); << 1742 } << 1743 << 1744 //....oooOO0OOooo........oooOO0OOooo........o << 1745 G4double G4OpBoundaryProcess::GetReflectivity << 1746 G4double E1_perp, << 1747 G4double E1_parl, << 1748 G4double wavelength, G4dou << 1749 G4complex Reflectivity, Reflectivity_TE, Re << 1750 G4double gammaTL, costTL; << 1751 << 1752 G4complex i(0, 1); << 1753 G4complex rTM, rTE; << 1754 G4complex r1toTL, rTLto2; << 1755 G4double k0 = 2 * pi / wavelength; << 1756 << 1757 // Angle > Angle limit << 1758 if (sinTL >= 1.0) { << 1759 if (fCoatedFrustratedTransmission) { //Fr << 1760 << 1761 if (cost1 > 0.0) << 1762 { << 1763 gammaTL = std::sqrt(fRindex1 * fRinde << 1764 fCoatedRindex * fCoatedRin << 1765 } << 1766 else << 1767 { << 1768 gammaTL = -std::sqrt(fRindex1 * fRind << 1769 fCoatedRindex * fCoatedRin << 1770 } << 1771 << 1772 // TE << 1773 r1toTL = (fRindex1 * cost1 - i * gammaT << 1774 rTLto2 = (i * gammaTL - fRindex2 * cost << 1775 if (cost1 != 0.0) << 1776 { << 1777 rTE = (r1toTL + rTLto2 * std::exp(-2 << 1778 (1.0 + r1toTL * rTLto2 * std << 1779 } << 1780 // TM << 1781 r1toTL = (fRindex1 * i * gammaTL - fCoa << 1782 (fRindex1 * i * gammaTL + f << 1783 rTLto2 = (fCoatedRindex * fCoatedRindex << 1784 (fCoatedRindex * fCoatedRin << 1785 if (cost1 != 0.0) << 1786 { << 1787 rTM = (r1toTL + rTLto2 * std::exp(-2 << 1788 (1.0 + r1toTL * rTLto2 * std << 1789 } << 1790 } << 1791 else << 1792 { //Total reflection << 1793 return(1.); << 1794 } << 1795 } << 1796 << 1797 // Angle <= Angle limit << 1798 else //if (sinTL < 1.0) << 1799 { << 1800 if (cost1 > 0.0) << 1801 { << 1802 costTL = std::sqrt(1. - sinTL * sinTL); << 1803 } << 1804 else << 1805 { << 1806 costTL = -std::sqrt(1. - sinTL * sinTL) << 1807 } << 1808 // TE << 1809 r1toTL = (fRindex1 * cost1 - fCoatedRinde << 1810 rTLto2 = (fCoatedRindex * costTL - fRinde << 1811 if (cost1 != 0.0) << 1812 { << 1813 rTE = (r1toTL + rTLto2 * std::exp(2.0 * << 1814 (1.0 + r1toTL * rTLto2 * std::exp << 1815 } << 1816 // TM << 1817 r1toTL = (fRindex1 * costTL - fCoatedRind << 1818 rTLto2 = (fCoatedRindex * cost2 - fRindex << 1819 if (cost1 != 0.0) << 1820 { << 1821 rTM = (r1toTL + rTLto2 * std::exp(2.0 * << 1822 (1.0 + r1toTL * rTLto2 * std::exp << 1823 } << 1824 } << 1825 << 1826 Reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 1827 Reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 1828 Reflectivity = Reflectivity_TE + Reflectivi << 1829 << 1830 return real(Reflectivity); << 1831 } 1146 } 1832 1147